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Abstract

In this article we merge two celebrated results by Kesten and Spitzer (1979) and by Kawazu
and Kesten (1984). A random walk performs a motion in an iid environment and observes an
iid scenery along its path. We assume that the scenery is in the domain of attraction of a stable
distribution and prove that the resulting observations satisfy a limit theorem. The resulting
limit process is a self-similar stochastic process with non-trivial dependencies.
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1 Introduction

The following model for a random walk in random environment can be found in the physical
literature (see Anshelevic and Vologodskii (1981), Alexander et al. (1981), Kawazu and Kesten
(1984)). Let {λj ; j ∈ Z} be a family of positive iid random-variables and A the σ-algebra
generated by those random-variables. Let {X(t); t ≥ 0} be a continuous-time random walk on
Z having the following asymptotic transition rates for h→ 0

IP(X(t+ h) = j + 1|X(t) = j,A) = λjh+ o(h) (1)

IP(X(t+ h) = j − 1|X(t) = j,A) = λj−1h+ o(h) (2)

IP(X(t+ h) = j|X(t) = j,A) = 1 − (λj + λj−1)h+ o(h). (3)

In other words the process {X(t); t ≥ 0} is a birth and death process with possibly negative
population size, where for a population with j individuals birth occurs at rate λj and death
at rate λj−1. We will assume that the process {X(t); t ≥ 0} starts in zero at time zero. The
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Bochum, Germany; e-mail: Brice.Franke@rub.de

†Department of Mathematics, Keio University 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama-shi city, Kanagawa-ken
prefecture, 223-8522, Japan; e-mail: saigo@math.keio.ac.jp

1



resulting process is symmetric in the sense that the permeability of the edge connecting the
vertices j and j + 1 does not depend on the direction of the motion. This physical background
motivates the name of random environment for the sequence {λj ; j ∈ Z}. In the following we
denote the distribution of the random environment on the sequence-space by Pλ. The following
convergence results are described in Kawazu and Kesten (1984):

KK1: If c := IE[λ−1
0 ] < ∞, then for Pλ-almost all environments the distributions (after condi-

tioning on the environment) of the processes

Xn(t) :=
1

n
X(n2t); t ≥ 0

converge weakly with respect to the Skorohod topology toward the distribution of the process
{c−1/2B(t); t ≥ 0}, where {B(t); t ≥ 0} is standard Brownian motion on R.
(see also Papanicolaou and Varadhan (1981) for some related result)

KK2: If there exists a slowly varying function L1 such that

1

nL1(n)

n
∑

j=1

1

λj
−→ 1 in probability,

then the distributions of the processes

Xn(t) :=
1

n
X(n2L1(n)t)

converge weakly with respect to the Skorohod topology toward the distribution of standard Brow-
nian motion.

KK3: If there exists a slowly varying function L2 such that the sequence of random variables

Rn :=
1

n1/αL2(n)

n
∑

j=1

1

λj

converges in distribution toward a one-sided stable distribution ϑα with index α ∈ (0, 1),
then the distributions of the processes

Xn(t) :=
1

n
X(n(1+α)/αL2(n)t)

converge weakly with respect to the Skorohod topology toward the distribution of a continuous
self-similar process {X∗(t); t ≥ 0} with scaling exponent η = α

α+1 .

Remark: 1) In the next section we will give a representation for the process X∗ in terms of a
standart Brownian motion and a stable subordinater associated to the measure ϑα.

2) We note that the results from Kawazu and Kesten (1984) are generalised in Kawazu (1989).
He considered random-walks in random environments defined by the following transition asymp-
totics

IP(X(t+ h) = j + 1|X(t) = j,A) = (λj/ηj)h+ o(h)

IP(X(t+ h) = j − 1|X(t) = j,A) = (λj−1/ηj)h+ o(h)

IP(X(t+ h) = j|X(t) = j,A) = 1 − ((λj + λj−1)/ηj)h+ o(h),
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where {ηj , j ∈ N} is an iid family of positive random-variables satisfying suitable assumptions.
Similar to the situation studied in Kawazu and Kesten (1984) the resulting random-walks con-
verge toward appropriate continuous processes after scaling.

In Kesten and Spitzer (1979) new classes of continuous self-similar processes are described.
Moreover they proved that those processes are weak limits of random walks in random scenery.
Those random walks are defined as follows:

Let {ξ(x);x ∈ Z} and {Zi; i ∈ N} be two independent families of iid random variables, where
the random variables Zi are assumed to be Z-valued. One can think of the sequence {Zi; i ∈ N}
as increments of a classical Z-valued random walk Sk :=

∑k
i=1 Zi. The stationary sequence

{ξ(Sk); k ∈ N} has some non-trivial long range dependencies, if the underlying random walk
{Sk; k ∈ N} is recurrent. This is for example the case, if Z1 is in the domain of attraction of
an α-stable distribution with α ∈ (1, 2]. The random sequence D(n) :=

∑n
k=1 ξ(Sk) is called a

random walk in random scenery. In Kesten and Spitzer (1979) the following convergence result
was proved for those processes:

KS1: If ξ(0) is in the domain of attraction of a β-stable distribution with β ∈ (0, 2] and if Z1

is in the domain of attraction of an α-stable distribution with α ∈ (0, 1), then the distributions
of the processes

Dn(t) := n−1/β

⌊nt⌋
∑

k=1

ξ(Sk)

converge weakly with respect to the Skorohod topology toward β-stable Lévy motion.
(see also Spitzer (1976) for a special case)

KS2: If ξ(0) is in the domain of attraction of a β-stable distribution with β ∈ (0, 2] and if Z1

is in the domain of attraction of an α-stable distribution with α ∈ (1, 2], then the distributions
of the processes

Dn(t) := n−δ

⌊nt⌋
∑

k=1

ξ(Sk)

converge weakly with respect to the Skorohod topology toward a continuous self-similar process
D∗ with scaling exponent δ = 1 − 1

α + 1
αβ .

Remark: The statement in KS1 corresponds to the transient case and is not difficult to prove,
since in that case the sequence {ξ(Sk); k ∈ N} has only weak dependencies. This is the reason,
why one obtains β-stable Levy noise in the limit. We also mention that the case β = 1 is still
open.

Remark: There exist various generalisations of the results from Kesten and Spitzer (1979).
We only mention Shieh (1995) where the limiting process is generalised to higher dimensions,
Lang and Nguyen (1983) which deals with multidimensional random walks and some special
random scenery, Maejima (1996) where the random scenery belongs to the domain of attraction
of operator stable distribution, Arai (2001) where the random scenery belongs to the domain
of partial attraction of a semi-stable distribution and Saigo and Takahashi (2005) where the
random scenery and the random walk belong to the partial domain of attractions of semi-stable
and operator semi-stable distributions.

In this article we investigate, whether it is possible to substitute the classical random walk in
the result from Kesten and Spitzer (1979) by the random walk in random environment which
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was introduced in Kawazu and Kesten (1984). We will restrict our attention to the result KK3,
since this is the case where a new type of self-similar process arises at the end. For simplicity
and in order to avoid abusive notations we will assume that the slowly varying function L2

which appears in KK3 is constant and equal to one. The general case with non-constant L2 can
be treated in a similar way.

We now fix a probability space (Ω,F , IP) which is sufficiently large to support a family of iid
random variables {λj ; j ∈ Z}, a birth-death process {X(t); t ≥ 0} with asymptotic transition
rates given by equations (1)-(3) and a family of iid random variables {ξ(k), k ∈ Z}.
We assume that the families {ξ(k), k ∈ Z} and {X(t); t ≥ 0} are independent and that t 7→ X(t)
is cadlag IP-almost surely.
Further, we assume that λ−1

1 is in the domain of normal attraction of a one-sided α-stable
distribution ϑα with α ∈ (0, 1).
Moreover, we assume that ξ(0) is in the domain of normal attraction of a β-stable distribution
ϑβ with β ∈ (0, 2]. Its characteristic function is given by

ψ(θ) = exp(−|θ|β(A1 + iA2sgn(θ)),

where 0 < A1 < ∞ and |A−1
1 A2| ≤ tan(πβ/2). For β > 1, it follows from those assumptions

that IE[ξ(0)] = 0.
For β = 1 we make the further assumption that there exists a K > 0 such that

∣

∣IE
[

ξ(0)1I[−ρ,ρ](ξ(0))
]∣

∣ ≤ K for all ρ > 0.

We can now define the following continuous time version of the random walk in random scenery

Ξ(t) :=

∫ t

0
ξ(X(s))ds.

In the following we will use the space

D[0,∞) := {γ : [0,∞) → R : γ is cadlag} .

with the Skorohod topology. We will prove the following theorem in this article:

Theorem 1 For κ := 1
α + 1

β and kn := n
1+α

α the distributions of the processes

Ξn(t) := n−κ

∫ knt

0
ξ(X(s))ds,

converge weakly with respect to the Skorohod topology toward the distribution of a self-similar
stochastic process {Ξ∗(t); t ≥ 0} with scaling exponent µ = 1 − α

α+1 + α
(α+1)β .

Remark: The stochastic process {Ξ∗(t); t ≥ 0} can be constructed as follows:
Let Z+ and Z− be two independent copies of the β-stable Lévy-process which can be associated
to the characteristic function

ψ(θ) = exp
(

−|θ|β(A1 + iA2sgn(θ))
)

.
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Further, let {L∗(τ, x); τ ≥ 0, x ∈ R} be the local time of the stochastic process {X∗(τ); τ ≥ 0};
i.e.: the random variable L∗(τ, x) is the derivative with respect to x of the occupation-time

Γ∗(τ, (−∞, x]) :=

∫ τ

0
1I(−∞,x](X∗(σ))dσ.

