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LEAST SQUARES ESTIMATION FOR A PERIODIC MEAN REVERSION

PROCESS

HEROLD DEHLING, BRICE FRANKE, AND THOMAS KOTT

Abstract. In this paper we propose a least squares estimator for the drift parameters of
a generalized Ornstein-Uhlenbeck process

dXt = (L(t) − α Xt) dt + σ dBt, t ≥ 0.

The estimator is defined as limit of ordinary least squares estimators for a time discretized
version of this stochastic differential equation. We give an explicit formula for the time-
continuous least squares estimator. In the case of a periodic mean reversion function L(t),
we prove consistency and asymptotic normality of our estimator.

1. Introduction

The Ornstein-Uhlenbeck process is defined as solution of the stochastic differential equa-
tion

dXt = α(µ−Xt)dt+ σdBt, t ≥ 0,

where α and σ are positive constants, µ ∈ R and (Bt)t≥0 Brownian motion. Originally
introduced by Ornstein and Uhlenbeck (1932) as a model for particle motion in a fluid,
this process is now widely used in many areas of application. The main characteristic of
the Ornstein-Uhlenbeck process is the tendency to return towards the long-term equilibrium
µ. This property, known as mean-reversion, is found in many real life processes, e.g. in
commodity and energy price processes, see e.g. Geman (2005).

In many real-life applications, however, the assumption of a constant mean level is not
adequate due to seasonality patterns or a long-term trend of the process. Thus we propose
the following generalized Ornstein-Uhlenbeck process, defined as solution to the stochastic
differential equation

(1) dXt = (L(t) − αXt)dt+ σdBt, t ≥ 0,

where L(t) is a time-dependent mean reversion level and where α, σ are positive constants.
Note that model (1) differs from the original Ornstein-Uhlenbeck process in the position of α
within the drift term. However, model (1) can easily be transformed to a process with drift

term α(L̃(t)−Xt)dt where L̃(t) = L(t)/α. The advantage of (1) compared with the process
provided with the drift α(L(t) −Xt)dt is the simplification of the study of the estimators.

In this paper we make a parametric model for the mean reversion function L(t). We
assume that

(2) L(t) =

p
∑

i=1

µiϕi(t),

where the basis functions ϕ1(t), . . . , ϕp(t) are known and µ1, . . . , µp are unknown parame-
ters. In addition, the mean reversion rate α is assumed to be unknown. In contrast, the
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diffusion parameter σ is assumed to be known which is a common assumption in the field
of drift parameter estimation for a time-continuous diffusion. This is due to the fact that
the measures corresponding to different diffusion parameters are singular so that σ can be
computed from a single continuous-time observation.

Parameter estimation for continuously observed diffusion processes is a well-established
area of research, for which a variety of techniques have been proposed. Kutoyants [8] de-
scribes several estimation techniques for ergodic time-homogenous diffusion processes. The
trajectory fitting estimator, originally introduced by Kutoyants [7], has been extended to
certain non-ergodic time-homogenous diffusions by Dietz [1] and by Hu et al. [4]. The tra-
jectory fitting estimator is based on the least squares fitting of the parameters applied to the
integral form of the stochastic differential equation (1),

(3) Xt = X0 +

∫ t

0

(L(s) − αXs)ds+ σBt,

by solving the minimization problem

θTF := argminθ∈Θ

∫ T

0

(

Xt −X0 −
∫ t

0

(L(s) − αXs)ds

)2

dt,

where θ = (µ1, . . . , µp, α)t. In contrast with this, we propose a least squares method directly
applied to the stochastic differential equation (1). A formal definition will be based on a least
squares estimation in a discretized version of (1), followed by a limit as the discretization step
converges to 0. We show that this estimator can be explicitly computed and we establish
the asymptotic distribution in the case of periodic mean reversion function.

2. Time-Continuous Least Squares Estimator

In this section we introduce a least squares estimator for the parameters of a general-
ized Ornstein-Uhlenbeck process, based on a time-continuous observation scheme. We first
discretize the Ornstein-Uhlenbeck process, consider the least squares estimator for the dis-
cretized process and then take the limit as the discretization step converges to zero. The
resulting estimator can be viewed as a time-continuous version of the least squares method.

