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Abstract

We investigate the recursive sequence Zn := max{Zn−1, λ(Zn−1)Xn} where Xn is a sequence
of iid random variables with exponential distributions and λ is a periodic positive bounded
measurable function. We prove that the Césaro mean of the sequence λ(Zn) converges toward
the essential minimum of λ. Subsequently we apply this result and obtain a limit theorem for
the distributions of the sequence Zn. The resulting limit is a Gumbel distribution.
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1 Introduction

The extremes of random recursions involving maxima of a sequence of iid random variables is
a field having many practical applications (see for example Hooghiemstra and Keane (1985),
Helland and Trygve (1976)). In this article we investigate a special type of recursions involving
randomness. Let {Xn, n ∈ N} be a sequence of iid random variables having exponential distri-
butions with parameter one and let λ : R → R be a positive bounded measurable and periodic
function. We denote by λinf the essential infimum of λ on R

+. Starting with Z0 = 0 we define
the following stochastic recursion equation:

Zn := max(Zn−1, λ(Zn−1)Xn).

This is a Markov process on R
+ with increasing paths. When the process is in location x at

time n it waits until the first time when the sequence {λ(x)Xn+k; k ∈ N} exceeds the value x.
If this happens at time n + m then the process jumps from x to the new location λ(x)Xn+m
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and waits there for the next jump.

In the next section we investigate the behavior of the string of observations {f(λ(Zk)); k ∈ N},
where f is a bounded measurable function which is right-continuous in λinf . For this we study
the Césaro means

Mn :=
1

n

n
∑

k=1

f(λ(Zk)).

How does the sequence {Mn; n ∈ N} behave? First we observe that the larger the process
{Zk; k ∈ N} growths the longer it takes for its next jump to occur. Since the process goes to
infinity this means that the process has larger and larger times of constancy between its jumps.
Those times of constancy also depend on the value of λ at the location where the process waits
for its next jump. At locations where λ is small we have to wait for a longer time-period until
we see the next jump. Therefore, we expect that the process has larger times of constancy
when the process stays at locations where the function λ is near its bottom λinf . This would
imply that the Césaro mean has larger and larger proportions, where values of f near λinf are
added. From this would result the convergence of the Césaro mean toward f(λinf). This is the
statement of our first theorem. The arguments that we just developed are however not water
proved. They do not take into account the possibility that after having accumulated a certain
number of small values of λ the process makes a very large jump into a region with large values
of λ. Since at far locations the hurdle that the process has to take is large, this also results
in a long waiting time until the next overshoot. In that case the process might have to wait
for a very long time before it jumps back into a region with small values of λ. Ruling out this
possibility is one of the main difficulties in the proof of Theorem 1 (see Lemma 3).

In a second theorem we investigate for a < b the behavior of the sequence

Mn(a, b) :=
1

n

[nb]
∑

k=[na]

f(λ(Zk)).

This case is more difficult to handle than Theorem 1, since it is not clear that during the time
interval {[na], [na]+1, ..., [nb]} the process jumps into the region where λ is small. In our second
theorem we prove that Mn(a, b) converges in probability toward (b − a)f(λinf).

In the final section we apply our main result in order to obtain a limit-law for the sequence of
random variables {Zn; n ∈ N}. The resulting limit distribution will turn out to be a Gumbel
distribution.

A number of questions seem to arise for further studies. It is probably possible to prove similar
results to Theorem 1 for sequences {Xn; n ∈ N} with more general marginal distributions. The
proof of such results however requires a much more technical approach, since we used the no-
memory property of the exponential distribution at several places in our proof. It could be that
the tail decay of such distributions has an effect on the limit behavior of the Césaro sum, since
heavier tails might increase the chance that the process {Zn; n ∈ N} makes large jumps after
having accumulated a certain amount of small values of λ. The statement in Lemma 3 might be
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wrong in such situations. It seems that the periodicity of λ can be replaced by a condition which
makes sure that at far locations the function λ has sufficiently many values which are close to
λinf . However, in such cases a proof requires considerably more effort, since we can not rely
on a nice Markovian structure like in the proof of Lemma 2. Another question is whether the
string of observations {f(λ(Zk)); k ∈ N} satisfies a limit theorem or whether a large deviation
result can be proved for this sequence.

2 A Césaro convergence theorem

In this section we prove the following theorem.

Theorem 1 For every bounded measurable function f : R
+ → R

+ which is right-continuous in
λinf follows

1

n

n
∑

k=1

f(λ(Zk)) −→ f(λinf) IP − almost surely as n → ∞.

Proof: For an arbitrary δ > 0 we can find a ǫ > 0 with the property

sup
z∈[λinf ,λinf+2ǫ]

|f(z) − f(λinf)| < δ.

We define through induction the jump-times

σm := inf{l > σm−1 : Zl 6= Zl−1}, σ0 := 0.

Moreover, we define the sequences of random variables Sm := Zσm
; m ∈ N. The time that the

process {Zk; k ∈ N} spends after the m-th jump in Sm is given by

Tm(Sm) := σm+1 − σm, m ∈ N.

Finally we use induction to define the waiting times

τ0 = 0, τk := inf{m > τk−1 : Sm ∈ Λǫ}, where Λǫ := {x ∈ R : λ(x) < λ} and λ := λinf + ǫ.

The following proposition gives upper bounds for Tm(Sm), when λ(Sm) is larger than λ :=
λinf + 2ǫ. This will be crucial for the proof of Theorem 1:

Proposition 1 The probability space (Ω,A, IP) can be enlarged to a probability space (Ω̃, Ã, ĨP)
in a way such that there exists on (Ω̃, Ã, ĨP) a family of random variables {Tm(x); m ∈ N, x > 0}
satisfying the following properties:

i) One has Tm(Sm)(ω) ≤ Tm(Sm)(ω) for all ω ∈ Ω with λ(Sm(ω)) ≥ λ.

ii) The map x 7→ Tm(x)(ω) is increasing for all m ∈ N and all ω ∈ Ω̃.

iii) For all x > 0 the sequence {Tm(x); m ∈ N} is iid with marginals having a geometric

distribution with parameter q(x) = exp
(

− 1
λ
x
)

.
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iv) For all y > 0 and m, m1, ..., mn−1, n ∈ N one has

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n, T τk+1(y) = m1, ..., T τk+n−1(y) = mn−1

∣

∣

∣
Sτk

= x
)

= IP
(

T0(x) = m
)

IP
(

τk+1 − τk = n
∣

∣

∣
Sτk

= x
)

IP
(

T 1(y) = m1, ..., Tn−1(y) = mn−1

)

,

where T0(x) is a random variable having a geometric distribution with parameter

qx := exp

(

− 1

λ(x)
x

)

.