We will see in the next section that the local time exists for all except a countable number of
points x ∈ R. Moreover for all τ ≥ 0 the processes

{L∗(τ, x−);x ≥ 0} and {L∗(τ,−(x−));x ≥ 0}

are predictable with respect to the natural filtrations of Z+ resp. Z−. The following integral
representation of the process Ξ∗ can be given

Ξ∗(τ) :=

∫ ∞

0
L∗(τ, x−)dZ+(x) +

∫ ∞

0
L∗(τ,−(x−))dZ−(x).

2 The convergence of the birth death process

The goal of this section is to prove Corollary 2, which is the main ingredient to show that the
finite dimensional distributions of Ξn converge toward the finite dimensional distributions of
Ξ∗. This corollary contains a statement on the weak convergence of certain functionals of the
occupation times of the rescaled processes Xn. A result corresponding to Corollary 2 is also
proved in Kesten and Spitzer (1979), however, we have to follow a totally different approach,
since we do not have so precise information on the potential theory related to the random walk
X. Instead we will understand the occupation times of Xn and prove that they converge in an
appropriate sense toward the local time of the limit process X∗.

We describe some of the main arguments from the proof in Kawazu and Kesten (1984) for the
convergence of the processes

Xn(t) :=
1

n
X(n

1+α
α t)

toward the self-similar process X∗ defined in Kawazu and Kesten (1984). We can enlarge our
underlying probability space (Ω,F , IP) in such a way that it contains a standard Brownian
motion {B(t); t ≥ 0} and a cadlag-version of the stable Lévy-subordinator {W (x);x ∈ R}
which can be associated to the one-sided α-stable distribution ϑα.
Furthermore we assume that {B(t); t ≥ 0}, {W (x);x ∈ R}, {X(t); t ≥ 0} and {ξ(n);n ∈ Z} are
independent. Moreover, we assume that W (0) = 0 and B(0) = 0 hold IP-almost surely.
In the future we will denote by {L(t, x); t ≥ 0, x ∈ R} the local time of the Brownian motion
{B(t); t ≥ 0}. The process

V∗(t) :=

∫

R

L(t,W (x))dx

is non-decreasing IP-almost surely. Therefore, we can define the following pseudo-inverse

W−1(y) := inf{x ∈ R;W (x) > y} and V −1
∗ (τ) := inf{t ≥ 0;V∗(t) > τ}.

In Kawazu and Kesten (1984) the following representation for the self-similar process X∗ is
given

X∗(τ) := W−1(B(V −1
∗ (τ))).
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Now we sketch the main arguments from the proof in Kawazu and Kesten (1984). We will need
some of those ideas in our proof of the convergence of Ξn toward Ξ∗. Their approach is based
on the natural scale of the birth death process. One defines

S(j) :=







∑j−1
k=0 λ

−1
k for j > 0

0 for j = 0

−
∑−1

k=j λ
−1
k for j < 0.

This implies that conditioned on A := {λj ; j ∈ Z} the process S(X(t)) is on natural scale (see
Kawazu and Kesten (1984) p.565). This means that for all a, b, x ∈ R with a < x < b one has

IP(S(X(t)) hits {a, b} first at a|S(X(0)) = x,A) =
b− x

b− a
.

It is then possible to represent the process S(X(t)) as the time change of standard Brownian
motion {B(t); t ≥ 0} as follows:

One defines m(dx) :=
∑

i∈Z
δS(i)(dx) and

V (t) :=

∫

R

L(t, x)m(dx) =
∑

i∈Z

L(t, S(i)),

where again {L(t, x); t ≥ 0, x ∈ R} is the local time of the standard Brownian motion B. One
can see that {B(V −1(t)); t ≥ 0} and {S(X(t)); t ≥ 0} are both cadlag and have the same
distribution (see Kawazu and Kesten (1984) p.566).

Then one has to scale the above constructions.

Sn(x) := n−1/αS(⌊nx⌋), n ∈ N, x ∈ R,

where for a positive real number x we denote by ⌊x⌋ its integer part. It follows from the
assumptions on the environment {λj ; j ∈ Z} that for n → ∞ the processes {Sn(x);x ∈ R}
converge in distribution toward an α-stable Lévy-process {W (x);x ∈ R}. Moreover, the process
W is strictly increasing IP-almost surely, since ϑα is a one sided stable distribution and α ∈ (0, 1).
By a method given in Skorohod (1956) and Dudley (1968) it is possible to construct a suitable
probability space (Ω̃, F̃ , ĨP) with suitable D-valued random variables S̃n and W̃ having the
properties that S̃n converges toward W̃ almost surely with respect to ĨP and that S̃n and W̃
have the same distributions as Sn resp. W (see Kawazu and Kesten (1984) p.567). One then
defines

Ṽn(t) :=

∫

R

L(t, x)m̃n(dx) and Ṽ∗(t) :=

∫

R

L(t, x)m̃∗(dx)

with
∫

R

f(x)m̃n(dx) :=

∫

R

f(S̃n(x))dx and

∫

R

f(x)m̃∗(dx) :=

∫

R

f(W̃ (x))dx

for all measurable f ≥ 0. We then define S̃−1
n , W̃−1, Ṽ −1

n and Ṽ −1
∗ in the same way as W−1

resp. V −1
∗ above.

In Kawazu and Kesten (1984) (see p.568) they prove that {B(Ṽ −1
n (t)); t ≥ 0} converges ĨP-

almost surely toward {B(Ṽ −1
∗ (t)); t ≥ 0} in the J1-topology. For convenience we define

X̃n(t) := S̃−1
n (B(Ṽ −1

n (t))), X̃∗(t) := W̃−1(B(Ṽ −1
∗ (t)))
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We note that the process {X̃n(t); t ≥ 0} is defined on (Ω × Ω̃,F × F̃ , , IP × ĨP). It is proved in
Kawazu and Kesten (1984) that {X̃n(t); t ≥ 0} converges toward {X̃∗(t); t ≥ 0} with respect to
the J1-topology almost surely with respect to IP × ĨP (see page 569).

Moreover, for Bn(t) := n−1/2B(nt) one has that (see Kawazu and Kesten page 572)

|Xn(t) − S−1
n (Bn(V −1

n (t)))| ≤ 1/n

and
{

S−1
n (Bn(V −1

n (t))); t ≥ 0
} D

=
{

S̃−1
n (B(Ṽ −1

n (t))); t ≥ 0
}

=
{

X̃n(t); t ≥ 0
}

.

If we define X̂n(t) := S−1
n (Bn(V −1

n (t))) the previous observations imply that both processes
{Xn(t); t ≥ 0} and {X̂n(t); t ≥ 0} converge in distribution toward {X̃∗(t); t ≥ 0}, which has the
same distribution as {X∗(t); t ≥ 0}.

In the rest of this section we analyse the distributional behaviour of the occupation times for
the process Xn (see Proposition 6). In order to obtain this result we prove an analogue result
for the process X̃n (see Lemma 5), which can be boiled down to Proposition 4. The advantage
of this detour is that we can prove almost sure convergence for the occupation times of the
process X̃n toward the local time of X̃∗ (see Proposition 3). This result is based on the fact
that we have explicit formulas for the occupation times of X̃n and the local time of X̃∗ (see
Proposition 2 and Corollary 1). The explicit expression of the occupation time of X̃n and the
local time of X̃∗ unveils that in order to prove Proposition 3 it is sufficient to prove the almost
sure convergence of S̃n and Ṽ −1

n toward W̃∗ resp. Ṽ −1
∗ . The convergence of S̃n toward W̃∗ holds

by construction. The convergence of Ṽn toward Ṽ∗ is obtained in Lemma 1 and then used to
obtain the convergence of Ṽ −1

n toward Ṽ −1
∗ in Lemma 2.

2.1 The local times of X∗ and X̃∗

We define the time that the processes X̃∗ and X∗ spend in the measurable set A until time τ as

Γ∗(τ, A) :=

∫ τ

0
1IA(X∗(σ))dσ, resp. Γ̃∗(τ, A) :=

∫ τ

0
1IA(X̃∗(σ))dσ.

We denote by {L∗(τ, x); τ ≥ 0, x ∈ R} and {L̃∗(τ, x); τ ≥ 0, x ∈ R} the local times of X∗ resp.
X̃∗ if they exist. In this subsection we prove that both local times exist almost surely and relate
them to the local time {L(t, x); t ≥ 0, x ∈ R} of the underlying Brownian motion {B(t); t ≥ 0}.

Proposition 1 One has IP-almost surely that for τ ≥ 0 and all x ∈ R that

Γ∗(τ, (−∞, x)) =

∫ x

−∞
L(V −1

∗ (τ),W (y))dy.

Further, IP × ĨP-almost surely that for all τ ≥ 0 and all x ∈ R that

Γ̃∗(τ, (−∞, x)) =

∫ x

−∞
L(Ṽ −1

∗ (τ), W̃ (y))dy.