The stochastic differential equation (1) can be discretized to the difference equation

(4) X(i+1)∆t −Xi∆t =

(

p
∑

j=1

µjϕj(i∆t) − αXi∆t

)

∆t+ σ(B(i+1)∆t −Bi∆t), i = 1, . . . , N,

where N = ⌊T/∆t⌋−1 and where ∆t denotes the constant time increment. Here ⌊x⌋ denotes
the integer part of x. The structure of (4) is similar to that of the classical linear model, given
by Yi =

∑p
j=1 βjbij + εi, i = 1, . . . , n, where Y = (Y1, . . . , Yn)t is the vector of observations,

B = (bij) the design matrix, β = (β1, . . . , βp)
t the vector of unknown parameters and where

εi are the error terms. The least squares estimator for β is based on the minimization of
the functional (β1, . . . , βp)

t 7→∑n
i=1(Yi −

∑p
j=1 βjbij)

2, and is explicitly given by the formula

β̂ = (BtB)−1BtY . The main distinction between (4) and the standard linear model lies in
the fact that the right hand side of (4) depends on Xi∆t which is an observed element of the
data. Nevertheless, this idea leads to an adequate estimator, as will be shown in Section 3.
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Analogy with the classical linear model leads to the task of minimization of the functional

q(µ1, . . . , µp, α)t :=

N
∑

i=0

(

X(i+1)∆t −Xi∆t −
(

p
∑

j=1

µjϕj(i∆t) − αXi∆t

)

∆t

)2

.

Lemma 2.1. The solution vector θ̂∆t = θ̂ = (µ̂1, . . . , µ̂p, α̂) of the minimization problem
q(θ) → min is given by

θ̂∆t = Q−1
T,∆tPT,∆t,

where QT,∆t ∈ R
(p+1)×(p+1) and PT,∆t ∈ R

p+1 are defined as

QT,∆t = ∆t

(

GT,∆t aT,∆t

at
T,∆t bT,∆t

)

, PT,∆t =











∑N
i=0 ϕ1(i∆t)(X(i+1)∆t −Xi∆t)

...
∑N

i=0 ϕp(i∆t)(X(i+1)∆t −Xi∆t)

−
∑N

i=0Xi ∆t(X(i+1)∆t −Xi∆t)











,

and where GT,∆t =
(

∑N
i=0 ϕj(i∆t)ϕk(i∆t)

)

1≤j,k≤p
∈ R

p×p, bT,∆t =
∑N

i=0X
2
i∆t and aT,∆t =

−(
∑N

i=0 ϕ1(i∆t)Xi ∆t, . . . ,
∑N

i=0 ϕp(i∆t)Xi ∆t)
t.

Proof. By general theory of least squares estimation in linear models, the solution to the
minimization problem q(θ) → min is given by

(5) θ̂ = (AtA)−1AtD

where θ = (µ1, . . . , µp, α)t and where

A = ∆t









ϕ1(0) . . . ϕp(0) −X0

ϕ1(∆t) . . . ϕp(∆t) −X∆t
...

. . .
...

...
ϕ1(N∆t) . . . ϕp(N∆t) −XN∆t









, D =









X∆t −X0

X2∆t −X∆t
...

X(N+1)∆t −XN∆t









.

Hence, the products in equation (5) can be calculated to be

AtD = ∆tPT,∆t

and

AtA = (∆t)2

(

GT,∆t aT,∆t

at
T,∆t bT,∆t

)

= ∆tQT,∆t.

Thus we get θ̂ = (AtA)−1AtD = Q−1
T,∆tPT,∆t. �

Now a continuous-time estimator can be derived from the least squares estimator by
considering ∆t→ 0. Regarding the entries of PT,∆t as ∆t→ 0 we obtain

N
∑

i=0

ϕj(i∆t) · (X(i+1)∆t −Xi∆t) →
∫ T

0

ϕj(t)dXt

and
N
∑

i=0

Xi∆t · (X(i+1)∆t −Xi∆t) →
∫ T

0

XtdXt.
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Note that both integrals are Itô type integrals and that the convergence holds in L2. For
the entries of QT,∆t we have (as ∆t→ 0):

N
∑

i=0

ϕl(i∆t)ϕm(i∆t)∆t →
∫ T

0

ϕl(t)ϕm(t)dt,

N
∑

i=0

ϕj(i∆t)Xi∆t∆t→
∫ T

0

ϕj(t)Xtdt

and
N
∑

i=0

X2
i∆t∆t→

∫ T

0

X2
t dt.

We have thus proved the following proposition.

Proposition 2.2. As ∆t → 0, the least squares estimator θ̂∆t converges to Q−1
T PT , where

QT ∈ R
(p+1)×(p+1) and PT ∈ R

p+1 are defined as

QT =

(

GT aT

at
T bT

)

,(6)

PT =

(
∫ T

0

ϕ1(t)dXt, . . . ,

∫ T

0

ϕp(t)dXt,−
∫ T

0

Xt dXt

)t

,(7)

and where GT = (
∫ T

0
ϕj(t)ϕk(t)dt)1≤j,k≤p ∈ R

p×p, aT = −(
∫ T

0
ϕ1(t)Xt dt, . . . ,

∫ T

0
ϕp(t)Xt dt)

t,

and bT =
∫ T

0
X2

t dt.

