MODULAR REPRESENTATIONS OF LIE ALGEBRAS AND HUMPHREYS' CONJECTURE

Let G be a connected reductive algebraic group defined over an algebraically closed field of characteristic p > 0 and suppose that the derived subgroup of G is simply connected, p is a good prime for the root system of G and the Lie algebra $\mathfrak{g} = \text{Lie}(G)$ admits a non-degenerate (Ad G)-invariant symmetric bilinear form. If G is a simple algebraic group of type other than A, the above assumptions mean that p is a good prime for G, i.e. p > 2 if G is of type B, C or D, p > 3 if G is of type G₂, F₄, E₆ or E₇, and p > 5 if G is of type E₈. If all components of G have type A, B, C, D we set $R := \mathbb{Z}[\frac{1}{2}]$. If G has a component of exceptional type but has no components of type E₈ we set $R := \mathbb{Z}[\frac{1}{6}]$. If G has a component of type E₈ we set $R := \mathbb{Z}[\frac{1}{30}]$. Given a linear function χ on \mathfrak{g} we denote by $U_{\chi}(\mathfrak{g})$ the reduced enveloping algebra of \mathfrak{g} associated with χ . By the Kac–Weisfeiler conjecture (now a theorem), any $U_{\chi}(\mathfrak{g})$ module has dimension divisible by $p^{d(\chi)}$ where $2d(\chi)$ is the dimension of the coadjoint G-orbit of χ .

In my talk, based on a joint work with Lewis Topley, I'll discuss a natural question raised in the 1990s by Kac, Humphreys and myself and explain that for any $\chi \in \mathfrak{g}^*$ the reduced enveloping algebra $U_{\chi}(\mathfrak{g})$ has an irreducible module of dimension $p^{d(\chi)}$. Forms of finite W-algebras over the ring R and their reductions modulo good primes play a crucial role in our arguments. We also use some recent results on multiplicityfree primitive ideals of $U(\mathfrak{g}_{\mathfrak{C}})$ associated with the rigid nilpotent orbits in complex simple Lie algebras $\mathfrak{g}_{\mathfrak{C}}$.