Proof: We have IP-almost surely that x 7→ W (x) is increasing. It follows that the set N1 of
x ∈ R, where W is not continuous, is countable. We define the set

N2 :=
{

x ∈ R : ℓ(σ;B(V −1
∗ (σ)) = W (x)) > 0

}

,
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where ℓ denotes the Lebesgue measure on R. The set N2 is countable since for x1 6= x2 one
has that the sets {σ;B(V −1

∗ (σ)) = W (x1))} and {σ;B(V −1
∗ (σ)) = W (x2))} are disjoined. The

statement then follows since there can not be an uncountable number of disjoined subsets of R

with positive Lebesgue measure. Thus the set N := N1 ∪ N2 is countable. Since the function
x 7→ Γ∗(τ, (−∞, x)) is increasing and since

x 7→

∫ x

−∞
L(V −1

∗ (τ),W (y))dy

is continuous, it is sufficient to prove the statement of the proposition for x ∈ N c.

The fact that W is increasing and continuous in x implies the equivalence of the statement
W (x) > y with the statement ∃z0 < x : W (z0) > y.
The later statement is then equivalent to the statement W−1(y) := inf{z : W (z) > y} < x.
This then implies that 1I(−∞,x)(X∗(σ)) = 1I(−∞,W (x))(B(V −1

∗ (σ))).

We also note that t 7→ V (t) is continuous and non-decreasing. This implies V∗ ◦ V
−1
∗ = idR.

In the following we want to compute the derivative of the non-decreasing function

M : σ 7→

∫ x

−∞
L(V −1

∗ (σ),W (y))dy.

Since W is increasing and continuous in x, we have that B(V −1
∗ (σ0)) < W (x) implies

σ 7→

∫ ∞

x
L(V −1

∗ (σ),W (y))dy is locally constant, say equal to c0, in a neighbourhood of σ0.

Thus

σ 7→

∫ x

−∞
L(V −1

∗ (σ),W (y))dy = V∗(V
−1
∗ (σ)) − c0 = σ − c0 in a neighbourhood of σ0.

Moreover, since W is increasing and continuous in x we have that B(V −1
∗ (σ0)) > W (x) implies

σ 7→

∫ x

−∞
L(V −1

∗ (σ),W (y))dy is locally constant in a neighbourhood of σ0.

It therefore turns out that

M ′(σ) =

{

1 if B(V −1
∗ (σ)) < W (x)

0 if B(V −1
∗ (σ)) > W (x).

Moreover, for all σ1, σ2 ∈ R
+ with σ1 ≤ σ2 we have that

∫ x

−∞
L(V −1

∗ (σ1),W (y))dy ≤

∫ x

−∞
L(V −1

∗ (σ2),W (y))dy

and
∫ ∞

x
L(V −1

∗ (σ1),W (y))dy ≤

∫ ∞

x
L(V −1

∗ (σ2),W (y))dy.

This implies that
∫ x

−∞
L(V −1

∗ (σ2),W (y))dy −

∫ x

−∞
L(V −1

∗ (σ1),W (y))dy ≤ V∗(V
−1
∗ (σ2)) − V∗(V

−1
∗ (σ1)) = σ2 − σ1
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It follows that

σ 7→

∫ x

−∞
L(V −1

∗ (σ),W (y))dy

is Lipshitz-continuous with Lipshitz-constant smaller than one.

Since the set {σ : B(V −1
∗ (σ)) = W (x)} is a zero set with respect to the Lebesgue measure ℓ for

all x ∈ N c, it follows that

∫ τ

0
1I(−∞,x)(X∗(σ))dσ =

∫ τ

0
1I(−∞,W (x))(B(V −1

∗ (σ)))dσ =

∫ τ

0
M ′(σ)dσ = M(τ).

The second statement is proved in the same way. �

Corollary 1 One has IP-almost surely that the local time L∗(τ, x) is defined for all τ ≥ 0 and
for all x, where x 7→ W (x) is continuous. Further, one has IP × ĨP-almost surely that the local
time L̃∗(τ, x) is defined for all τ ≥ 0 and for all x, where x 7→ W̃ (x) is continuous. In those
points one has

L∗(τ, x) = L(V −1
∗ (τ),W (x)), resp. L̃∗(τ, x) = L(Ṽ −1

∗ (τ), W̃ (x)).

Proof: Differentiation in Proposition 1 proves the statement of this corollary. �

2.2 The occupation time of X̃n

For a measurable set A ⊂ R we define

Γ̂n(t, A) :=

∫ t

0
1IA(X̂n(σ))dσ, Γ̃n(t, A) :=

∫ t

0
1IA(X̃n(σ))dσ

and

Γn(t, A) :=

∫ t

0
1IA(Xn(σ))dσ.

This is the time that the processes X̂n, X̃n resp Xn spend in the set A until time t. In this
section we give an explicit expression for the occupation time of X̃n in terms of the local time
{L(t, x); t ≥ 0, x ∈ R} of the underlying Brownian motion {B(t); t ≥ 0}.

Proposition 2 One has IP × ĨP-almost surely for all τ ≥ 0 and all x ∈ R that

Γ̃n(τ, {x}) =

{

1
nL(Ṽ −1

n (τ), S̃n(x− 1
n)) if nx ∈ Z

0 if nx /∈ Z.

Proof: First we note that

S−1
n (Sn(x)) = x+ 1/n for all x satisfying nx ∈ Z

If we use the fact that {Bn(V −1
n (t)); t ≥ 0}}

D
= {Sn(Xn(t)); t ≥ 0} then we can see that

{X̂n(t); t ≥ 0}
D
= {Xn(t) + 1/n; t ≥ 0}. Therefore, we see that X̂n only takes values in the

lattice 1
nZ Moreover, we have that S̃n and Ṽn have the same joint distribution as Sn and Vn.

Therefore, X̂n = S−1
n (Bn(V −1

n (.))) has the same distribution as X̃n = S̃−1
n (B(Ṽ −1

n (.))). From
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this follows that also X̃n stays for all time in the countable state space {x ∈ R;nx ∈ Z}. This
implies that Γ̃n(τ, {x}) = 0 for nx /∈ Z. This proves one part of the statement.

For the proof of the other part of the statement we will need the derivative of the function

M̃(σ) :=
1

n
L(Ṽ −1

n (σ), S̃n(x− 1/n)).

We first collect some useful facts, which help to compute the derivative of M̃ .

Since S̃n is constant on the intervals [ k
n ,

k+1
n ) for all k ∈ Z, we have

Ṽn(t) =

∫

R

L(t, S̃n(x))dx =
1

n

∑

i∈Z

L(t, S̃n(i/n)). (4)

Since the (t, x) 7→ L(t, x) is jointly continuous and non-decreasing IP-almost surely (see Boylan
(1964) or Getoor and Kesten (1972)), it follows that t 7→ Ṽn(t) is continuous and non-decreasing
IP × ĨP-almost surely. This then gives rise to

Ṽn ◦ Ṽ −1
n = idR+ IP × ĨP − almost surely. (5)

By construction one has for all b ∈ {S̃n(x);x ∈ R} that S̃−1
n (b) = x is equivalent to b = S̃n(x− 1

n).

Moreover, one has that B(Ṽ −1
n (σ)) ∈ {S̃n(x);x ∈ R} for all σ ≥ 0 almost surely with respect to

IP × ĨP. Hence

X̃n(σ) = S̃−1
n (B(Ṽ −1

n (σ))) = x is equivalent to B(Ṽ −1
n (σ)) = S̃n(x−

1

n
). (6)

Moreover, the random variables {λ−1
i ; i ∈ N} are positive IP-almost surely and therefore

the restriction of x 7→ S̃n(x) to the set
1

n
Z is injective almost surely with respect to ĨP. (7)

Since conditioned on A = σ{λj ; j ∈ N} the process X is a Markov process, it follows that for
nx ∈ Z there exist non-negative random variables a1 < b1 < a2 < b2 < ... with the property

{

σ ≥ 0; X̃n(σ) = x
}

=
⋃

i∈N

[ai, bi) IP × ĨP − a.s.

This implies that for all σ0 /∈ {ai; i ∈ N} there exists a neighbourhood U(σ0) containing σ0 with
the property that σ 7→ X̃n(σ) = S̃−1

n (B(Ṽ −1
n (σ))) is constant on U(σ0). Then (6) and (7) imply

that σ 7→ B(Ṽ −1
n (σ)) must be constant on U(σ0).

Therefore, for σ0 /∈ {ai; i ∈ N} and B(Ṽ −1
n (σ0)) 6= S̃n(x − 1

n) we have B(Ṽ −1
n (σ)) 6= S̃n(x − 1

n)
for all σ in a neighbourhood of σ0. Hence

σ 7→ L(Ṽ −1
n (σ), S̃n(x− 1/n)) is constant in a neighbourhood of σ0.

The previous argument and the fact that X̃n only jumps to nearest neighbours in 1
nZ lead to

the fact that σ0 /∈ {ai; i ∈ N} and B(Ṽ −1
n (σ0)) = S̃n(x − 1

n) imply the existence of a suitable
c0 > 0 with the property

σ 7→
1

n

∑

z 6=nx−1

L(Ṽ −1
n (σ), S̃n(z/n)) = c0 in a neighbourhood of σ0.
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Therefore we can use (5) to see that B(Ṽ −1
n (σ0)) = S̃n(x− 1

n) implies

σ 7→
1

n
L(Ṽ −1

n (σ), S̃n(x− 1/n)) = Ṽn(Ṽ −1
n (σ)) − c0 = σ − c0 in a neighbourhood of σ0.

Consequently the function

M̃(σ) :=
1

n
L(Ṽ −1

n (σ), S̃n(x− 1/n))

is differentiable for all σ /∈ {ai; i ∈ N} and for nx ∈ Z we have

M̃ ′(σ) =

{

1 if B(Ṽ −1
n (σ)) = S̃n(x− 1

n)

0 if B(Ṽ −1
n (σ)) 6= S̃n(x− 1

n).