Proof: We enlarge the probability space (Ω,A, IP) to a probability space (Ω̃, Ã, ĨP) in such a
way such that there exists on (Ω̃, Ã, ĨP) a family of random variables {Xm,n; m, n ∈ N} with the
following properties:

1. The family {Xm,n; m, n ∈ N} is iid with marginals having an exponential distribution with
parameter one.

2. The two families {Xm,n; m, n ∈ N} and {Xn; n ∈ N} are independent.

We now define the auxiliary sequence

X̃m,n :=

{

Xσm+n for n < σm+1 − σm

Xm,n for n ≥ σm+1 − σm

and the family of random variables

Tm(x) := inf{n ∈ N : λX̃m,n > x}.

We first prove that the two families {X̃m,n; m, n ∈ N} and {Xσm
; m ∈ N} are independent and

that the family {X̃m,n; m, n ∈ N} is iid with marginals which are exponentially distributed with
parameter one.

For some array {xi,j , Zi, zm+1; 1 ≤ i ≤ m, 1 ≤ j ≤ n} of real numbers, we define the sets

Um,n :=
{

X̃i,j ≥ xi,j , Xσi
≥ zi, Xσm

≥ zm; 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n
}

and
Vm,n :=

{

X̃m,j ≥ xm,j , Xσm+1
≥ zm+1; 1 ≤ j ≤ n

}

.

We note that:

1. For all k1, ..., km ∈ N the set {σ1 = k1, ..., σm = km} is measurable with respect to the
σ-algebra σ{X1, ..., Xkm

}.
2. For all k1, ..., km ∈ N the set Um,n ∩{σ1 = k1, ..., σm = km} is measurable with respect to the
σ-algebra σ

(

{X1, ..., Xkm
} ∪ {Xi,k; 1 ≤ i ≤ m − 1, k ∈ N}

)

.

3. For all k1, ..., km ∈ N the set Vm,n ∩{σ1 = k1, ..., σm = km} is measurable with respect to the
σ-algebra σ

(

{Xk1
, ..., Xkm

} ∪ {Xkm+l; l ∈ N} ∪ {Xm,k; k ∈ N}
)

.
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For M ≥ m it follows from those observations that conditioned on Xσ1
= y1, ..., XσM

= yM the
two events Um,n ∩ {σ1 = k1, ..., σm = km} and Vm,n ∩ {σ1 = k1, ..., σm = km} are independent.

We compute the probability of the event Vm,n ∩ {σ1 = k1, ..., σm = km} under the condition
Xσ1

= y1, ..., XσM
= yM . For this we define

sm := max{sm−1, λ(sm−1)ym}, s0 = 0 and rm =
1

λ(sm)
sm.

Under those assumptions we have for l ≤ n that

Xσm+1
≥ zm+1, X̃m,j ≥ xm,j for 1 ≤ j ≤ n together with σm+1 − σm = l

is equivalent to

rm ≥ Xkm+i ≥ xm,j for all i ∈ {1, ..., l − 1}, Xkm+l ≥ max{rm, zm+1},

and
Xm,km+j ≥ xm,j for all j ∈ {l, ..., n}.

Hence it follows for l ≤ n that

IP
(

Vm,n ∩ {σ1 = k1, ..., σm = km} ∩ {σm+1 − σm = l}
∣

∣

∣
Xσ1

= y1, ..., XσM
= yM

)

= IP
(

rm ≥ X
(aux)
i ≥ xm,i, 1 ≤ i ≤ l − 1, X

(aux)
j ≥ xm,j , l ≤ j ≤ n, X

(aux)
0 ≥ rm ∨ zm+1

)

,

where {X(aux)
i ; i ∈ N0} is an auxiliary iid sequence of random variables having an exponential

distribution with parameter one.

For l ≥ n + 1 we have that

Xσm+1
≥ zm+1, X̃m,j ≥ xm,j for 1 ≤ j ≤ n together with σm+1 − σm = l

is equivalent to

rm ≥ Xkm+i ≥ xm,i for all i ∈ {1, ..., n}, rm ≥ Xkm+j for all j ∈ {n + 1, ..., l − 1}

and
Xkm+l ≥ max{rm, zm+1}.

Hence it follows for l ≥ n + 1 that

IP
(

Vm,n ∩ {σ1 = k1, ..., σm = km} ∩ {σm+1 − σm = l}
∣

∣

∣Xσ1
= y1, ..., XσM

= yM

)

= IP
(

rm ≥ X
(aux)
i ≥ xm,i, 1 ≤ i ≤ n, rm ≥ X

(aux)
j , n + 1 ≤ j ≤ l − 1, X

(aux)
0 ≥ rm ∨ zm+1

)

,

where again {X(aux)
i ; i ∈ N0} is an iid sequence of random variables having an exponential

distribution with parameter one.
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Summing up the conditional probabilities over l ∈ N yields

IP
(

Vm,n ∩ {σ1 = k1, ..., σm = km}
∣

∣

∣
Xσ1

= y1, ..., XσM
= yM

)

=
∞
∑

l=1

IP
(

Vm,n ∩ {σ1 = k1, ..., σm = km} ∩ {σm+1 − σm = l}
∣

∣

∣Xσ1
= y1, ..., XσM

= yM

)

= IP
(

X
(aux)
j ≥ xm,j , ∀j ∈ {1, ..., n}

)

IP
(

X
(aux)
0 ≥ rm ∨ zm+1

)

= exp
(

−
n
∑

j=1

xm,j

)

exp
(

− rm ∨ zm+1

)

.

We have that

σ1 = k1, ..., σm = km together with Xσ1
= y1, ..., XσM

= yM imply
1

λ(Sm)
Sm = rm.

We note that 1
λ(Sm)Sm is measurable with respect to the σ-algebra σ{Xσ1

, ..., Xσm
}.

Together with the conditional independence discussed above, this yields

IP
(

Um,n ∩ Vm,n ∩ {σ1 = k1, ..., σm = km}
∣

∣

∣Xσ1
, ..., XσM

)

= IP
(

Um,n ∩ {σ1 = k1, ..., σm = km}
∣

∣

∣
Xσ1

, ..., XσM

)

· IP
(

Vm,n ∩ {σ1 = k1, ..., σm = km}
∣

∣

∣Xσ1
, ..., XσM

)

= IP
(

Um,n ∩ {σ1 = k1, ..., σm = km}
∣

∣

∣Xσ1
, ..., XσM

)

· exp
(

− zm+1 ∨
Sm

λ(Sm)

)

exp
(

−
n
∑

j=1

xm,j

)

.