Definition 2.3. We define the continuous-time least squares estimator θ̂LS for θ by

(8) θ̂LS := Q−1
T PT ,

where QT and PT are defined as in Proposition 2.2.

Remark. Note that our continuous least squares estimator is equal to the classical maximum
likelihood estimator in the case of the generalized mean reversion model introduced in (1).
The reason for that identity is the fact that the likelihood ratio L of a general diffusion
process

dXt = S(θ, t, Xt)dt+ dBt, 0 ≤ t ≤ T,

has the following form, see Kutoyants [6], for example:

L(θ,Xt) = exp

(
∫ T

0

S(θ, t, Xt)dXt −
1

2

∫ T

0

S(θ, t, Xt)
2dt

)

.

The maximum likelihood estimator is defined as the maximum of the functional

θ 7→ L(θ,Xt)

and the partial derivatives of the logarithm of this likelihood ratio are

(9)
∂

∂θi
ln(L(θ,Xt)) =

∫ T

0

∂

∂θi
S(θ, t, Xt)dXt −

∫ T

0

S(θ, t, Xt)
∂

∂θi
S(θ, t, Xt)dt.
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The drift function of our generalized mean reversion model is given by

S(θ, t, Xt) =

p
∑

i=1

µiϕi(t) − αXt

such that
∂

∂θi

S(θ, t, Xt) =

{

ϕi(t), for θi = µi, i = 1 . . . , p;
−Xt, for θi = α.

Setting the partial derivatives of the likelihood ratio in (9) equal to zero yields the maximum
likelihood estimator which can be seen to be equal to the least squares estimator presented
in (8). In summary, we have the same result as in the ordinary linear model, namely the fact
that the maximum likelihood and the least squares methodology provide the same estimator.

3. Least Squares Estimation for a Periodic Mean Reversion Function

In many applications, the data display regular seasonal effects. These can be modeled by
assuming that the mean-reversion function L(t) is periodic, i.e. that

(10) L(t+ ν) = L(t)

where ν is the period observed in the data. The resulting stochastic process exhibits a
cyclical evolution due to the periodicity of this mean reversion mechanism. Combining the
assumption of periodicity with the parametric model (2) leads to the requirement

(11) ϕj(t+ ν) = ϕj(t).

By applying Gram-Schmidt orthogonalization, we may assume without loss of generality
that ϕ1(t), . . . , ϕp(t) form an orthonormal system in L2([0, ν],

1
ν
dλ), i.e. that

(12)

∫ ν

0

ϕj(t)ϕk(t)dt =

{

ν, j = k
0, j 6= k.

In the rest of this paper we will assume that we observe an integral multiple of the period
length, i.e. that

T = N ν,

for some integer N . Moreover, we will assume without loss of generality that ν = 1.
Under the above assumptions, the matrix QT , defined in (6), simplifies to

(13) QT =

(

T Ip×p aT

at
T bT

)

,

The inverse of a matrix Q of this special form can be explicitly computed by the following
lemma.

Lemma 3.1. The inverse of the matrix QT , given in (13), is given by

(14) Q−1
T =

1

T

(

Ip + γT ΛT Λt
T −γT ΛT

−γT Λt
T γT

)

where

ΛT,i =
1

T

∫ T

0

ϕi(t)Xtdt, i = 1, . . . , p(15)

γT =

(

1

T

∫ T

0

X2
t dt−

p
∑

i=1

Λ2
T,i

)−1

(16)
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and ΛT = (ΛT,1, . . . ,ΛT,p)
t.

Proof. We make use of the following formula for the inverse of a partitioned matrix which
can be deduced from the Frobenius matrix inversion formula, cf. Gantmacher [2], p. 73.
Alternatively the formula can also be verified directly. We have for a ∈ R

p, b ∈ R

(

Ip a

at b

)−1

=

(

Ip + 1
b−‖a‖2aa

t − 1
b−‖a‖2 a

− 1
b−‖a‖2 a

t 1
b−‖a‖2

)

,

where ‖ · ‖ denotes the usual Euclidean norm on R
p. With the notation introduced above,

we can write Q as follows,

Q = T

(

Ip ΛT

Λt
T

1
T

∫ T

0
X2

t dt

)

and thus apply the above formula for the calculation of Q−1
T . �

We can now formulate our main results about the asymptotic behavior of the least squares
estimator in the generalized Ornstein-Uhlenbeck process with periodic mean reversion func-
tion.

Theorem 1. Let {Xt, 0 ≤ t ≤ T} be observations of a generalized mean reversion process
with a periodic mean reversion function as introduced in (2), satisfying (11) and (12). Then
the least squares estimator given in (8) is consistent, i.e.