Moreover, it is possible to prove that the function M̃ is Lipshitz-continuous with Lipshitz-
constant one. From those properties, it follows that

∫ τ

0
1I{x}(X̃n(σ))dσ =

∫ τ

0
1I{S̃n(x− 1

n
)}(B(Ṽ −1

n (σ)))dσ =

∫ τ

0
M̃ ′(σ)dσ = M̃(τ).

�

2.3 The convergence of the occupation times

In this section we investigate whether the occupation times of X̃n converge toward the local
time of X̃∗ in an appropriate way as n→ ∞. For this we first need some auxiliary results.

Lemma 1 One has IP × ĨP-almost surely that Ṽn(t) converges toward Ṽ∗(t) for all t ∈ R.

Proof: We fix a T > 0 and define wo := sup{x : L(T, x) > 0} and wu := inf{x : L(T, x) > 0}.
Those two random-variables are independent of ĨP. We know that {S̃n(x);x ∈ R} converges
toward {W̃ (x);x ∈ R} with respect to the J1-topology F̃-almost surely. We note that the local
time of Brownian motion (x, t) 7→ L(t, x) is jointly continuous IP-almost surely (see Boylan
(1964) or Getoor R.K. and Kesten (1972)).
It follows that IP× ĨP-almost surely {L(t, S̃n(x));x ∈ R} converges toward {L(t, W̃ (x));x ∈ R}
with respect to the J1-topology for all t ∈ [0, T ].

We fix a pair (ω, ω̃) ∈ Ω× Ω̃ with the property that {L(t, S̃n(x))(ω, ω̃);x ∈ R} converges toward
{L(t, W̃ (x))(ω, ω̃);x ∈ R} with respect to the J1-topology for all t ∈ [0, T ].

Then there exist suitable xu, xo ∈ R with W̃ (xu) ≤ wu and W̃ (xo) ≥ wo, and there exists a
sequence of increasing, absolutely continuous, surjective Lipshitz-maps λn : [xu, xo] → [xu, xo]
with the properties

sup
x∈[xu,xo]

∣

∣

∣L(t, W̃ (x)) − L(t, S̃n(λn(x)))
∣

∣

∣ −→ 0 as n→ ∞

and
esssupx∈[xu,xo]

∣

∣λ′n(x) − 1
∣

∣ −→ 0 as n→ ∞.
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We should emphasise that the derivative of the function λn may not exist everywhere. However,
those points where it does not exist form a zero set, since λn is an absolutely continuous Lipshitz-
function.

Then by change of variables for all t ∈ [0, T ] one has

∫ xo

xu

L(t, S̃n(x))dx−

∫ xo

xu

L(t, S̃n(λn(x)))dx

=

∫ xo

xu

L(t, S̃n(x))

(

1 −
1

λ′n(λ−1
n (x))

)

dx+O

(

sup
x∈[xu,xo]

|λn(x) − x|

)

.

It follows from the assumptions on the sequence λn that the above difference converges toward
zero. Further, we have for all t ∈ [0, T ] that

∫

R

L(t, S̃n(λn(x)))dx −→

∫

R

L(t, W̃ (x))dx as n→ ∞.

Hence one has IP × ĨP-almost surely that Ṽn(t) converges toward Ṽ∗(t) for all t ∈ [0, T ]. Thus
we obtain for every T > 0 an zero-set NT in Ω× Ω̃, where this convergence does not hold. The
lemma now follows, since the union

N∞ :=
⋃

T∈N

UT

is also a zero-set with respect to IP × ĨP. �

Let f : R → R be a function. We call τ ∈ f(R) a critical value for f , if there exist at least
two distinct points t1, t2 ∈ R such that f(t1) = f(t2) = τ . Further, we call a point τ ∈ f(R) a
regular value for f if τ is not a critical value. It is straight forward to see, that the preimages
of critical values contain an open interval, if the function f is non-decreasing. This implies that
the set of critical values of a non-decreasing function is at most countable.

Lemma 2 One has IP × ĨP-almost surely that Ṽ −1
n (τ) converges toward Ṽ −1

∗ (τ) for all regular
values τ of Ṽ∗.

Proof: We note that IP-almost surely the local time L(t, x) of the Brownian motion B is
continuous and non-decreasing in t for all x ∈ R (see Boylan (1964) or Getoor R.K. and Kesten
(1972) for the continuity). It follows that IP × ĨP-almost surely the function

t 7→ Ṽ∗(t) :=

∫

R

L(t, x)m∗(dx)

is continuous and non-decreasing.

Therefore, IP × ĨP-almost surely the function Ṽ −1
∗ (τ) := inf{t; Ṽ (t) > τ} is strictly increasing

and right-continuous.

We use Lemma 1 to fix a pair (ω, ω̃) ∈ Ω × Ω̃ with the properties that:

(i) τ 7→ Ṽ −1
∗ (τ) is strictly increasing and right-continuous;

(ii) Ṽn(t) converges toward Ṽ∗(t) for all t ≥ 0.

Since the set where Ṽ∗ is not continuous is countable, the set where Ṽ∗ is continuous is a dense
set in [0,∞).

12



We denote by K the set of critical values of Ṽ∗. As was pointed out before, K is at most
countable. For an arbitrary point τ ∈ [0,∞) ∩ Kc and for any ǫ > 0 one can find points
tǫ,0, tǫ,1 ∈ (Ṽ −1

∗ (τ) − ǫ, Ṽ −1
∗ (τ)) and tǫ,2, tǫ,3 ∈ (Ṽ −1

∗ (τ), Ṽ −1
∗ (τ) + ǫ) with the property

Ṽ∗(tǫ,0) < Ṽ∗(tǫ,1) < τ < Ṽ∗(tǫ,2) < Ṽ∗(tǫ,3).

Now we can choose a δ > 0 such that

Ṽ∗(tǫ,0) + δ < Ṽ∗(tǫ,1) − δ < Ṽ∗(tǫ,1) + δ < τ < Ṽ∗(tǫ,2) − δ < Ṽ∗(tǫ,2) + δ < Ṽ∗(tǫ,3) − δ.

Since Ṽn converges toward Ṽ∗ in all points where Ṽ∗ is continuous, there exists an n0 ∈ N such
that for all n ≥ n0 we have

Ṽn(tǫ,0) < Ṽ∗(tǫ,0) + δ < Ṽ∗(tǫ,1) − δ < Ṽn(tǫ,1) < Ṽ∗(tǫ,1) + δ < τ

and
τ < Ṽ∗(tǫ,2) − δ < Ṽn(tǫ,2) < Ṽ∗(tǫ,2) + δ < Ṽ∗(tǫ,3) − δ < Ṽn(tǫ,3).

By definition of tǫ,0 we have that z ≤ Ṽ −1
∗ (τ) − ǫ implies z ≤ tǫ,0. From monotonicity and the

first of both inequalities above, it follows that

Ṽn(z) ≤ Ṽn(tǫ,0) ≤ Ṽ∗(tǫ,0) + δ < Ṽ∗(tǫ,1).

We thus have seen that z ≤ Ṽ −1
∗ (τ) − ǫ implies Ṽn(z) < Ṽ∗(tǫ,1). If we reverse the implication,

we obtain that Ṽn(z) ≥ Ṽ∗(tǫ,1) implies z > Ṽ −1
∗ (τ) − ǫ. From this implication it follows that

Ṽ −1
n (Ṽ∗(tǫ,1)) = inf{z : Ṽn(z) > Ṽ∗(tǫ,1)} > Ṽ −1

∗ (τ) − ǫ.

For z = tǫ,3 we have Ṽn(z) = Ṽn(tǫ,3) > Ṽ∗(tǫ,2). In other words there exists a z < Ṽ −1
∗ (τ) + ǫ

with Ṽn(z) > Ṽ∗(tǫ,2). This proves that

Ṽ −1
∗ (τ) + ǫ > Ṽ −1

n (Ṽ∗(tǫ,2)).

Altogether, we have proved that for all n ≥ n0,

Ṽ −1
∗ (τ) − ǫ < Ṽ −1

n (Ṽ∗(tǫ,1)) < Ṽ −1
n (Ṽ∗(tǫ,2)) < Ṽ −1

∗ (τ) + ǫ.

By monotonicity, for all n ≥ n0 and all τ ′ ∈ [Ṽ∗(tǫ,1), Ṽ∗(tǫ,2)] one has

Ṽ −1
∗ (τ) − ǫ < Ṽ −1

n (τ ′) < Ṽ −1
∗ (τ) + ǫ.

Since τ ∈ [Ṽ∗(tǫ,1), Ṽ∗(tǫ,2)], the proof is complete. �

Lemma 3 For all τ ≥ 0, one has that τ is a regular value of Ṽ∗ almost surely with respect to
IP × ĨP.

Proof: By the invariance properties of the Brownian motion we have that for all γ > 0

{L(t, w);w ∈ R, t ≥ 0}
D
= {γ−1L(γ2t, γw);w ∈ R, t ≥ 0}.
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By the invariance of the α-stable Lévy-process that

{L(t, W̃ (x));x ∈ R, t ≥ 0}
D
= {γ−1L(γ2t, γW̃ (x));x ∈ R, t ≥ 0}
D
= {γ−1L(γ2t, W̃ (γαx));x ∈ R, t ≥ 0}.