Summation over all possible values of k1, ..., km ∈ N and an induction argument now yields

IP
(

Um,n ∩ Vm,n

∣

∣

∣
Xσ1

, ..., XσM

)

= IP
(

Um,n

∣

∣

∣
Xσ1

, ..., XσM

)

exp
(

− zm+1 ∨
Sm

λ(Sm)

)

exp
(

−
n
∑

j=1

xm,j

)

= exp
(

− z1

)

exp
(

− z2 ∨
S1

λ(S1)

)

... exp
(

− zm+1 ∨
Sm

λ(Sm)

)

exp
(

−
m
∑

i=1

n
∑

j=1

xi,j

)

.

Taking expectation now implies

IP
(

X̃i,j ≥ xi,j , Xσi
≥ zi, Xσm+1 ≥ zm+1; 1 ≤ i ≤ m, 1 ≤ j ≤ n

)

= IE

[

exp
(

− z1

)

exp
(

− z2 ∨
S1

λ(S1)

)

... exp
(

− zm+1 ∨
Sm

λ(Sm)

)

]

exp
(

−
m
∑

i=1

n
∑

j=1

xi,j

)
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From this follows that the family {X̃m,n; m, n ∈ N} is iid with marginals having an exponential
distribution with parameter one. Moreover, this also proves the independence of the two families
{X̃m,n; m, n ∈ N} and {Xσk

; k ∈ N}.
i) The first claim follows from the fact that λ ≤ λ(Sm) implies

Tm(Sm) = σm+1 − σm

= inf{l ∈ N : λ(Sm)Xσm+l > Sm}
≤ inf{l ∈ N : λ(Sm)X̃m,l > Sm}
≤ inf{l ∈ N : λX̃m,l > Sm}
= Tm(Sm).

ii) We see immediately from the definition of Tm(x) that the map x 7→ Tm(x)(ω) is increasing
for all m ∈ N and all ω ∈ Ω̃.

iii) The fact that the family {X̃m,n; m, n ∈ N} is iid with marginals which are exponentially
distributed with parameter one shows that the sequence {Tm(x); m ∈ N} is iid with marginals
having a geometric distribution with parameter q(x).

iv) We just saw that the sequence of random variables {Xσk
; k ∈ N} and the family of random

variables {X̃m,n; m, n ∈ N} are independent.

The event {τk+1 − τk = n, τk = l} is measurable with respect to σ{Sτk
, Xσl+1

, ..., Xσl+n
}.

It follows from the definitions that {T τk+i(y) = mi, τk = l} is measurable with respect to
σ{X̃l+i,j ; j ∈ N}. Moreover, the event {Tτk

(Sτk
) = m, τk = l} is measurable with respect to the

σ-algebra σ{Sτk
, Xσl+1, ..., Xσl+m}. From the construction of the family {X̃m,n; m, n ∈ N} it

follows that for i ∈ N the σ-algebras

σ{X̃l+i,j ; j ∈ N} and σ{Xσl+1, ..., Xσl+m, Xσl+1
, Xσl+2

, ..., Xσl+n
} are independent.

Thus it follows

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n, T τk+1(y) = m1, ..., T τk+n−1(y) = mn−1

∣

∣

∣
Sτk

= x
)

=

∞
∑

l=1

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n, T l+1(y) = m1, ..., T l+n−1(y) = mn−1, τk = l
∣

∣

∣Sτk
= x

)

=
∞
∑

l=1

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n, τk = l
∣

∣

∣
Sτk

= x
)

· IP
(

T l+1(y) = m1, ..., T l+n−1(y) = mn−1

)

= IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n
∣

∣

∣
Sτk

= x
)

IP
(

T 1(y) = m1, ..., Tn−1(y) = mn−1

)

.

In the last step we used the fact that the sequence {T k(y); k ∈ N} is iid and that the set
{T l+1(y) = m1, ..., T l+n−1(y) = mn−1} and the random variable Sl are independent.
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Moreover, we have that

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n
∣

∣

∣
Sτk

= x
)

=
∞
∑

l=1

∞
∑

j=1

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n, τk = l, σl = j
∣

∣

∣Sτk
= x

)

=
∞
∑

l=1

∞
∑

j=1

IP
(

{τk = l, σl = j} ∩Mj,m ∩Nj,m.l

∣

∣

∣Sτk
= x

)

with
Mj,m :=

{

λ(x)Xj+1 ≤ x, ..., λ(x)Xj+m−1 ≤ x, λ(x)Xj+m > x
}

and
Nj,m,l :=

{

Sl+1 = λ(x)Xj+m /∈ Λǫ, Sl+2 /∈ Λǫ, ..., Sl+n−1 /∈ Λǫ, Sl+n ∈ Λǫ

}

,

where Λǫ := {y ∈ R : λ(y) ≤ λ}. The sequence {Zn; n ∈ N} is a Markov process and the random
variables {σm; m ∈ N} are Markov times. Thus the sequence {Sm; m ∈ N} is a Markov process
with transition probability densities

p(x, y) =
1

λ(x)
exp

(

− 1

λ(x)
(y − x)

)

1I[x,∞)(y).

It follows from the Markov property that

IP
(

{τk = l, σl = j} ∩Mj,m ∩Nj,m.l

∣

∣

∣Sτk
= x

)

= IE

[

1I{τk=l,σl=j}1I(−∞,x](λ(x)Xj+1) ... 1I(−∞,x](λ(x)Xj+m−1)1I(x,∞)(λ(x)Xj+m)

· 1IΛc
ǫ
(λ(x)Xj+m)

∫

Λc
ǫ

...

∫

Λc
ǫ

∫

Λǫ

p(λ(x)Xj+m, y2) ... p(yn−1, yn)dyn...dy1

∣

∣

∣

∣

∣

Sτk
= x

]

.

Since the events {τk = l, σl = j, λ(x)Xj+1 ≤ x, ..., λ(x)Xj+m−1 ≤ x} and {λ(x)Xj+m > x} are
independent, we have that

IE

[

1I{τk=l,σl=j}1I(−∞,x](λ(x)Xj+1) ... 1I(−∞,x](λ(x)Xj+m−1)1I(x,∞)(λ(x)Xj+m)

· 1IΛc
ǫ
(λ(x)Xj+m)

∫

Λc
ǫ

...

∫

Λc
ǫ

∫

Λǫ

p(λ(x)Xj+m, y2) ... p(yn−1, yn)dyn...dy1

∣

∣

∣

∣

∣

λ(x)Xj+m > x

]

= IE
[

1I{τk=l,σl=j}1I(−∞,x](λ(x)Xj+1) ... 1I(−∞,x](λ(x)Xj+m−1)
]

1I(x,∞)(λ(x)Xj+m)

IE

[

1IΛc
ǫ
(λ(x)Xj+m

∫

Λc
ǫ

...

∫

Λc
ǫ

∫

Λǫ

p(λ(x)Xj+m, y2) ... p(yn−1, yn)dyn...dy1

∣

∣

∣

∣

∣

λ(x)Xj+m > x

]

.
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It follows from the fact that the exponential distribution has no memory that

IE

[

1IΛc
ǫ
(λ(x)Xj+m

∫

Λc
ǫ

...