θ̂LS → θ, almost surely,

as T → ∞.

For the description of the asymptotic distribution of θ̂LS, we have to introduce some
matrices. We define the (p+ 1) × (p+ 1) matrices C and Σ by

C =

(

Ip + γΛΛt −γΛ
−γΛt γ

)

(17)

Σ0 =

(

Ip Λ
Λt ω

)

(18)

where the entries are defined by

Λi =

∫ 1

0

ϕi(t)h̃(t)dt, i = 1, . . . , p(19)

γ =

(

∫ 1

0

(h̃(t))2dt+ E(Z̃1)
2 −

p
∑

i=1

Λ2
i

)−1

(20)

ω =

∫ 1

0

(h̃(t))2dt+
1

2α
(21)

and Λ = (Λ1, . . . ,Λp)
t. Here, the function h̃ : [0,∞) → R and the process Z̃t are defined by

h̃(t) = e−αt

p
∑

j=1

µj

∫ t

−∞
eαsϕj(s)ds(22)

Z̃t = σe−αt

∫ t

−∞
eαsdB̃s,(23)
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where (B̃s)s∈R denotes a two-sided Brownian motion, i.e.

B̃s := Bs1R+
(s) + B̄−s1R

−

(s)

with (Bs)s≥0 and (B̄s)s≥0 two independent standard Brownian motions.

Theorem 2. Let {Xt, 0 ≤ t ≤ T} be observations of a generalized mean reversion process
with a periodic mean reversion function as introduced in (2), satisfying (11) and (12). The

least squares estimator θ̂LS, defined in (8), is asymptotically normal. More precisely,
√
T (θ̂LS − θ) → N(0, C Σ0C

t),

where C and Σ0 are defined as in (17) and (18).

The proofs of these theorems require a number of auxiliary results, which will be given in
the next two sections.

4. Proof of Theorem 1

The proofs of Theorem 1 and Theorem 2 make use of a representation of the least squares
estimator that will be established in the following proposition.

Proposition 4.1. The least squares estimator θ̂LS , defined in (8), can be written as

(24) θ̂LS = θ + σQ−1
T RT ,

where

(25) RT :=











∫ T

0
ϕ1(t)dBt

...
∫ T

0
ϕp(t)dBt

−
∫ T

0
XtdBt











,

and where QT is defined in (6).

Proof. By definition, we have

θ̂LS = Q−1
T PT ,

where QT and PT are defined as in (6) and (7). We rewrite this by making use of (1). In
fact, the stochastic differential equation

dXt =
(

p
∑

j=1

µjϕj(t) − αXt

)

dt+ σdBt

leads to
∫ T

0

ϕi(t)dXt =

p
∑

j=1

µj

∫ T

0

ϕi(t)ϕj(t)dt− α

∫ T

0

ϕi(t)Xtdt+ σ

∫ T

0

ϕi(t)dBt, i = 1, . . . , p,

∫ T

0

XtdXt =

p
∑

j=1

µj

∫ T

0

Xtϕj(t)dt− α

∫ T

0

X2
t dt+ σ

∫ T

0

XtdBt.
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Hence, it follows that

PT =











∫ T

0
ϕ1(t)dXt

...
∫ T

0
ϕp(t)dXt

−
∫ T

0
XtdXt











= QT θ + σRT

so that θ̂LS = θ + σQ−1
T RT . �

In what follows, we will show that Q−1
T RT converges to zero almost surely, as T → ∞. In

order to do so, we write

Q−1
T RT =

(

T Q−1
T

)

(

1

T
RT

)

.

We will show that T Q−1
T converges almost surely to a finite limit and that 1

T
RT converges

almost surely to zero. Both of these results require a number of auxiliary results which will
be proved first.

Lemma 4.2. The solution of the stochastic differential equation (1) has the explicit repre-
sentation

(26) Xt = e−αtX0 + h(t) + Zt,

where

h(t) = e−αt

∫ t

0

eαsL(s)ds = e−αt

p
∑

i=1

µi

∫ t

0

eαsϕi(s)ds

and

Zt = σe−αt

∫ t

0

eαsdBs.

Proof. The Itô lemma states for Yt = g(t, Xt) that

dYt =
∂g

∂t
(t, Xt)dt+

∂g

∂x
(t, Xt)dXt +

1

2

∂2g

∂x2
(t, Xt)(dXt)

2

which reduces for g(t, x) = eαtx to

dYt = αeαtXtdt+ eαtdXt.

Plugging (1) in this equation gives

dYt = eαt(L(t)dt+ σdBt).