Substitution then yields
{∫

R

L(t, W̃ (x))dx; t ≥ 0

}

D
=

{

γ−1

∫

R

L(γ2t, W̃ (γαx))dx; t ≥ 0

}

D
=

{

γ−1−α

∫

R

L(γ2t, W̃ (x))dx; t ≥ 0

}

.

By definition this means that

{Ṽ∗(t); t ≥ 0}
D
= {γ−1−αṼ∗(γ

2t); t ≥ 0}.

We define ℓ∗ to be the image-measure of the Lebesgue-measure ℓ with respect Ṽ∗. The previous
considerations imply

ℓ∗(dt)
D
= γ2ℓ∗(γ

−1−αdt).

This identity implies that no τ > 0 satisfies ℓ∗({τ}) > 0 with a positive probability with respect
to IP× ĨP. To a critical value τ corresponds an interval where t 7→ Ṽ∗ is constant, which implies
ℓ∗({τ}) > 0. For a particular point τ > 0 this can not happen with positive probability. This
finishes the proof of the statement. �

Proposition 3 For all τ ≥ 0 the sequence of functions x 7→ L(Ṽ −1
n (τ), S̃n(x+ 1/n)) converges

toward the function x 7→ L(Ṽ −1
∗ (τ), W̃ (x)) in the J1-topology IP × ĨP-almost surely.

Proof: It is known that S̃n converges toward W̃ in the J1-topology almost surely with respect
to ĨP. Moreover, by Lemma 2 and Lemma 3, for all τ ≥ 0 the sequence Ṽ −1

n (τ) converges toward
Ṽ −1
∗ (τ) almost surely with respect to IP × ĨP. The proposition follows, since it is well known

that (t, x) 7→ L(t, x) is jointly continuous IP-almost surely (see Boylan (1964) or Getoor and
Kesten (1972)). �

Lemma 4 For all k ∈ N, θ1, ..., θk ∈ R and all τ1, ..., τk ≥ 0,the set

C :=

{

c > 0 : ℓ

(

x ∈ R;

∣

∣

∣

∣

∣

k
∑

i=1

θiL(Ṽ −1
∗ (τi), W̃ (x))

∣

∣

∣

∣

∣

= c

)

> 0

}

is countable IP × ĨP-almost surely, where ℓ denotes the Lebesgue measure on R.

Proof: It is well known that x 7→ W̃ (x) is strictly increasing ĨP-almost surely. For c > 0 we
define the level-sets

Nc :=

{

w ∈ R;

∣

∣

∣

∣

∣

k
∑

i=1

θiL(Ṽ −1
∗ (τi), w)

∣

∣

∣

∣

∣

= c

}

.

Fix a strictly increasing path f : x 7→ W̃ (x) and assume that there exist an uncountable number
of c > 0 with the property ℓ(f−1(Nc)) > 0. For c 6= c′ the sets f−1(Nc) and f−1(Nc′) are disjoint.
We would obtain an uncountable number of disjoint sets with positive Lebesgue measure. This
is of course not possible. �
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Proposition 4 For all k ∈ N, θ1, ..., θk ∈ R and all τ1, ..., τk ≥ 0 one has IP × ĨP-almost surely
that

1

n
card

{

x ∈ Z : n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

> c

}

−→ ℓ

(

x ∈ R :

∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

> c

)

as n→ ∞

for all except a countable number of c > 0.

Proof: We can find a K > 0 such that
{

y ∈ R : L(τi, y) 6= 0 for all i = 1, ..., k
}

is a subset of

the interval (W̃ (−K), W̃ (K)). By Proposition 2, Proposition 3 and Corollary 1 the sequence

Ãn(x) := n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x})

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

θiL(Ṽ −1
n (τi), S̃n(x− 1/n))

∣

∣

∣

∣

∣

converges IP × ĨP-almost surely in the J1-topology toward

Ã∗(x) :=

∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

k
∑

i=1

θiL(Ṽ −1
∗ (τi), W̃ (x))

∣

∣

∣

∣

∣

.

Then there exists a sequence of continuous increasing maps λn : [−K,K] → [−K,K] such that

sup
x∈[−K,K]

∣

∣

∣
Ã∗(x) − Ãn ◦ λn(x)

∣

∣

∣
−→ 0 as n→ ∞

and such that each λn is Lipshitz continuous and satisfies

esssupx∈[−K,K]

∣

∣λ′n(x) − 1
∣

∣ −→ 0.

We should emphasise that the derivative of the function λn may not exist everywhere. However,
those points where the derivative does not exist form a zero-set, since λn is an absolutely
continuous Lipshitz-function. We note that for suitably large n ∈ N one has

1

n
card

{

x ∈ R;

∣

∣

∣

∣

∣

k
∑

i=1

θiL(Ṽ −1
n (τi), S̃n(x− 1/n))

∣

∣

∣

∣

∣

> c

}

= ℓ
(

x ∈ [−K,K]; Ãn(x) > c
)

=

∫ K

−K
1I(c,∞)(Ãn(x))dx.

Then it follows that

1

n
card

{

x ∈ [−K,K];n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x})

∣

∣

∣

∣

∣

> c

}

−

∫ K

−K
1I(c,∞)(Ãn(λn(x)))dx

=

∫ K

−K
1I(c,−∞)(Ãn(x))dx

(

1 −
1

λ′n(λ−1
n (x))

)

dx+O

(

sup
x∈[−K,K]

|λn(x) − x|

)

.

By the assumptions on the sequence {λn;n ∈ N} the previous difference converges toward zero.
Furthermore,

∫ K

−K
1I(c,∞)(Ãn(λn(x)))dx −→

∫ K

−K
1I(c,∞)(Ã∗(x))dx as n→ ∞
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whenever the set {x ∈ [−K,K]; Ã∗(s) = c} is a zero-set with respect to the Lebesgue measure
ℓ on R. Since this was proved in Lemma 4, the statement of the proposition follows. �

Subsequently we make use of the following notations

A+
n :=

{

x ∈ Z :
k
∑

i=1

θiΓ̃n(τi, {x/n}) > 0

}

resp. A−
n :=

{

x ∈ Z :
k
∑

i=1

θiΓ̃n(τi, {x/n}) < 0

}

and

A+ :=

{

x ∈ R :
k
∑

i=1

θiL̃∗(τi, x) > 0

}

resp. A− :=

{

x ∈ R :
k
∑

i=1

θiL̃∗(τi, x) < 0

}

.

Later we need the following version of Proposition 4:

Proposition 5 For all k ∈ N, θ1, ..., θk ∈ R and all τ1, ..., τk ≥ 0 one has IP × ĨP-almost surely
that

1

n
card

{

x ∈ Z ∩A±
n : n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

> c

}

−→ ℓ

(

x ∈ R ∩A± :

∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

> c

)

for all except a countable number of c > 0.

Proof: The proof uses essentially the same arguments as the proof of Proposition 4. �

Remark: With the same proof as for Proposition 4, we can show that IP × ĨP-almost surely

1

n
card

{

x ∈ Z : n2Γ̃2
n(τi, {x/n}) > c

}

−→ ℓ
(

x ∈ R : L̃2
∗(τi, x) > c

)

as n→ ∞

for all except a countable number of c > 0.

2.4 An usefull Lemma on integrated powers of local time

Lemma 5 For τ1, ..., τk ≥ 0 and θ1, ..., θk ∈ R the two sequences of random variables

nβ−1
∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

β

and nβ−1
∑

x∈Z





∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiΓ̃n(τi, {x/n})

)





converge IP × ĨP-almost surely toward the random variables

∫ ∞

−∞

∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

β

dx resp.

∫ ∞

−∞





∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiL̃∗(τi, x)

)



 dx.

Proof: We use the layer-cake representation of the integrals (see Lieb and Loss (2001)) to write

∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θinΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

β

= β

∫ ∞

0
cβ−1card

{

x ∈ Z : n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

> c

}

dc
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and
∫ ∞

−∞

∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

β

dx = β

∫ ∞

0
cβ−1ℓ

(

x ∈ R :

∣

∣

∣

∣

∣

k
∑

i=1

θiL̃∗(τi, x)

∣

∣

∣

∣

∣

> c

)

dc.

We note that the convergence of Ṽ −1
n (τi) toward Ṽ −1

∗ (τi) and the fact that t 7→ L(t, y) is
increasing for every y ∈ R imply that there exists an n0 ∈ N with

L(Ṽ −1
n (τi), y) ≤ L(Ṽ −1

∗ (τi) + 1, y) for all y ∈ R, 1 ≤ i ≤ k, n ≥ n0.

Moreover, for all i ∈ {1, ..., k} the functions y 7→ L(Ṽ −1
∗ (τi) + 1, y) are continuous and their

supports are contained in [−K,K] for a suitable K > 0. Hence there exists a C > 0 such that
for n ≥ n0 one has

n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

k
∑

i=1

θiL(Ṽ −1
n (τi), S̃n((x− 1)/n))

∣

∣

∣

∣

∣

≤
k
∑

i=1

θi sup
y∈R

L(Ṽ −1
∗ (τi) + 1, y) ≤ C.

This implies that all the functions

c 7→ card

{

x ∈ Z : n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

> c

}

have support contained in [0, C].

Moreover, for all c > 0 we have

card

{

x ∈ Z : n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

> c

}

≤ card
{

x ∈ Z : −K ≤ S̃n((x− 1)/n) ≤ K
}

.