∫

Λc
ǫ

∫

Λǫ

p(λ(x)Xj+m, y2) ... p(yn−1, yn)dyn...dy1

∣

∣

∣

∣

∣

λ(x)Xj+m > x

]

=

∫

Λc
ǫ

∫

Λc
ǫ

...

∫

Λc
ǫ

∫

Λǫ

p(x, y1)p(y1, y2) ... p(yn−1, yn)dyn...dy1.

This then yields

IP
(

Tτk
(Sτk

) = m, τk+1 − τk = n
∣

∣

∣Sτk
= x

)

=
∞
∑

l=1

∞
∑

j=1

IP
(

{τk = l, σl = j} ∩Mj,m ∩Nj,m.l

∣

∣

∣
Sτk

= x
)

=
∞
∑

l=1

∞
∑

j=1

IE
[

1I{τk=l,σl=j}1I(−∞,x](λ(x)Xj+1) ... 1I(−∞,x](λ(x)Xj+m−1)
]

· IE
[

1I(−∞,x](λ(x)Xj+m)
]

∫

Λc
ǫ

∫

Λc
ǫ

...

∫

Λc
ǫ

∫

Λǫ

p(x, y1)p(y1, y2) ... p(yn−1, yn)dyn...dy1

= (1 − qx)m−1qxIP
(

τk+1 − τk = n
∣

∣

∣
Sτk

= x
)

= IP
(

T0(x) = m
)

IP
(

τk+1 − τk = n
∣

∣

∣
Sτk

= x
)

.

This finishes the proof of part 4. �

In order to minimize abuse of notation we will use the notation (Ω,A, IP) for the enlarged
probability space (Ω̃, Ã, ĨP) in the remaining part of the manuscript.

We will later need the following lemma on the increments

Ym :=
1

λ(Sm−1)

(

Sm − Sm−1

)

, m ∈ N.

Lemma 1 The family of random variables {Ym; m ∈ N} is iid with marginals having an expo-
nential distribution with parameter one.

Proof: In this proof we will need the fact that the exponential distribution has no memory.
We saw in the proof of Proposition 1 that {Sm; m ∈ N} is a Markov process with transition
probability densities

p(x, y) =
1

λ(x)
exp

(

− 1

λ(x)
(y − x)

)

1I[x,∞)(y).
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It is not difficult to see that the σ-algebras σ(Y1, ..., Ym−1) and σ(S1, ..., Sm−1) are equal.
Then it follows from the Markov property that

IP

(

Ym ≥ ym

∣

∣

∣σ(Y1, ..., Ym−1)

)

= IP

(

1

λ(Sm−1)

(

Sm − Sm−1

)

≥ ym

∣

∣

∣σ(S1, ..., Sm−1)

)

= IP

(

1

λ(Sm−1)

(

Sm − Sm−1

)

≥ ym

∣

∣

∣
σ(Sm−1)

)

= IP

(

Sm ≥ λ(Sm−1)ym + Sm−1

∣

∣

∣
σ(Sm−1)

)

= IE

[

exp

(

− 1

λ(Sm−1)

(

λ(Sm−1)ym + Sm−1 − Sm−1

)

)]

= exp
(

− ym

)

.

An induction argument proves that the family of random variables {Ym; m ∈ N} is iid with
marginals having an exponential distribution with parameter one. �

In the following we denote by λsup the essential supremum of the function λ. The choice of
ǫ > 0 at the beginning of the proof of Theorem 1 implies the following inequalities

∣

∣

∣

∣

∣

1

n

n
∑

k=1

f(λ(Zk)) − f(λinf)

∣

∣

∣

∣

∣

≤ δ
1

n
(Gn + Dn) + 2 sup

z∈[λinf ,λsup]
|f(z)| 1

n
Bn

with

Gn :=
n
∑

k=1

1I(−∞,λinf+ǫ)(λ(Sk))Tk(Sk)

Dn :=
n
∑

k=1

1I[λinf+ǫ,λinf+2ǫ)(λ(Sk))Tk(Sk)

and

Bn :=
n
∑

k=1

1I[λinf+2ǫ,∞)(λ(Sk))Tk(Sk).

In the remaining part of this section we will study the relative behavior of the two sequences
{Bn; n ∈ N} and {Gn; n ∈ N} as n → ∞. In order to do so we will first find some upper
bound Bn for Bn and some lower bound Gn for Gn. Later we will use those bounds to see
that Gn dominates CBn for arbitrary large C > 0 as n → ∞. This will imply that in the
previous decomposition of the Césaro mean the part including the Gn-sequence dominates the
part containing the Bn-sequence. This will finally prove Theorem 1.
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If we define the random variable

B
(o)
n :=

n
∑

k=1

1I[λinf+2ǫ,∞)(λ(Sk))T k(Sk)

it follows from part 1 in Proposition 1 that

Bn ≤ B
(o)
n .

We already defined the waiting times

τ0 = 0 and τk := inf{m > τk−1 : λ(Sm) < λ}.

Then we define the random variables

Gn :=
∑

k:τk≤n

Tτk
(Sτk

)

and

Bn :=
∑

k:τk≤n





∑

τk−1<m<τk

Tm(Sm)



 .

It then follows that
Gn ≤ Gn and Bn ≤ B

(o)
n ≤ Bn.

We will see later in Lemma 4 that for all C > 0 we have that

IP



C
∑

τk<m<τk+1

Tm(Sm) > Tτk
(Sτk

) infinitely often



 = 0.

This will imply that

IP
(

C
1

n
Bn >

1

n
Gn infinitely often

)

= 0

and thus

IP
(

C
1

n
Bn >

1

n
Gn infinitely often

)

= 0.

Applying this to the constant C := δ/
(

2 supz∈[λinf ,λsup] |f(z)|
)

yields that IP-almost surely there
exists an n0 ∈ N with

∣

∣

∣

∣

∣

1

n

n
∑

k=1

f(λ(Zk)) − f(λinf)

∣

∣

∣

∣

∣

≤ δ
1

n
(Gn + Dn) + δ

1

n
Gn ≤ 2δ for all n ≥ n0.

Since δ > 0 was arbitrary this finishes the proof of Theorem 1. �

We now turn to the proof of Lemma 4. We have to find arguments to make sure that between

11



the times τk−1 and τk the process does not visit a cite where the waiting time to the next
jump exceeds the time that the process had to wait in Sτk−1

. This would happen if the process

{Sm; m ∈ N} would jump over λSτk
/λ during the time-interval [τk, τk+1]. We will prove in

Lemma 3 that this happens only a finite number of times. To prove Lemma 3 we first need the
following lemma on the growth of the sequence {Sτk

; k ∈ N}.

