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1 Introduction

In this lecture series we provide an approach to Borel-Tits theory from the perspective of
buildings. We deal with abstract groups acting highly transitive on spherical buildings.
The group of rational points of an isotropic semi-simple algebraic group over a field
admits such an action. The groups considered in these lectures can be characterized
as groups endowed with a spherical RGD-system (where RGD stands for root group
datum). The axioms for an RGD-system were formulated by Tits in 1992 (see [16]).
There had been, however, early predecessors of RGD-systems that played an important
role in Tits’ work on algebraic groups (see Section 2 of [12]).

The main objectives of the lecture series are the following.

1. Tits’ simplicity proof for groups with an irreducible RGD-system,

2. An outline of the proof of the Borel-Tits theorem on unipotent subgroups based
on the center theorem for spherical buildings,

3. Existence of an RGD-system in isotropic, semi-simple algebraic groups over fields
via descent in buildings.

We remark that a proof of the Borel-Tits theorem using buildings has been indicated
in [12]. The proof of this theorem given later in [2] is based on different arguments.

We start with a brief introduction to buildings. Using Weyl-transitive actions on build-
ings we provide a first version of Tits’ simplicity criterion. We then study spherical
buildings and introduce Moufang structures on them. Moufang structures are just an
alternative way of dealing with RGD-systems. Their definition is slightly more general
and more suitable for our purposes. Using Moufang structures, we are able to present
Tits’ simplicity criterion as given in [13]. We then consider convex sets of chambers in
spherical buildings in order to discuss the center theorem. Using the center theorem we
will be able to prove a building-theoretic version of the Borel-Tits theorem on unipotent
subgroups. The next goal is to develop a theory of descent in spherical buildings. In
a first step we study fixed-point sets of automorphisms in buildings. A group Γ acting
on a building B will be called a descent group if its fixed point set is a building. We
associate to any descent group a (combinatorial) Tits index. If B admits a Moufang
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structure, then there is also a canonical Moufang structure on the fixed-point building
and hence an RGD-system in its group of automorphisms.

The content of these notes is based on work (or at least ideas) of Jacques Tits.
The main reference for the building theoretic version of Galois descent for semi-simple
algebraic groups is Chapter 3 in [5]. We remark that the combinatorial version of Borel-
Tits theory plays a central role in recent joint work with Richard Weiss ([8], [9].

2 Examples of buildings

2.1 Notation for graphs

By a graph we always mean a simplicial graph. Thus a graph Γ is a pair (V,E) consisting
of a set V and a set E ⊆ {X ⊆ V | |X| = 2}. The elements of V (resp. E) are called
the vertices (resp. edges) of Γ. For the rest of this subsection Γ = (V,E) is a graph.

For a vertex v ∈ V we denote the set of its neighbors by Γv, hence Γv := {w ∈ V |
{v, w} ∈ E}.

A path (of length k) is a sequence π := (v0, v1, . . . , vk) of vertices such that vi−1 6= vi+1

and vi−1, vi+1 ∈ Γvi for all 1 ≤ i < k. Its length k will is denoted by `(π). The path π
is called a circuit if k ≥ 3 and v0 = vk.

Let v, w ∈ V be vertices. A path from v to w is a path (v = v0, v1, . . . , vk = w) and
Path(v, w) denotes the set of all paths from v to w. The distance dist(v, w) between v
and w is defined as follows:

dist(v, w) :=

{
∞, if Path(v, w) = ∅,
min{`(π) | π ∈ Path(v, w)}, if Path(v, w) 6= ∅.

A path π = (v0, v1, . . . , vk) is called minimal if dist(v0, vk) = k.
The graph Γ is connected if dist(v, w) 6= ∞ for all v, w ∈ V . The diameter of Γ is

defined by diam(Γ) := sup{dist(v, w) | v, w ∈ V } and its girth is girth(Γ) := min{`(π) |
π a circuit of Γ}. The graph Γ is called bipartite if there is a partition V = X ∪ Y such
that |e ∩ X| = 1 for each edge. Recall that Γ is bipartite if and only if there are no
circuits of odd length.