Integrating and multiplying by e−αt finishes the proof of the lemma. �

The process (Xt)t≥0 is not stationary, since we have chosen an arbitrary initial value. Thus
we are unable to apply the ergodic theorem. In order to solve this problem, we will next
introduce a stationary solution to the stochastic differential equation (1). We define the
process

(27) X̃t = h̃(t) + Z̃t

where h̃(t) and Z̃t are defined in (22) and (23). As usual we denote by C[0, 1] the space of
real valued continuous functions on [0, 1].
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Lemma 4.3. The sequence of C[0, 1]-valued random variables

(28) Wk(s) := X̃k−1+s, 0 ≤ s ≤ 1,

is stationary and ergodic.

Proof. We denote by h̃0 the restriction of the function h̃ to [0, 1]. Since the function h̃ is
periodic, we have the decomposition

Wk(t) = h̃(k − 1 + t) + σe−α(k−1+t)

∫ k−1+t

−∞
eαsdB̃s

= h̃0(t) + σe−α(k−1+t)

∫ k−1+t

k−1

eαsdB̃s + σ
k−1
∑

l=−∞
e−α(k−1+t)

∫ l

l−1

eαsdB̃s.

Making use of the time shifted Brownian motion

B̃(l)
s := B̃s+l

yields

Wk(t) = h̃0(t) + σe−αt

∫ t

0

eαsdB̃(k)
s + σ

k−1
∑

l=−∞
e−α(k−l+t)

∫ 1

0

eαsdB̃(l)
s

= h̃0(t) + σe−αt

∫ t

0

eαsdB̃(k)
s + σ

0
∑

j=−∞
e−α(1+t−j)

∫ 1

0

eαsdB̃(j+k−1)
s .

Consequently, this can be written as

Wk(·) = h̃0(·) + F0(Yk) +

0
∑

l=−∞
eα(j−1)F (Yj+k−1)

where we used the a.s. defined functionals

F0 : C[0, 1] → C[0, 1]; ω 7→
(

t 7→ σe−αt

∫ t

0

eαsdω(s)

)

,

F : C[0, 1] → C[0, 1]; ω 7→
(

t 7→ σe−αt

∫ 1

0

eαsdω(s)

)

and the C[0, 1]-valued random variables

Yl = (s 7→ B̃(l)
s − B̃

(l)
0 , 0 ≤ s < 1).

The series (Yl)l∈Z consists of independent and identically distributed random variables. This
implies that (Wk)k∈N is stationary and ergodic since each element of this sequence can be
represented as a measurable function G : (C[0, 1])N → C[0, 1] of elements of the iid sequence
(Yl)l∈Z, i.e.

Wk = G(Yk, Yk−1, . . .).

�

Lemma 4.4. As t→ ∞ one has

(29)
∣

∣

∣
X̃t −Xt

∣

∣

∣
→ 0, a.s.
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Proof. We have
∣

∣

∣
X̃t −Xt

∣

∣

∣
≤ e−αt|X0| +

∣

∣

∣
h̃(t) − h(t)

∣

∣

∣
+
∣

∣

∣
Z̃t − Zt

∣

∣

∣

≤ e−αt|X0| + e−αt

p
∑

i=1

µi

∫ 0

−∞
eαsϕi(s)ds+ e−αt

∫ 0

−∞
eαsdB̃s.

Obviously, the three terms on the right side converge toward zero as t→ ∞. �

Proposition 4.5. As T → ∞, we have

T Q−1
T → C, a.s.,

where C is the matrix defined in (17).

Proof. We first consider the entries of the vector ΛT , i.e. 1
T

∫ T

0
Xtϕj(t)dt. From Lemma 4.4

we may conclude that

1

T

∫ T

0

X̃tϕj(t)dt−
1

T

∫ T

0

Xtϕj(t)dt→ 0,

almost surely. Moreover, we get by the ergodic theorem

1

T

∫ T

0

X̃tϕj(t)dt =
1

T

T
∑

k=1

∫ k

k−1

X̃tϕj(t)dt −→ E

(
∫ 1

0

X̃tϕj(t) dt

)

=

∫ 1

0

h̃(t)ϕj(t)dt.

Thus we have established convergence of ΛT,j, 1 ≤ j ≤ p. In order to determine the limit of

γT , it suffices to consider the term 1
T

∫ T

0
X2

t dt. Again, it follows from Lemma 4.4 that

1

T

∫ T

0

X̃2
t dt−

1

T

∫ T

0

X2
t dt→ 0.

Moreover, again by the ergodic theorem, we get

1

T

∫ T

0

X̃2
t dt =

1

T

T
∑

k=1

∫ k

k−1

X̃2
t dt

→ E

(
∫ 1

0

X̃2
t dt

)

= E

(
∫ 1

0

(h̃(t) + Z̃t)
2dt

)

= E

(
∫ 1

0

(h̃(t))2dt+

∫ 1

0

h̃(t)Z̃tdt+

∫ 1

0

Z̃2
t dt

)

=

∫ 1

0

(h̃(t))2dt+ E(Z̃1)
2.