Lemma 2 One has
IP
(

Sτk
<

√
k infinitely often

)

= 0.

Proof: We define the map pr : [0,∞) → [0, 1); x 7→ x mod 1. The function λ is periodic with
period one, hence Ŝk := pr(Sk) is a Markov process on the interval [0, 1). For x, y ∈ [0, 1) the
transition densities for the Markov-process {Ŝk; k ∈ N} are given by

p̂(x, y) :=
∑

m∈N

1

λ(x)
exp

(

− 1

λ(x)
(y + m − x)

)

.

Therefore
inf

x,y∈[0,1)
p̂(x, y) > 0

and it follows that there exists an invariant measure π on [0, 1) with the property

1

k

k
∑

i=1

f(Ŝi) −→
∫

[0,1)
f(x)π(dx) IP − almost surely as k → ∞,

for all bounded measurable functions f : [0, 1) → R (see Doob (1953) p.220). This yields that
for the set

Λǫ := {x ∈ R : λ(x) ≤ λinf + ǫ}
one has as k → ∞

1

k
inf{j ∈ N0 : τj ≥ k} =

1

k
card{i ∈ {1, ..., k} : Si ∈ Λǫ} =

1

k

k
∑

i=1

1Ipr(Λǫ)(Ŝi) −→ π(pr(Λǫ)).

As k → ∞ we have τk → ∞ almost surely with respect to IP. This implies that IP-almost surely

k

τk
=

1

τk
inf{j ∈ N0 : τj ≥ τk} −→ π(pr(Λǫ)) as k → ∞

and consequently one has IP-almost surely τk/k −→ (π(pr(Λǫ)))
−1 as k → ∞. Moreover, we

have by induction that

Sn = Sn−1 + λ(Sn−1)Yn ≥ Sn−1 + λinfYn ≥ λinf

n
∑

i=1

Yi.

12



It then follows from the law of iterated logarithm applied to the iid sequence {Yn; n ∈ N} that
for all ν > 0 there exists a k0 ∈ N such that

Sτk
≥ λinf

τk
∑

i=1

Yi ≥ (λinf − ν)
(

τk −
√

2τk log log τk

)

for all k ≥ k0.

Since τk → ∞ as k → ∞, we can assume without loss of generality that

(λinf − ν)
(

τk −
√

2τk log log τk

)

≥
√

π(pr(Λǫ))
√

τk + 1 for all k ≥ k0.

The asymptotic behavior of τk that we discussed above then yields that

√

π(pr(Λǫ))
√

τk + 1 ≥
√

k for sufficiently large k ∈ N.

This finishes the proof. �

We now are in position to prove Lemma 3. It turns out that
Sτk+1−1

λ−ρ
exceeds

Sτk

λ only a finite

number of times. The proof is based on a Borel Cantelli argument.

Lemma 3 For all 0 < ρ < λ − λ one has

IP

(

Sτk+1−1

λ − ρ
>

Sτk

λ
infinitely often

)

= 0.

Proof: To prove this result we use Borel Cantelli. We define λsup to be the essential supremum
of the bounded measurable function λ. We note that

IP

(

Sτk+1−1

λ − ρ
>

Sτk

λ
, Sτk

≥
√

k

)

= IP



Sτk
+

τk+1−1
∑

m=τk+1

λ(Sm−1)Ym >
λ − ρ

λ
Sτk

, Sτk
≥

√
k





≤ IP



λsup

τk+1−1
∑

m=τk+1

Ym >

(

λ − ρ

λ
− 1

)

Sτk
, Sτk

≥
√

k





≤ IP





τk+1−1
∑

m=τk+1

Ym >

√
k

λsup

(

λ − ρ

λ
− 1

)





≤
∞
∑

l=1

IP





τk+l−1
∑

m=τk+1

Ym >

√
k

λsup

(

λ − ρ

λ
− 1

)

, τk+1 − τk = l



 .
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By Cauchy Schwarz inequality we obtain

∞
∑

l=1

IP





τk+l−1
∑

m=τk+1

Ym >

√
k

λsup

(

λ − ρ

λ
− 1

)

, τk+1 − τk = l





≤
∞
∑

l=1

√

√

√

√IP

(

l−1
∑

m=1

Ym >
1

λsup

(

λ − ρ

λ
− 1

)√
k

)

√

IP
(

τk+1 − τk = l
)

≤
∞
∑

l=1

exp

(

− 1

2lλsup

(

λ − ρ

λ
− 1

)√
k

)

√

IP
(

τk+1 − τk = l
)

.

As in the proof of Lemma 2 we define

Λǫ := {x ∈ R : λ(x) ≤ λ}

and use the strong Markov property for the Markov process {Sn; n ∈ N} to see that

IP
(

τk+1 − τk = l
)

≤ IP (Sτk+1 /∈ Λǫ, ..., Sτk+l−1 /∈ Λǫ)

= IE

[

∫

Λc
ǫ

...

∫

Λc
ǫ

p(Sτk
, dx1) · ... · p(xl−2, dxl−1)

]

,

where

p(x, dy) :=
1

λ(x)
exp

(

− 1

λ(x)
(y − x)

)

1I[x,∞)(y)dy

is the transition kernel of the Markov-process {Sn; n ∈ N}. Since the set Λǫ and the function λ
are periodic it follows that the function

x 7→
∫

Λc
ǫ

p(x, dy)

is periodic and bounded from above by a constant p < 1. It then follows that

IP
(

τk+1 − τk = l
)

≤ pl−1.

Together with the previous computation this implies

IP

(

Sτk+1−1

λ − ρ
>

Sτk

λ
, Sτk

≥
√

k

)

≤
∞
∑

l=1

exp

(

−
√

k

2lλsup

(

λ − ρ

λ
− 1

)

)

p(l−1)/2.

We see that

∞
∑

k=1

IP

(

Sτk+1−1

λ − ρ
>

Sτk

λ
, Sτk

≥
√

k

)

=
∞
∑

k=1

∞
∑

l=1

exp

(

−
√

k

2lλsup

(

λ − ρ

λ
− 1

)

)

p(l−1)/2

=
∞
∑

l=1

p(l−1)/2
∞
∑

k=1

exp

(

−
√

k

2lλsup

(

λ − ρ

λ
− 1

)

)

.

14



We now introduce a new summation index m2 = k. Then

m ≤
√

k <
√

k + 1 < ... <
√

k + n(m) ≤ m + 1

implies
m2 ≤ k < k + 1 < ... < k + n(m) ≤ (m + 1)2 ≤ m2 + 2m + 2.