A set C ⊆ V is called a clique of Γ if any two vertices in C form an edge of Γ.

2.2 The building An(K)

For 1 ≤ n ∈ N the set {1, . . . , n} is denoted with [n]. Let 1 ≤ n ∈ N, K a field and X a
vector space over K of dimension n+ 1.

We define the set V := V(X) := {U ≤ X | {0} 6= U 6= X}, join two elements
U 6= W ∈ V by an edge if U ⊂W or W ⊂ U and we denote the corresponding graph by
Γ(X).

A flag of X is a clique of Γ(X) and for each flag we set typ(F ) := {dimK U | U ∈
F} ⊆ 2[n]. A chamber of X is a maximal flag, that is, a flag of type [n] and C denotes the
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set of all chambers. For a chamber c and 1 ≤ i ≤ n we denote the subspace of dimension
i in c by ci.

Let B = (b1, . . . , bn+1) be an ordered base of X. We put c(B) := {〈b1, . . . , bi〉 | 1 ≤
i ≤ n} ∈ C. For a permutation π ∈ Sym(n + 1) we put Bπ = (bπ(1), . . . , bπ(n+1)). The
apartment associated to B is the set Σ(B) := {c(Bπ) | π ∈ Sym(n+ 1)}.

Lemma 2.1: Let c, d ∈ C.

a) There exist an ordered basis B of X and a permutation π ∈ Sym(n+ 1) such that
c = c(B) and d = c(Bπ);

b) If an ordered basis B′ of X and π′ ∈ Sym(n + 1) are such that c = c(B′) and
d = c(B′π′), then π = π′.

Proof: See Example 7.4 in [18]. �

The previous lemma provides a mapping δ : C × C → Sym(n + 1) and we have for
c, d ∈ C:

1. δ(d, c) = δ(c, d)−1;

2. for 1 ≤ k ≤ n we have δ(c, d) = (k k + 1) if and only if ci = di for all i 6= k and
ck 6= dk.

We put An(K) := (C, δ).

2.3 Buildings of type I2(m)

Let 2 ≤ m ∈ N. A generalized m-gon is a bipartite graph Γ such that 2 diam(Γ) =
2m = girth(Γ). A generalized m-gon is called thick if each of its vertices has at least
three neighbors.

Remarks: 1. The generalized 2-gons are precisely the complete bipartite graphs such
that there are at least two vertices of each colour.

2. The thick generalized 3-gons are precisely the incidence graphs of projective planes.
In particular, if dimK X = 3, then the graph Γ(X) defined in the previous subsec-
tion is a generalized 3-gon.

3. Examples of generalized 4-gons arise from non-degenerate hermitian or quadratic
forms of Witt-index 2. There are also examples related to exceptional algebraic
groups.

4. Using free constructions one can show that thick generalized m-gons exist for all
2 ≤ m ∈ N. By a famous theorem of Feit and Higman one knows that thick finite
generalized polygons only exist for m = 2, 3, 4, 6 or 8.
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Some basic observations: Let 2 ≤ m ∈ N and let Γ = (V,E) be a generalized m-gon.
An apartment of Γ is a circuit of length 2m.

1. Let π = (v0, . . . , vk) be a path in Γ. If k ≤ m, then π is minimal; if k < m, then π
is the only minimal path from v0 to vk and if k = m + 1 then π is contained in a
unique apartment.

2. Any two edges are contained in an apartment.

3. Let v, w ∈ V be at distance m. Then the following holds: For each neighbor x ∈ Γv
there exists a unique neighbor of v at distance m− 2 and it is denoted by projvw x.
The mappings projvw : Γv → Γw, v 7→ projvw x and projwv : Γw → Γv, x 7→ projwv x
are inverse bijections.

Opposition in generalized m-gons: Let 2 ≤ m and let Γ = (V,E) be a generalized
m-gon. Two vertices of Γ are called opposite if their distance is equal to m, and the set
of vertices opposite v ∈ V is denoted by vop. Two edges e = {v, w}, f ∈ E are called
opposite if vop ∩ f 6= ∅ 6= wop ∩ f .