By Bessel’s inequality, we have
p
∑

i=1

Λ2
i ≤

∫ 1

0

(h̃(t))2dt

and thus (
∫ 1

0
(h̃(t))2dt + E(Z̃1)

2 −
∑p

i=1 Λ2
i ) ≥ E(Z̃1)

2 > 0. This proves the assertion of the
proposition. �

Lemma 4.6. The sequence 1√
T
RT is bounded in L2.
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Proof. Note that
1√
T

∫ T

0

ϕi(t)dBt

is L2-bounded because

(30) Var

[

1√
T

∫ T

0

ϕi(t)dBt

]

= Var

[

1√
T

∫ T

0

ϕi(t)dBt

]

=
1

T

∫ T

0

ϕ2
i (t)dt = 1.

For the last entry of 1√
T
RT we have to prove the boundedness of

Var

[

1√
T

∫ T

0

XtdBt

]

=
1

T
E

[∫ T

0

X2
t dt

]

=
1

T
E

[
∫ T

0

e−αtX0h(t) + e−αtX0Zt + e−2αtX2
0 + h(t)Zt + h(t)2 + Z2

t dt

]

.

Since Zt is a zero-mean random variable the expectation of the second and fourth term is
zero. Moreover, the variance

E[Z2
t ] =

σ2

2α
(1 − e−2αt)

is bounded and justifies

sup
T≥0

1

T
E

[∫ T

0

Z2
t dt

]

<∞.

Moreover, the function

h(t) = e−αt

p
∑

i=1

µi

∫ t

0

eαsϕi(t)dt

is bounded due to the periodicity of ϕi(t), i = 1, . . . , p. The boundedness of h(t) gives

sup
T≥0

1

T
E

[
∫ T

0

e−αtX0h(t)dt

]

<∞

and

sup
T≥0

1

T
E

[
∫ T

0

h(t)2dt

]

<∞.

This finishes the proof of the L2-boundedness of 1√
T
RT . �

Proposition 4.7. As T → ∞, we have

(31) lim
T→∞

1

T
RT = 0, almost surely.

Proof. Observe that RT is a martingale; thus we get by using Doob’s maximal inequality for
submartingales that for any ǫ > 0

P ( sup
2k≤T≤2k+1

1

T
|RT | ≥ ǫ) ≤ P ( sup

2k≤T≤2k+1

|RT | ≥ ǫ2k)

≤ 4

ǫ222k
E |R2k+1 |2 = O(2−k).
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Applying the Borel-Cantelli theorem, we obtain lim supT→∞
1
T
|RT | ≤ ǫ, almost surely, and

thus we have shown that RT /T → 0. �

Proof of Theorem 1. This follows directly from Proposition 4.5 and Proposition 4.7. �

5. Proof of Theorem 2

In the proof of Theorem 2 we use again the representation (24), i.e. θ̂LS − θ = σQ−1
T RT ,

which we rewrite as
√
T
θ̂LS − θ

σ
=

√
TQ−1

T RT = (TQ−1
T )

1√
T
RT .

By Proposition 4.5, TQ−1
T converges almost surely to the matrix C. Then, by Slutsky’s

theorem, Theorem 2 is an immediate corollary of the following proposition. �

Proposition 5.1. Under the assumptions of Theorem 2, we have, as T → ∞,

1√
T
RT

D−→ N(0,Σ0),

where Σ0 is the matrix defined in (18).

The remaining part of this section is devoted to the proof of this proposition. Recall that

1√
T
RT =













1√
T

∫ T

0
ϕ1(t)dBt

...
1√
T

∫ T

0
ϕp(t)dBt

− 1√
T

∫ T

0
XtdBt













.

Since the basis functions ϕ1, . . . , ϕp are orthonormal, the first p entries of the vector 1√
T
RT

are independent, normally distributed random variables with mean zero and variance 1.
Thus it remains to investigate the asymptotic distribution of the last entry

1√
T

∫ T

0

XtdBt,

and its joint distribution with the first p components.
By Lemma 4.2, the process (Xt)t≥0 can be expressed as

Xt = e−αtX0 + h(t) + σe−αt

∫ t

0

eαsdBs,

and thus we have

(32)
1√
T

∫ T

0

XtdBt =
X0√
T

∫ T

0

e−αtdBt +
1√
T

∫ T

0

h(t)dBt + σ
1√
T

∫ T

0

∫ t

0

eα(s−t)dBsdBt.

The first term on the right hand side converges to 0 in probability, as

Var

(

1√
T

∫ T

0

e−αtdBt

)

=
1

T

∫ T

0

e−2α tdt −→ 0.