If we define

q(l) := exp

(

− 1

2lλsup

(

λ − ρ

λ
− 1

))

,

then it follows from the above consideration that

∞
∑

k=1

exp

(

−
√

k

2lλsup

(

λ − ρ

λ
− 1

)

)

≤ 2

∞
∑

m=0

(m + 1)(q(l))m = 2
d

dq

∣

∣

∣

∣

∣

q=q(l)

1

1 − q
=

2

(1 − q(l))2
.

Further, one has

1

(1 − q(l))2
=

(

1 − exp

(

− 1

2lλsup

(

λ − ρ

λ
− 1

)))−2

∼
(

1

2lλsup

(

λ − ρ

λ
− 1

))−2

= l2C2

with

C =
1

2λsup

(

λ − ρ

λ
− 1

)

.

Since p ∈ (0, 1) it follows that

∞
∑

k=1

IP

(

Sτk+1−1

λ − ρ
>

Sτk

λ
, Sτk

≥
√

k

)

≤
∞
∑

l=1

p(l−1)/2 C2

(1 − q(l))2
< ∞.

The Borel Cantelli Lemma now implies

IP

(

Sτk+1−1

λ − ρ
>

Sτk

λ
and Sτk

≥
√

k infinitely often

)

= 0.

An application of Lemma 1 now finishes the proof. �

Lemma 4 One has for all C > 0

IP



C
∑

τk<m<τk+1

Tm(Sm) > Tτk
(Sτk

) infinitely often



 = 0.
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Proof: We can compute for all x > 0 that

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x





=
∞
∑

m=1

∞
∑

l=1

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> l, Tτk
(Sτk

) = l, τk+1 − τk = m

∣

∣

∣

∣

∣

Sτk
= x



 .

It follows from part 4 of Proposition 1 that this is equal to

∞
∑

m=1

∞
∑

l=1

IP

(

C
m−1
∑

i=1

T i

(

λ − ρ

λ
x

)

> l

)

IP
(

T0(x) = l
)

IP
(

τk+1 − τk = m
∣

∣

∣
Sτk

= x
)

≤
∞
∑

l=1

(1 − qx)l−1qx

∞
∑

m=2

IP

(

m−1
∑

i=1

T i

(

λ − ρ

λ
x

)

> [l/C]

)

pm−1.

In the last step we used the inequality IP
(

τk+1 − τk = m
∣

∣Sτk
= x

)

≤ pm−1, which can be found
in the proof of Lemma 2 and the fact that the random variable T0(x) from part 4 in Proposition
1 has a geometric distribution with parameter

qx := exp

(

− 1

λ(x)
x

)

.

We know from part 3 of Proposition 1 that for y > 0 the random variables T 1(y), ..., Tm−1(y)

are iid with marginals having a geometric distribution with parameter q(y) = exp
(

− 1
λ
y
)

. This

is due to the fact that the random variable T 1(y) are the waiting time for a first success in a
row of iid Bernoulli experiments with success probability q(y). The sum of m − 1 iid copies of
T 1(y) is just the waiting time for the m − 1-th success in a row of iid Bernoulli experiments
with success probability q(y). This random variable has a negative binomial distribution, i.e.:

IP

(

m−1
∑

i=1

T i(y) = j

)

=

(

j − 1

m − 2

)

(q(y))m−1(1 − q(y))j−m+1.

If we define

qx := q

(

λ − ρ

λ
x

)

then this fact and the inequality

(

j − 1

m − 2

)

=
(j − 1)!

(j − m + 1)! (m − 2)!
≤ jm−2

(m − 2)!
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imply for large x > 0 that

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x





≤
∞
∑

l=1

(1 − qx)l−1qx

∞
∑

m=2

pm−1
∞
∑

j=[l/C]

(

j − 1

m − 2

)

qm−1
x (1 − qx)j−m+1

≤
∞
∑

l=1

(1 − qx)l−1qx

∞
∑

m=2

pm−1
∞
∑

j=[l/C]

jm−2

(m − 2)!
qm−1
x (1 − qx)j−m+1

= p qxqx(1 − qx)−1
∞
∑

l=1

(1 − qx)l−1
∞
∑

j=[l/C]

(1 − qx)j exp

(

j
qxp

(1 − qx)

)

≤ p qxqx(1 − qx)−1

1 − (1 − qx) exp
(

qxp
(1−qx)

)

∞
∑

l=1

(1 − qx)l−1(1 − qx)[l/C] exp

(

[l/C]
qxp

(1 − qx)

)

.

Here we used that for x → ∞ we have qx → 0 and thus for large x > 0

(1 − qx) exp
( qxp

1 − qx

)

= (1 − qx)
(

1 +
qxp

1 − qx

+ O(q2
x)
)

= (1 − qx) + qxp + O(q2
x) < 1.

For u ∈ (0, 1) one has u[l/C] ≤ ul/C−1 = u(l−1)/C+(1/C−1). Thus we obtain that

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x





≤
p qxqx(1 − qx)1/C−2 exp

(

qxp
1−qx

)

(

1 − (1 − qx) exp
(

qxp
(1−qx)

))(

1 − (1 − qx)(1 − qx)1/C exp
(

qxp
C(1−qx)

)) .

Taylor-approximation yields that (1 − qx)1/C = 1 + O(qx) as qx → 0. Further, we have that

exp
(

qxp
(1−qx)

)

= 1 + O(qx) as qx → 0. It thus follows that

(1 − qx)(1 − qx)1/C exp

(

qxp

C(1 − qx)

)

= (1 − qx)(1 − O(qx))(1 + O(qx)) = 1 − qx + O(qx).

On the other hand we have 1 − exp
(

qxp
(1−qx)

)

= O(qx) as qx → 0 and it follows that

(

1 − (1 − qx) exp

(

qxp

(1 − qx)

))

= O(qx) + qxO(1) = O(qx).
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Finally we also have that

p qxqx(1 − qx)1/C−2 exp

(

qxp

1 − qx

)

= O(qx)qx.

It then follows from those considerations that

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x



 ≤ O(qx)qx

O(qx)
(

qx + O(qx)
) =

O(1)qx
(

qx + O(qx)
) .

This yields for qx → 0 that

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x



 ≤ O(1)
(

1 + O(qx)/qx

) .

For x ∈ Λǫ := {z ∈ R : λ(z) ≤ λ} one has qx ≤ exp
(

− 1
λx
)

=: q
x
. Therefore, there exists in this

situation a K > 0 with

IP



C
∑

τk<i<τk+1

T i

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x



 ≤ K
q
x

qx

≤ K exp

(

− ρ

λλ
x

)

.