Since
ℓ
(

x; W̃ (x) ∈ {−K,K}
)

= 0

and since S̃n converges toward W̃ with respect to the Skorohod metric, we have that

1

n
card

{

x ∈ Z : −K ≤ S̃n((x− 1)/n) ≤ K
}

−→ ℓ
(

x ∈ R : −K ≤ W̃ (x) ≤ K
)

.

This implies that there exists a R > 0 such that for all n ∈ N and all c > 0 we have

1

n
card

{

x ∈ Z : n

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̃n(τi, {x/n})

∣

∣

∣

∣

∣

> c

}

≤ R.

The first statement of the lemma then follows from dominated convergence and Proposition 4.

The second statement is proved in the same way by separating the positive and the negative
part of the integrals and using the statements from Proposition 5 instead of Proposition 4. �

Proposition 6 For τ1, ..., τk ≥ 0 and θ1, ..., θk ∈ R the two sequences of random variables

nβ−1
∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θiΓn(τi, {x/n})

∣

∣

∣

∣

∣

β

and nβ−1
∑

x∈Z





∣

∣

∣

∣

∣

k
∑

i=1

θiΓn(τi, {x/n})

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiΓn(τi, {x/n})

)





converge jointly in distribution toward the random variables

∫ ∞

−∞

∣

∣

∣

∣

∣

k
∑

i=1

θiL∗(τi, x)

∣

∣

∣

∣

∣

β

dx resp.

∫ ∞

−∞





∣

∣

∣

∣

∣

k
∑

i=1

θiL∗(τi, x)

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiL∗(τi, x)

)



 dx.

17



Proof: We know that

{L∗(t, x); t ≥ 0, x ∈ R}
D
=
{

L̃∗(t, x); t ≥ 0, x ∈ R

}

and
{

S−1
n (Bn(V −1

n (t))); t ≥ 0
} D

=
{

S̃−1
n (B(Ṽ −1

n (t))); t ≥ 0
}

.

Therefore, by Lemma 5 the sequences of random variables

nβ−1
∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̂n(τi, {x/n})

∣

∣

∣

∣

∣

β

and nβ−1
∑

x∈Z





∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̂n(τi, {x/n})

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiΓ̂n(τi, {x/n})

)





converge jointly in distribution toward the random variables

∫ ∞

−∞

∣

∣

∣

∣

∣

k
∑

i=1

θiL∗(τi, x)

∣

∣

∣

∣

∣

β

dx resp.

∫ ∞

−∞





∣

∣

∣

∣

∣

k
∑

i=1

θiL∗(τi, x)

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiL∗(τi, x)

)



 dx.

Moreover, S−1
n (Sn(x/n)) = (x+ 1)/n for all x ∈ Z. This implies that

X̂n(τ)
D
= S−1

n (Sn(Xn(τ))) = Xn(τ) + 1/n.

Hence we have Γ̂n(τ, {x/n})
D
= Γn(τ, {(x+ 1)/n}) for all x ∈ Z. Therefore,

nβ−1
∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̂n(τi, {x/n})

∣

∣

∣

∣

∣

β

D
= nβ−1

∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θiΓn(τi, {x/n})

∣

∣

∣

∣

∣

β

and

nβ−1
∑

x∈Z





∣

∣

∣

∣

∣

k
∑

i=1

θiΓ̂n(τi, {x/n})

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiΓ̂n(τi, {x/n})

)





D
= nβ−1

∑

x∈Z





∣

∣

∣

∣

∣

k
∑

i=1

θiΓn(τi, {x/n})

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiΓn(τi, {x/n})

)



 .

This proves the proposition. �

For the sequel we define the occupation time

Γ(t, A) :=

∫ t

0
1IA(X(s))ds

of the process X in the measurable set A ⊂ R. Consequently we have

Ξ(t) =
∑

x

Γ(t, {x})ξ(x).

We will use this fact and the following corollary in the proofs of the next section.
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Corollary 2 For τ1, ..., τk ≥ 0 and θ1, ..., θk ∈ R the two sequences of random variables

n−1− β

α

∑

x∈Z

∣

∣

∣

∣

∣

k
∑

i=1

θiΓ(knτi, {x})

∣

∣

∣

∣

∣

β

and n−1− β

α

∑

x∈Z





∣

∣

∣

∣

∣

k
∑

i=1

θiΓ(knτi, {x})

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiΓ(knτi, {x})

)





converge jointly in distribution toward the random variables

∫ ∞

−∞

∣

∣

∣

∣

∣

k
∑

i=1

θiL∗(τi, x)

∣

∣

∣

∣

∣

β

dx resp.

∫ ∞

−∞





∣

∣

∣

∣

∣

k
∑

i=1

θiL∗(τi, x)

∣

∣

∣

∣

∣

β

sgn

(

k
∑

i=1

θiL∗(τi, x)

)



 dx.

Proof: If we put kn := n
1+α

α , for all n ∈ N and x ∈ Z we have that

Γn(τ, x/n) =

∫ τ

0
1I{x/n}(Xn(t))dt = k−1

n

∫ knτ

0
1I{x}(X(t))dt = n−

α+1
α Γ(knτ, {x}).

The result then follows from Proposition 6. �

3 The finite dimensional distributions

In this section we prove the convergence of the finite dimensional distributions of Ξn toward the
finite dimensional distributions of Ξ∗. In order to do so we first compute the exact expression
of the finite dimensional distributions of Ξ∗. The proofs in this section follow the ideas given in
Kesten and Spitzer (1979).

In the introduction we defined

Ξ∗(τ) :=

∫ ∞

0
L∗(τ, x−)dZ+(x) +

∫ ∞

0
L∗(τ,−(x−))dZ−(x),

where {Z+(t); t ≥ 0} and {Z−(t); t ≥ 0} are independent copies of the β-stable Lévy process,
which can be associated to the stable distribution ϑβ with characteristic function given by

ψ(θ) = exp
(

−|θ|β(A1 + iA2sgn(θ)
)

.

Lemma 6 For t1, ..., tk ≥ 0 and θ1, ..., θk ∈ R we have that

IE



exp



i
k
∑

j=1

θjΞ∗(tj)







 = IE






exp






−A1

∫ ∞

−∞

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjL∗(tj , x)

∣

∣

∣

∣

∣

∣

β

dx







exp






−iA2

∫ ∞

−∞

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjL∗(tj , x)

∣

∣

∣

∣

∣

∣

β

dx sgn





k
∑

j=1

θjL∗(tj , x)
















.

Proof: The proof is similar to that given in Kesten and Spitzer (1979 p.16 ff.). Let ν be the
Lévy measure of Z+. One can truncate the Lévy-measure as follows:

ν1(B) = ν(B ∩ {y ∈ R; |y| ≤ 1}) and ν2(B) = ν(B ∩ {y ∈ R; |y| > 1}).
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Let M(t) and A(t) be independent Lévy-processes with characteristic functions

IE
[

eiθM(t)
]

= exp

(

t

∫

|y|≤1

(

eiθy − 1 − iθy
)

ν1(dy)

)

resp.

IE
[

eiθA(t)
]

= exp

(

t

∫

|y|≤1

(

eiθy − 1
)

ν2(dy)

)

such that
Z+(t) = M(t) +A(t) +Dt,

where D is a suitable real constant. This decomposition exists and is called the Lévy-Itô
representation of Z+. The advantage of this representation is that M(t) is a martingale and has
all moments and A(t) is a process with bounded variation. Since the process {L∗(t, x−);x ≥ 0}
is left-continuous and independent with respect to the filtration Ft generated by Z+(t), the
process {L∗(t, x−);x ≥ 0} is Ft-predictable. Moreover, {L∗(t, x−);x ≥ 0} has bounded support

IP-almost surely. Therefore, we can find a suitable sequence of partitions {x
(n)
l ; l ∈ N};n ∈ N

with x
(n)
l < x

(n)
l+1 for all l, n ∈ N satisfying

lim
l→∞

x
(n)
l = ∞ and lim

n→∞
max
l∈N

(

x
(n)
l+1 − x

(n)
l

)

= 0

such that

∫ ∞

0
L∗(t, x−)dM(x) = lim

n→∞

∞
∑

l=1

L∗(t, x
(n)
l −)

(

M(x
(n)
l+1) −M(x

(n)
l )
)

with probability 1

(see Meyer (1976) chap. II sec. 23). Moreover, we can also assume that

∫ ∞

0
L∗(t, x−)dA(x) = lim

n→∞

∞
∑

l=1

L∗(t, x
(n)
l −)

(

A(x
(n)
l+1) −A(x

(n)
l )
)

with probability 1.

From those considerations it follows that there exists a sequence of partitions (x
(n)
l )l∈N such

that

∫ ∞

0
L∗(t, x−)dZ+(x) = lim

n→∞

∞
∑

l=1

L∗(t, x
(n)
l −)

(

Z+(x
(n)
l+1) − Z+(x

(n)
l )
)

with probability 1.

Since the incrementsD
(n)
l := Z+(x

(n)
l+1)−Z+(x

(n)
l ), l ∈ N are independent and have characteristic

function
IE
[

eiθD
(n)
l

]

= exp
(

−(x
(n)
l+1 − x

(n)
l )|θ|β(A1 + iA2 · sgn(θ))

)

.
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By dominated convergence we have

IE



exp



i
k
∑

j=1

θj

∫ ∞

0
L∗(tj , x−)dZ+(x)









= lim
n→∞

IE



exp





∞
∑

l=1

k
∑

j=1

iθjL∗(tj , x
(n)
l −)

(

Z+(x
(n)
l+1) − Z+(x

(n)
l )
)









= lim
n→∞

IE






exp






−

∞
∑

l=1

(

x
(n)
l+1 − x

(n)
l

)

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjL∗(tj , x
(n)
l −)

∣

∣

∣

∣

∣

∣

β

×



A1 + iA2 · sgn





k
∑

j=1

θjL∗(tj , x
(n)
l −)















 .