The second term is normally distributed with mean zero and variance

1

T

∫ T

0

(h(t))2dt −→
∫ 1

0

(h̃(t))2dt.
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The asymptotic distribution of the third term, as well as its joint distribution with any

stochastic integral
∫ T

0
ϕ(t) dBt, will be evaluated next.

Proposition 5.2. Let ϕ : [0,∞) → R be an L2-function, for which

σ2
ϕ := lim

T→∞

1

T

∫ T

0

(ϕ(t))2dt

exists. Then, as T → ∞,

1√
T

(
∫ T

0

∫ t

0

eα(s−t)dBsdBt,

∫ T

0

ϕ(t)dBt

)

D−→ N(0,

(

1
2α

0
0 σ2

ϕ

)

),

where N(0, A) denotes a bivariate normal distribution with mean vector 0 and covariance
matrix A.

Proof. Application of the time change formula for stochastic integrals twice, cf. Øksendal
[10] (Theorem 8.5.7, p. 148), for g(τ) := Tτ , g′(τ) = T , results in

1√
T

∫ T

0

∫ t

0

eα(s−t)dBsdBt =

∫ 1

0

∫ t

0

eα(s−Tt)dBsdB
(T )
t

=
√
T

∫ 1

0

∫ t

0

eαT (s−t)dB(T )
s dB

(T )
t

where B
(T )
t = 1√

T
BTt. Therefore, it is sufficient to study the asymptotic distribution of

√
T

∫ 1

0

∫ t

0

eαT (s−t)dWsdWt

where (Wt)t≥0 denotes a Brownian motion with the same distribution as (B
(T )
t )t≥0. The

symmetrization theorem for double Wiener integrals, cf. Kuo [5] (Theorem 9.2.8, p. 154),
provides the identity

(33)
√
T

∫ 1

0

∫ t

0

eαT (s−t)dWsdWt =

√
T

2

∫ 1

0

∫ 1

0

e−αT |s−t|dWsdWt.

By Lemma 5.3 we obtain

(34)
√
T

∫ 1

0

∫ 1

0

e−αT |s−t|dWsdWt
D
=

∞
∑

j=1

λT,j(ξ
2
T,j − 1)

where (λT,j)j∈N is the set of eigenvalues of the integral operator with kernel fT (s, t) =√
T e−α T |s−t| and where ξT,j =

∫ 1

0
eT,j(t)dWt. Here we denote by eT,j(t) the eigenfunction

associated to the eigenvalue λi. By Lemma 5.4 the eigenvalues have the properties

lim
T→∞

∞
∑

j=1

λ2
T,j =

1

α

lim
T→∞

max
j≥1

|λT,j| = 0.

Define ξT := 1√
T

∫ T

0
ϕ(t)dBt. Note that ξT , ξT,j, j ≥ 1 are jointly normally distributed and

that (ξT,j)j≥1 are iid standard normally distributed random variables. Projecting ξT onto
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the space spanned by the random variables (ξT,j)j≥1, we can write

ξT = ξT,0 +

∞
∑

j=1

αT,jξT,j,

where ξT,0 is independent of (ξT,j)j≥1. Define σ2
T := 1

T

∫ T

0
ϕ2(t)dt and σ2

T,0 := Var(ξT,0) and
note that

σ2
T = σ2

T,0 +

∞
∑

j=1

α2
T,j −→ σ2

ϕ.

We will now apply the Cramér-Wold device to prove convergence of the joint distribution of
ξT and

∑∞
j=1 λT,j(ξ

2
T,j − 1). Let µ1, µ2 ∈ R; we will show that

µ1ξT + µ2

∞
∑

j=1

λT,j(ξ
2
T,j − 1)

D−→ N(0, µ2
1σ

2
ϕ + 2µ2

2

1

α
).

In order to do so, we compute the characteristic function of the left hand side and note that

µ1ξT + µ2

∞
∑

j=1

λT,j(ξ
2
T,j − 1) = µ1ξT,0 +

∞
∑

j=1

(µ1αT,jξT,j + µ2λT,j(ξ
2
T,j − 1)).

If Z is standard normally distributed, the characteristic function of aZ + b (Z2 − 1) is given
by

ψ(t) = (1 − 2itb)−1/2 exp

(

−ibt − a2t2

2(1 − 2ibt)

)

.

Thus the characteristic function of µ1ξT,0 +
∑∞

j=1(µ1αT,jξT,j + µ2λT,j(ξ
2
T,j − 1)) equals

ψT (t) = e−
1

2
µ2

1σ2
T,0t2

∞
∏

j=1

{

(1 − 2iµ2λT,jt)
−1/2 exp

(

−iµ2λT,jt−
(µ1αT,j)

2 t2

2(1 − 2iµ2λT,jt)

)}

.