Since
τk := inf{m > τk−1 : λ(Sm) < λ}

it follows that Sτk
∈ Λǫ. Moreover, we saw in part 2 of Proposition 1 that y 7→ T l(y) is

increasing. Those facts imply

IP



C
∑

τk<m<τk+1

Tm(Sm) > Tτk
(Sτk

),
Sτk+1

λ − ρ
≤ Sτk

λ
, Sτk

≥
√

k





≤ IP



C
∑

τk<m<τk+1

Tm

(

λ − ρ

λ
Sτk

)

> Tτk
(Sτk

), Sτk
≥

√
k





=

∫ ∞
√

k
1IΛǫ

(x)IP



C
∑

τk<m<τk+1

Tm

(

λ − ρ

λ
x

)

> Tτk
(Sτk

)

∣

∣

∣

∣

∣

Sτk
= x



 IP
(

Sτk
∈ dx

)

≤ K

∫ ∞
√

k
exp

(

− ρ

λλ
x

)

IP
(

Sτk
∈ dx

)

≤ K exp

(

− ρ

λλ

√
k

)

.
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Since ∞
∑

k=1

exp

(

− ρ

λλ

√
k

)

< ∞,

it follows from the Borel Cantelli lemma that

IP



C
∑

τk<m<τk+1

Tm(Sm) > Tτk
(Sτk

),
Sτk+1

λ − ρ
≤ Sτk

λ
, Sτk

≥
√

k infinitely often



 = 0.

Applying Lemma 2 and Lemma 3 finishes the proof. �

3 A weak law for the Césaro convergence

We will need another version of the Césaro convergence theorem in the next section of this
article. This version is different in two point from Theorem 1. The main difference is that we
do not add up the full range {1, ..., n} in the Césaro summation. We restrict the summation
to {[an], [na] + 1, ..., [nb]} where a and b are two positive real numbers. We are not able to
prove almost sure convergence in this situation. So we have to restrain ourself to stochastic
convergence, which is sufficient for the applications that we have in mind.

Theorem 2 For all a < b and every bounded measurable function f : R
+ → R

+ which is
right-continuous in λinf follows

1

n

[nb]
∑

k=[na]

f(λ(Zk)) −→ (b − a)f(λinf) in probability as n → ∞.

Proof: We use the same arguments as in the proof of Theorem 1 to see that for all δ > 0 there
exists a suitable ǫ > 0 such that:

∣

∣

∣

∣

∣

∣

1

n

[nb]
∑

k=[na]

f(λ(Zk)) − (b − a)f(λinf)

∣

∣

∣

∣

∣

∣

≤ δ
1

n
(Gn + Dn) + 2 sup

z∈[λinf ,λsup]
|f(z)| 1

n
Bn

with

Gn :=

[nb]
∑

k=[na]

1I(−∞,λinf+ǫ)(λ(Sk))Tk(Sk),

Dn :=

[nb]
∑

k=[na]

1I[λinf+ǫ,λinf+2ǫ)(λ(Sk))Tk(Sk)

and

Bn :=

[nb]
∑

k=[na]

1I[λinf+2ǫ,∞)(λ(Sk))Tk(Sk).
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From this then follows that

IP





∣

∣

∣

∣

∣

∣

1

n

[nb]
∑

k=[na]

f(λ(Zk)) − (b − a)f(λinf)

∣

∣

∣

∣

∣

∣

> 3δ





≤ IP

(

δ
1

n
(Gn + Dn) > δ

)

+ IP

(

2 sup
z∈[λinf ,λsup]

|f(z)| 1
n

Bn > 2δ

)

≤ 0 + IP

(

2 sup
z∈[λinf ,λsup]

|f(z)| 1
n

Bn > 2δ

)

since

Bn :=
∑

k:[na]≤τk≤[nb]





∑

τk−1<m<τk

Tm(Sm)



 > Bn.

In order to finish the proof, it suffices to prove that for C := δ/(2 supz∈[λinf ,λsup] |f(z)|) one has

IP(CBn > Gn) −→ 0 as n → ∞,

where
Gn :=

∑

k:[na]≤τk≤[nb]

Tτk
(Sτk

) ≤ Gn.

For all ρ > 0 and all n ∈ N there exists a maximal natural number Mn ∈ N such that
IP(τMn

< [na]) < ρ. It follows that Mn goes to infinity when n → ∞. Moreover, we have that

∑

k≥Mn

IP



C
∑

τk−1<m<τk

Tm(Sm) > Tτk
(Sτk

)





≤
∑

k≥Mn

IP



C
∑

τk−1<m<τk

Tm(Sm) > Tτk
(Sτk

),
Sτk+1

λ − ρ
≤ Sτk

λ
, Sτk

≥
√

k





+
∑

k≥Mn

IP

(

Sτk+1

λ − ρ
>

Sτk

λ

)

+
∑

k≥Mn

IP
(

Sτk
<

√
k
)

.

We saw in the proof of Lemma 4 that the first series on the right side is finite. For the second
one we have that
∑

k≥Mn

IP

(

Sτk+1

λ − ρ
>

Sτk

λ

)

≤
∑

k≥Mn

IP

(

Sτk+1

λ − ρ
>

Sτk

λ
, Sτk

≥
√

k

)

+
∑

k≥Mn

IP
(

Sτk
<

√
k
)

.

Here again the first sum on the right side is finite as we saw in the proof of Lemma 3. We saw
in the proof of Lemma 2 that Sτk

≥ λinf(Y1 + ... + Yk). This implies

IP
(

Sτk
≤

√
k
)

≤ IP
(

λinf(Y1 + ... + Yk) ≤
√

k
)

= IP

(

1√
k

k
∑

i=1

(Yi − IE[Y1]) <
1

λinf
−
√

kIE[Y1]

)

.
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and it follows by the central limit theorem that

∑

k≥Mn

IP
(

Sτk
<

√
k
)

< ∞.

Finally, it follows that there exists a large n ∈ N such that

IP
(

CBn > Gn

)

≤ IP
(

τMn
< [na]

)

+ IP
(

CBn > Gn, τMn
≥ [na]

)

≤ ρ + IP

(

⋃

k≥Mn

{

C
∑

τk−1<m<τk

Tm(Sm) > Tτk
(Sτk

)
}

)

≤ ρ +
∑

k≥Mn

IP

(

C
∑

τk−1<m<τk

Tm(Sm) > Tτk
(Sτk

)

)

≤ 2ρ.

Since ρ was arbitrary, the desired stochastic convergence follows. �

4 Convergence of the extremal process

In this section we prove a limit-theorem for the sequence of processes

Z
(n)
t :=

1

λinf

(

Z[nt] − log n
)

.

The sequence has some dependence coming from its Markovian structure. The extremes of
sequences which are related to an underlying Markov chain have been investigated in a number
of research articles (see Resnick and Neuts (1970), Denzel and O’Brian (1975), Turkman and
Walker (1983), Turkman and Oliveira (1992)). In those articles a discrete Markov chain influ-
ences the behavior of a sequence of random variables. This is also the case in our model, but
the influence occurs in a different way.