= IE






exp






−A1

∫ ∞

0

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjL∗(tj , x
(n)
l )

∣

∣

∣

∣

∣

∣

β

dx

−iA2

∫ ∞

0

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjL∗(tj , x
(n)
l )

∣

∣

∣

∣

∣

∣

β

sgn





k
∑

j=1

θjL∗(tj , x
(n)
l )



 dx












.

For Z− one can proceed with similar arguments. �

Proposition 7 The finite dimensional distributions of the processes {Ξn(t); t ≥ 0} converge
toward the finite dimensional distributions of the process {Ξ∗(t); t ≥ 0}.

Proof: As in the previous sections, we denote kn := n(1+α)/α and κ := 1
α + 1

β . We already saw
that we can use the occupation time {Γ(t, {x}); t ≥ 0, x ∈ R} of the process {X(t); t ≥ 0} to
represent the process {Ξ(t); t ≥ 0} as follows

Ξ(t) =
∑

x∈Z

Γ(t, {x})ξ(x).

It follows that
Ξn(t) = n−κΞ(knt) = n−κ

∑

x∈Z

Γ(knt, {x})ξ(x).

Let ϕ(θ) := IE [exp(iθξ(1))] be the characteristic function of the scenery random variable ξ(1).
It then follows from the above representation that

k
∑

j=1

θjΞn(tj) = n−κ
∑

x∈Z

k
∑

j=1

θjΓ(kntj , {x})ξ(x)

and

Rn := IE



exp



i
k
∑

j=1

θjΞn(tj)







 = IE





∏

x∈Z

ϕ



n−κ
k
∑

j=1

θjΓ(kntj , {x})







 .
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The random-scenery {ξ(z); z ∈ Z} is in the domain of attraction of a β-stable distribution with
characteristic function given by

ψ(θ) = exp(−|θ|β(A1 + iA2 · sgn(θ)).

This implies that

1 − ϕ(θ) ∼ |θ|β(A1 + iA2 · sgn(θ)) as θ → 0.

Thus

log(ϕ(θ)) ∼ log(ψ(θ)) as θ → 0.

Therefore one has for |θ| ≤ 1 that

∣

∣

∣

∣

log(ϕ(θ)) − log(ψ(θ))

log(ψ(θ))

∣

∣

∣

∣

= o(θ).

If we define

ϕx,n := ϕ



n−κ
k
∑

j=1

θjΓ(kntj , {x})





and

ψx,n := exp






−n−κβ

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjΓ(kntj , {x})

∣

∣

∣

∣

∣

∣

β

A1 + iA2 · sgn





k
∑

j=1

θjΓ(kntj , {x})















for all x ∈ Z one has

∣

∣

∣

∣

log(ϕx,n) − log(ψx,n)

log(ψx,n)

∣

∣

∣

∣

= o



n−κ
k
∑

j=1

θjΓ(kntj , {x})



 .

This implies

∣

∣

∣

∣

∣

log

(

∏

x∈Z

ϕx,n

)

− log

(

∏

x∈Z

ψx,n

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

x∈Z

log(ϕx,n) −
∑

x∈Z

log(ψx,n)

∣

∣

∣

∣

∣

≤
∑

x∈Z

log(ψx,n) o



n−κ
k
∑

j=1

θjΓ(kntj , {x})



 .

By Corollary 2 the right side of the previous inequality converges toward zero in probability.
The continuity of the logarithm then implies that

∣

∣

∣

∣

∣

∏

x∈Z

ϕx,n −
∏

x∈Z

ψx,n

∣

∣

∣

∣

∣

−→ 0 in probability as n→ ∞.
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We use this and dominated convergence to prove that the limit of the sequence {Rn;n ∈ N}
exists and is equal to the limit of the following sequence

Qn := IE






exp






−
∑

x∈Z

n−κβ

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjΓ(kntj , {x})

∣

∣

∣

∣

∣

∣

β

A1 + iA2 · sgn





k
∑

j=1

θjΓ(kntj , {x})




















.

By Corollary 2 and Lemma 6 the sequence {Qn;n ∈ N} converges toward

Q∗ := IE






exp






−

∫ ∞

−∞

∣

∣

∣

∣

∣

∣

k
∑

j=1

θjL∗(tj , x)

∣

∣

∣

∣

∣

∣

β

A1 + iA2 · sgn





k
∑

j=1

θjL∗(tj , x)







 dx













= IE



exp



i

k
∑

j=1

θjΞ∗(tj)







 .

As we have seen in Lemma 6 that Q∗ is the characteristic function for the finite dimensional
distributions of {Ξ∗(t); t ≥ 0}. This finishes the proof of the proposition. �

4 The tightness

In this section we prove that the sequence {Ξn(t); t ≥ 0} is tight. The proof of Theorem 1 then
follows, since we already obtained the convergence of the finite dimensional distributions in the
previous section. The main proof for tightness also follows the ideas given in Kesten and Spitzer
(1979). In order to do so we first need some suitable inequalities for the occupation times of X∗.
However the proofs of those inequalities differ from those given in Kesten and Spitzer (1979).

Lemma 7 There exists a function ǫ : R
+ → R

+ with the properties ǫ(A) → 0 as A→ ∞ and

IP
(

Γ(s, {x}) > 0 for some x with |x| > As
α

1+α

)

≤ ǫ(A) for all s ≥ 0.

Proof: For a positive real number x we denote by ⌈x⌉ the smallest integer which is larger or
equal to x. Obviously for all s ≥ 0 we have

IP
(

Γ(s, {x}) > 0 for some x with |x| > As
α

1+α

)

≤ IP
(

|X(r)| > As
α

1+α for some r ≤ s
)

≤ IP
(

|X(r)| > A
(⌈

s
α

1+α

⌉

− 1
)

for some r ≤
⌈

s
α

1+α

⌉
1+α

α

)

= IP
(∣

∣

∣
X
(

⌈

s
α

1+α

⌉
1+α

α u
)∣

∣

∣
> A

⌈

s
α

1+α

⌉

−A for some u ≤ 1
)

≤ IP

(

sup
r≤1

|Xn(s)(r)| > A/2

)

for s > 1

with n(s) :=
⌈

s
α

1+α

⌉

→ ∞ as s→ ∞. Since

IP

(

sup
r≤1

|Xn(r)| > A/2

)

−→ IP

(

sup
r≤1

|X∗(r)| > A/2

)

as n→ ∞,
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we can define

ǫ(A) := sup
s≥0

IP

(

sup
r≤1

|Xn(s)(r)| > A/2

)

for all A > 0.

This proves the statement of the lemma. �

Lemma 8 There exists a C > 0 such that for all s ≥ 0 one has

∑

x∈Z

IE
[

Γ2(s, {x})
]

∼ Cs2−
α

1+α .

Proof: For a positive real number x we denote by ⌊x⌋ its integer part. We know that for

w(s) :=
⌊

s
α

α+1
⌋

one has

(w(s))2
α+1

α

s2

∑

x∈Z

Γ2
w(s)(1, {x/w(s)}) = s−2

∑

x∈Z

Γ2
(

(w(s))
α+1

α , {x}
)

≤ s−2
∑

x∈Z

Γ2(s, {x})

and

s−2
∑

x∈Z

Γ2(s, {x}) ≤ s−2
∑

x∈Z

Γ2
(

(w(s) + 1)
α+1

α , {x}
)

=
(w(s) + 1)2

α+1
α

s2

∑

x∈Z

Γ2
w(s)+1(1, {x/(w(s) + 1)})

Consequently one has

s−2
∑

x∈Z

IE
[

Γ2(s, {x})
]

∼
∑

x∈Z

IE
[

Γ2
w(s)(1, {x/w(s)})

]

=
∑

x∈Z

IE
[

Γ̃2
w(s)(1, {x/w(s)})

]

.

It follows from the layer cake representation and the remark after the proof of Proposition 5
that

w(s)
∑

x∈Z

Γ̃2
w(s)(1, {x/w(s)}) =

1

w(s)

∫ ∞

0
card

{

x ∈ Z : w2(s)Γ̃2
w(s)(1, {x/w(s)}) > c

}

dc

converges IP × ĨP-almost surely toward
∫ ∞

0
ℓ
(

x ∈ R : L̃2(1, x) > c
)

dc =

∫

R

L̃2
∗(1, x)dx.

Dominated convergence and Fubini theorems imply that

w(s)
∑

x∈Z

IE
[

Γ̃2
w(s)(1, {x/w(s)})

]

−→

∫

R

IE
[

L̃2
∗(1, x)

]

dx as s→ ∞.

Therefore

w(s)s−2
∑

x∈Z

IE
[

Γ2(s, {x})
]

−→

∫

R

IE
[

L̃2
∗(1, x)

]

dx as s→ ∞.

This proves the statement of the lemma. �
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Lemma 9 1) For all β ∈ (0, 2] and ρ > 0 there exists a C1 > 0 such that as n→ ∞ one has
∣

∣

∣IE
[

ξ(0)1I[−ρ,ρ](n
− 1

β ξ(0))
]∣

∣

∣ ∼ C1n
1−β

β .