Taking logarithms and using Taylor expansion, we obtain

logψT (t) = −1

2
µ2

1σ
2
T,0t

2 −
∞
∑

j=1

(

1

2
log(1 − 2iµ2λT,jt) + iµ2λT,jt+

µ2
1α

2
T,jt

2

2(1 − 2iµ2λT,jt)

)

= −1

2
µ2

1σ
2
T,0t

2 −
∞
∑

j=1

(µ2
2λ

2
T,j +

1

2
µ2

1α
2
T,j)t

2 + o(1)

= −1

2

(

µ2
1σ

2
T,0 +

∞
∑

j=1

µ2
1α

2
T,j + 2

∞
∑

j=1

µ2
2λ

2
T,j

)

t2 + o(1)

→ −1

2

(

µ2
1σ

2
ϕ + µ2

2

2

α

)

t2.

Note that the right hand side is the logarithm of the characteristic function of a normal
distribution with mean 0 and variance µ2

1σ
2
ϕ + µ2

2
2
α
. �
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Lemma 5.3. Let f : [0, 1]2 → R be a symmetric continuous kernel and let (λi)i≥1 and
(ei(t))i≥1 denote the set of eigenvalues and corresponding eigenfunctions of the integral op-

erator Gf : L2[0, 1] → L2[0, 1] with kernel f , i.e. Gfg(x) =
∫ 1

0
g(y)f(x, y)dy. Then

∫ 1

0

∫ 1

0

f(s, t)dWsdWt =
∞
∑

i=1

λi(ξ
2
i − 1),

where

ξi =

∫ 1

0

ei(t)dWt.

The random variables (ξi)i∈N are independent and standard normally distributed random
variables.

Proof. Since the kernel f is continuous and symmetric the operator Gf is self-adjoint and
compact. By Mercer’s Theorem it holds that the kernel can be represented as

(35) f(s, t) =

∞
∑

i=1

λiei(s)ei(t)

where λi and ei, i ∈ N, are the eigenvalues and eigenfunctions of the integral operator GT ,
i.e.

∫ 1

0

f(s, t)ei(s)ds = λiei(t), i ∈ N.

Moreover, it holds that the functions ei, i ∈ N, form an orthonormal basis of L2[0, 1]. Define
the random variables

ξi :=

∫ 1

0

ei(t) dWt, i ∈ N,

and note that (ξi)i≥1 is an iid sequence of standard normally distributed random variables.
It follows by (35) that

∫ 1

0

∫ 1

0

f(s, t)dWsdWt =
∞
∑

i=1

λi

∫ 1

0

∫ 1

0

ei(s)ei(t)dWsdWt =
∞
∑

i=1

λi(ξ
2
i − 1).

The last equality follows by Itô’s Theorem which states that
∫ 1

0

∫ 1

0

ei(s)ei(t)dWsdWt = H2

(
∫ 1

0

ei(t) dWt

)

,

where H2 is the second Hermite polynomial, i.e. H2(x) = x2 − 1. �

We now consider the kernel fT : [0, 1] → R, defined by

(36) fT (s, t) =
√
Te−αT |s−t|, s, t ∈ [0, 1].

Lemma 5.4. Let (λT,i)i≥1, denote the set of eigenvalues of the integral operator with kernel
(36). Then we have

lim
T→∞

∞
∑

i=1

λ2
T,i =

1

α
(37)

lim
T→∞

max
i≥1

|λT,i| = 0.(38)
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Proof. Note that the operator GfT
is self-adjoint and bounded so that its eigenvalues are

real-valued, and
max
i≥1

λ2
T,i = sup

g∈L2[0,1]:‖g‖=1

‖GfT
g‖2

where ‖ · ‖ denotes the standard L2-norm on L2[0, 1]. By an equality in Lax [9] (Theorem 2,
p. 176) we get

sup
g∈L2[0,1]:‖g‖=1

‖GfT
g‖ ≤ sup

t∈[0,1]

∫ 1

0

|fT (s, t)|ds.

Simple integration yields
∫ 1

0

|fT (s, t)|ds =

∫ 1

0

√
Te−αT |s−t|ds =

1

αT
(2 − e−αTt − e−αT (1−t)),

and thus it follows that

(39) max
i∈N

λT,i ≤
2

αT
→ 0 as T → ∞.

The assertion of Mercer’s Theorem given in (35) and the orthonormality of the eigenvalues
provide the identity

∞
∑

i=1

λ2
i =

∫ 1

0

∫ 1

0

fT (s, t)2dsdt =
1

2α

(

2 +
1

T α
(e−2αT − 1)

)

where the last equality is obtained by simple integration. �
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