The sequence of random variables {λinfXn; n ∈ N} is iid and has marginals with distribution
function F (x) = 1 − e−x/λinf . If an := λinf and bn := log n it follows that

Fn(anx + bn) =
(

1 − e−(x+log n)
)n

=

(

1 − e−x

n

)n

−→ exp
(

−e−x
)

= G(x) as n → ∞.

It follows from the previous computation that the exponential distribution is in the domain of
attraction of the double-exponential distribution G(x) := exp(−e−x), x ∈ R; i.e.:

IP
(

max(λinfX1, ..., λinfXn) ≤ anx − bn

)

−→ G(x).

The distribution G(x) is also called the Gumbel distribution in the literature. It follows from
Theorem 1 and Theorem 2 that the sequence {Zn; n ∈ N} stays at locations with small λ-values
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most of the time. This fact gives a strong hint that the sequence {Zn; n ∈ N} behaves like the
sequence {max(λinfX1, ..., λinfXn); n ∈ N} on large scales. Thus we expect that the distributions
of the sequence { 1

an
(Zn − bn); n ∈ N} converge toward a Gumbel distribution as n → ∞. We

prove this result in this section. In order to do so we first prove the convergence of a suitable

sequence of point processes which is associated to the processes {Z(n)
t ; t ≥ 0}. The convergence

of the sequence will then follow from an application of the continuous mapping theorem. This
indirect approach to prove a Lamperti theorem can be found in Resnick (1987).

There exists a finest topology on (−∞,∞] such that x 7→ cot(x) is a homeomorphism from
(0, π/2] to (−∞,∞]. We now define a suitable point process on R

+ × (−∞,∞]:

Nn(dt, dz) :=
∑

k∈N

δ“

k/n, 1
an

(Zk−log n)
”(dt, dz).

Theorem 3 The point processes {Nn; n ∈ N} converge toward the Poisson point process N∗ on
[0,∞) × R with intensity measure

ν([0, t] × (x,∞]) := te−x

Proof: Since the the random measures {Nn; n ∈ N} are simple point processes it is sufficient
to find a basis T of relative compact open sets in R

+ × (−∞,∞] which is closed under finite
intersections and finite unions having the following properties (see Resnick (1987) p.157):

i) IP(N∗(∂F ) = 0) = 1 for all F ∈ T ;

ii) limn→∞ IP(Nn(F ) = 0) = IP(N∗(F ) = 0) for all F ∈ T ;

iii) limn→∞ IE [Nn(F )] = IE [N∗(F )] for all F ∈ T .

We call a set F a figure if it is a finite disjoint union of open relatively compact rectangles from
R

+ × (−∞,∞]. The set of figures T is obviously closed under finite unions and intersections.

Moreover condition (i) is certainly fulfilled since the limit-process is a Poisson point-process
with absolute continuous intensity measure. Let K be an element from T , then the family

N (K)
n (t) := Nn

(

K ∩ ((0, t] × (−∞,∞])
)

defines a point process on R
+. The stochastic process

{

N
(K)
n (t); t > 0

}

has a canonical filtration

F (K,n)
t := σ

(

N
(K)
n (s); s ≤ t

)

. Let
{

A
(K)
n (t); t ≥ 0

}

be the compensator associated to the process

N
(K)
n and the filtration F (K,n) (see Daley and Vere-Jones (1988) p.514). We want to obtain an

explicit representation for the compensator A(K). The figure K has the following decomposition

K =

M
⋃

i=1

(

Ti × Qi

)

,
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where Ti ⊂ R
+ and Qi ⊂ (−∞,∞] are open relatively compact intervals. The compensator for

N
(K)
n has the following expression (see Jacod and Shiryaev (2003) p.94)

A(K)
n (t) =

M
∑

i=1

∑

j/n∈Ti∩[0,t]

λinf

λ(Zj−1)

∫

Qi

exp

(

− λinf

λ(Zj−1)
y − log n

)

dy

=
1

n

M
∑

i=1

∑

j/n∈Ti∩[0,t]

λinf

λ(Zj−1)

∫

Qi

exp

(

− λinf

λ(Zj−1)
y

)

dy.

By Theorem 2 this converges for every t > 0 in probability toward

A(K)(t) :=
M
∑

i=1

|Ti ∩ [0, t]|
∫

Qi

exp (−y) dy,

where we denote by |I| the lenght of an interval I ⊂ R. The last expression is just the compen-
sator of the point-process

N
(K)
∗ (t) := N∗

(

K ∩ ((0, t] × (−∞,∞])
)

.

The distributional convergence of the processes N
(K)
n toward N (K) implies the distributional

convergence of N
(K)
n (θ) toward N (K)(θ) for θ := supi sup Ti. This proves condition (ii), since

lim
n→∞

IP(Nn(K) = 0) = lim
n→∞

IP(N (K)
n (θ) = 0) = IP(N

(K)
∗ (θ) = 0) = IP(N∗(K) = 0).

In order to prove condition (iii) we note that the fact that A
(K)
n and A

(K)
∗ are compensators

yields

IE [Nn(K)] = IE
[

N (K)
n (θ)

]

= IE
[

A(K)
n (θ)

]

and IE [N∗(K)] = IE
[

N (K)
n (θ)

]

= IE
[

A
(K)
∗ (θ)

]

.

Condition (iii) then follows by Theorem 2. �

To the distribution function G we associate an extreme-value process having finite dimensional
distributions defined as follows

Gt1,...,tk(x1, ..., xk) := Gt1

(

k
∧

i=1

xi

)

Gt2−t1

(

k
∧

i=2

xi

)

· ... · Gtk−tk−1(xk).

The resulting stochastic process {Z(t), t > 0} is a Markov-process with non-decreasing paths.
A version of this process exists in D(0,∞) (see Resnick (1987)). We now define the associated
maximum processes

Z
(n)
t :=

1

an

(

Z[nt] − log n
)

.
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Corollary 1 The processes {Z(n); n ∈ N} converge toward the extreme-value process associated
to the Gumbel-distribution

G(x) = exp
(

−e−x
)

.

Proof: For the proof we define the map

F : Zp([0,∞) × (−∞,∞]) → D(0,∞); µ =
∑

k

δtk,jk
7→



t 7→
∨

0<tk≤t

jk



 .

It follows that F(Nn) = Z(n) (see Resnick (1987) p.209) and that F is continuous almost ev-
erywhere with respect to the distribution of N∗. The continuous mapping theorem and the
Theorem 2 then implies that Z(n) converges in distribution toward Z = F(N). �

Corollary 2 The sequence IP
(

1
an

(

Zn − log n
)

> x
)

converges toward the Gumbel-distribution

G(x) = exp
(

−e−x
)

.

Proof: This follows directly from the previous corollary. �
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