2) For all β ∈ (0, 2) and ρ > 0 there exists a C2 > 0 such that as n→ ∞ one has
∣

∣

∣
IE
[

ξ2(0)1I[−ρ,ρ](n
− 1

β ξ(0))
]∣

∣

∣
∼ C2n

2−β

β .

Proof: The random variable ξ(0) is in the domain of attraction of a β-stable random variable
with characteristic function given by

ψ(θ) = exp(−|θ|β(A1 + iA2sgn(θ)),

with 0 < A1 < ∞ and |A−1
1 A2| ≤ tan(πβ/2). A consequence of this setting is that for β > 1

one has IE[ξ(0)] = 0. Further, if β ∈ (0, 2] then there exist B1, B2 ≥ 0 such that

lim
ρ→∞

ρβIP(ξ(0) ≥ ρ) = B1 and lim
ρ→∞

ρβIP(ξ(0) ≤ −ρ) = B2.

For β = 2 we have B1 = B2 = 0 since the decay of the tail-probabilities is exponential in that
case. For β 6= 1 we then have that

∣

∣

∣IE
[

ξ(0)1I[−ρ,ρ](n
− 1

β ξ(0))
]∣

∣

∣ =

∫ ρn
1
β

0
IP(|ξ(0)| ≥ c)dc

∼ (B1 +B2)

∫ ρn
1
β

0
c−βdc

= (B1 +B2)(1 − β)−1ρ1−βn
1
β

(1−β)
.

This proves the first statement for β 6= 1. For β = 1 the statement is just our assumption from
the introduction.

Moreover, by similar arguments for β 6= 2 we have that

∣

∣

∣IE
[

ξ2(0)1I[−ρ,ρ](n
− 1

β ξ(0))
]∣

∣

∣ ∼ (B1 +B2)

∫ ρn
1
β

0
c1−βdc

= (B1 +B2)(2 − β)−1ρ2−βn
1
β

(2−β).

This finishes the proof of the second statement. �

Proposition 8 The distributions of the sequence {Ξn;n ∈ N} are tight with respect to the
Skorohod topology.

Proof: We follow the method given in Kesten and Spitzer (1979). Let ǫ > 0 be given. By

Lemma 7 there exists an A > 0 such that ǫ
(

AT− α
1+α

)

≤ ǫ/4. This implies that

IP



Ξn(t) 6= n−κ
∑

|x|≤An

Γ(knt, {x})ξ(x) for some t ≤ T





≤ IP
(

Γ(knT, {x}) > 0 for some x with |x| > Ak
α

1+α
n

)

≤ ǫ
(

AT− α
1+α

)

≤ ǫ/4.
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There exists a ρ0 > 0 with the property that for all ρ > ρ0 and all n ∈ N one has

3An(1 − IP
(

−ρn
1
β ≤ ξ(0) ≤ ρn

1
β

)

≤ ǫ/4.

This is valid since for suitable B1, B2 ≥ 0 we have

lim
ρ→∞

ρβIP(ξ(0) ≥ ρ) = B1 and lim
ρ→∞

ρβIP(ξ(0) ≤ −ρ) = B2.

We define for all x ∈ Z the random variables

ξ̄n(x) := ξ(x)1I[−ρ,ρ](n
− 1

β ξ(x))

and

En := n−κ 1

T
IE

[

∑

x∈Z

Γ(knt, {x})ξ̄n(x)

]

= n−κ 1

T
IE

[

∑

x∈Z

Γ(knt, {x})IE
[

ξ̄n(x)
]

]

and
Ξ̄n(t) := n−κ

∑

x∈Z

Γ(knt, {x})
(

ξ̄n(x) − IE
[

ξ̄n(x)
])

.

Claim 1) The family of random variables {En(t);n ∈ N} is bounded. This is true, since by
Lemma 9 we have
∣

∣

∣

∣

∣

∑

x∈Z

Γ(knt, {x})IE
[

ξ̄n(x)
]

∣

∣

∣

∣

∣

=
∣

∣IE
[

ξ̄n(0)
]∣

∣

∑

x∈Z

Γ(knt, {x}) = knt
∣

∣IE
[

ξ̄n(0)
]∣

∣ ≤ Ctn
α+1

α n
1
β

(1−β)

and α+1
α + 1

β (1 − β) − κ = 0 .

Claim 2) For all η > 0 there exists an n0 ∈ N such that for all n ≥ n0 one has

IP

(

sup
t≤T

|Ξn(t) − Ξ̄n(t) − Ent| >
η

2

)

≤
ǫ

2
.

To see this, we first note that

Ξn(t) − Ξ̄n(t) − Ent = n−κ
∑

x∈Z

Γ(knt, {x})
(

ξ(x) − ξ̄n(x)
)

,

since

Ξn(t) − Ξ̄n(t) − Ent− n−κ
∑

x∈Z

Γ(knt, {x})
(

ξ(x) − ξ̄n(x)
)

= n−κ

(

∑

x∈Z

Γ(knt, {x})IE
[

ξ̄(x)
]

−
t

T
IE

[

∑

x∈Z

Γ(knt, {x})IE
[

ξ̄(x)
]

])

= n−κIE
[

ξ̄(0)
]

(

∑

x∈Z

Γ(knt, {x}) −
t

T
IE

[

∑

x∈Z

Γ(knt, {x})

])

= n−κIE
[

ξ̄(0)
]

(

knt−
t

T
knT

)

= 0.

26



Lemma 9 implies that

IP

(

n−κ
∑

x∈Z

Γ(knt, {x})
(

ξ(x) − ξ̄n(x)
)

6= 0 for some t ≤ T

)

≤ IP
(

Γ(knT, {x}) > 0 for some x with |x| > Ak
α

1+α
n

)

+IP
(

ξ(x) 6= ξ̄n(x) for some |x| ≤ Ak
α

1+α
n

)

≤ ǫ
(

AT− α
1+α

)

+ 3Ak
α

1+α
n IP

(

ξ(0) 6= ξ̄n(0)
)

≤
ǫ

4
+ 3An

(

1 − IP
(

−ρn
1
β ≤ ξ(0) ≤ ρn

1
β

))

≤
ǫ

2
.

Claim 3) There exists a K0 > 0 such that for all n ∈ N one has

IE
[

∣

∣Ξ̄n(t2) − Ξ̄n(t1)
∣

∣

2
]

≤ C0(t2 − t1)
2− 1+α

α .

We define the σ-field X = {X(t); t ≥ 0}. Then it follows from the independence of {X(t); t ≥ 0}
and {ξ(x);x ∈ Z} that

IE





(

∑

x∈Z

(Γ(knt2, {x}) − Γ(knt1, {x}))ξ̄n(x)

)2




= IE



IE





(

∑

x∈Z

(Γ(knt2, {x}) − Γ(knt1, {x}))ξ̄n(x)

)2
∣

∣

∣

∣

∣

∣

X









= IE

[

∑

x∈Z

(Γ(knt2, {x}) − Γ(knt1, {x}))
2IE
[

ξ̄2n(x)
∣

∣X
]

]

=
∑

x∈Z

IE
[

(Γ(knt2, {x}) − Γ(knt1, {x}))
2
]

IE
[

ξ̄2n(x)
]

This implies

IE
[

∣

∣Ξ̄n(t2) − Ξ̄n(t1)
∣

∣

2
]

≤ n−2κ
∑

x∈Z

IE
[

(Γ(knt2, {x}) − Γ(knt1, {x}))
2
]

IE
[

ξ̄2n(x)
]

= n−2κIE

[

∑

x∈Z

(Γ(knt2, {x}) − Γ(knt1, {x}))
2

]

IE
[

ξ̄2n(0)
]

.

Conditioned on A := {λi; i ∈ Z} the process X has the strong Markov-property. Using this
one can prove that for t1 ≤ t2 the conditional distribution of

∑

x(Γ(t2, {x}) − Γ(t1, {x}))
2 with
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respect to A equals the conditional distribution of
∑

x Γ2(t2− t1, {x}) with respect to A. Hence

IE

[

∑

x∈Z

(Γ(t2, {x}) − Γ(t1, {x}))
2

]

= IE

[

IE

[

∑

x∈Z

(Γ(t2, {x}) − Γ(t1, {x}))
2

∣

∣

∣

∣

∣

A

]]

= IE

[

IE

[

∑

x∈Z

Γ2(t2 − t1, {x})

∣

∣

∣

∣

∣

A

]]

= IE

[

∑

x∈Z

Γ2(t2 − t1, {x})

]

.

By Lemma 8 it follows that

IE

[

∑

x∈Z

(Γ(knt2, {x}) − Γ(knt1, {x}))
2

]

≤ Ck
2− α

1+α
n (t2 − t1)

2− α
1+α

= Cn2 1+α
α

−1(t2 − t1)
2− α

1+α .

Moreover, we know that

IE
[

ξ̄2n(0)
]

≤ C̃n
(2−β) 1

β .

Altogether, we obtain

IE
[

∣

∣Ξ̄n(t2) − Ξ̄n(t1)
∣

∣

2
]

≤ C0n
(2−β) 1

β n−2κn2 1+α
α

−1(t2 − t1)
2− α

1+α .

Since (2 − β) 1
β − 2κ+ 21+α

α − 1 = 0, the claim 3 follows.

Since 2− α
1+α > 1 the tightness in the Skorohod topology of the family {Ξn;n ∈ N} now follows

from the claims 1, 2, 3 and a theorem from Billingsley (1968) (see p.95). �
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