Note that two edges lie in a unique circuit of length 2m, hence they determine a
unique apartment. Given an edge e and an apartment Σ, then there exists at least one
edge in Σ which is opposite to e.

3 Coxeter systems

Let W be a group and let S = S−1 ⊆ W such that W = 〈S〉. Let F (S) :=
⋃
k∈N Sk be

the free monoid on S, ` : F (S)→ N its length function and π : F (S)→ W the product
map.

We call f ∈ F (S) a representation of w ∈ W if π(f) = w and denote the set of all
representations of w by Rep(w). We put `(w) := min{`(f) | f ∈ Rep(w)}. The word
f ∈ Rep(w) is called a reduced representation of w if `(f) = `(w). A word f ∈ F (S) is
called reduced if it is a reduced representation of π(f).

Definition: Let W and S be as above. The pair (W,S) is called a Coxeter system if
the following conditions are satisfied for all w ∈W and s, t ∈ S:

(CS1) s2 = 1 6= s;

(CS2) `(ws) 6= `(w);

(CS3) if `(sw) = `(w) + 1 = `(wt) then `(swt) = `(w) + 2 or sw = wt.

Examples: 1. Let 1 ≤ n ∈ N, let sk := (k k + 1) ∈ Sym(n + 1) for k ∈ [n] and
S := {sk | k ∈ [n]}. Then (Sym(n+ 1), S) is the Coxeter system of type An.

2. Let 2 ≤ m ∈ N and let D2m = 〈s, t〉 be the dihedral group of order 2m. Then
(D2m, {s, t}) is the Coxeter system of type I2(m).
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3. Any finite reflection group W admits a generating set S such that (W,S) is a
Coxeter system.

Conventions and Definitions: Let (W,S) be a Coxeter system.

1. The rank of (W,S) is the cardinality of S. In these notes all Coxeter systems are
assumed to have finite rank.

2. The Coxeter matrix of (W,S) is the matrix M := (mst)s,t∈S where mst denotes
the order of st. The diagram of (W,S) is the edge labeled graph with vertex set
S in which two vertices s and t are joined by an edge labeled by mst if mst ≥ 3.
There is the convention that one omits the label if mst = 3 and edges with label 4
are represented by a double bond.

3. The Coxeter system is called irreducible if its diagram is connected.

4. An automorphism of (W,S) is an automorphism of W stabilizing S; it induces an
automorphism of the diagram.

Basic facts on Coxeter systems: Let (W,S) be a Coxeter system.

1. W ∼= 〈S | ((st) = 1)s,t∈S〉;

2. For J ⊆ S the pair (〈J〉, J) is a Coxeter system. If (s1, . . . , sk) is a reduced
representation (in (W,S)) of an element w ∈ 〈J〉, then si ∈ J for all 1 ≤ i ≤ k.
In particular, the restriction to 〈J〉 of the length function of (W,S) is the length
function of (〈J〉, J).

3. Let w ∈ W and J ⊆ S. Then there exists a unique element v ∈ w〈J〉 such that
`(x) = `(v) + `(v−1x) for all x ∈ w〈J〉.

4 Buildings

Definition: Let (W,S) be a Coxeter system. A building of type (W,S) is a pair B =
(C, δ) consisting of a set C and a mapping δ : C × C → W, (c, d) 7→ δ(c, d), such that the
following conditions are satisfied for all c, d ∈ C where w := δ(c, d).

(Bu1) w = 1 if and only if c = d;

(Bu2) if d′ ∈ C is such that δ(d, d′) = s ∈ S, then δ(c, d′) ∈ {w,ws} and δ(c, d′) = ws if
`(ws) = `(w) + 1;

(Bu3) for each s ∈ S there is a chamber d′ ∈ C such that δ(d, d′) = s and δ(c, d′) = ws.

Let B = (C, δ) be a building of type (W,S). The elements of C are called the chambers
of B and δ is called its Weyl-distance. The rank of B is the cardinality of S and B is
irreducible if (W,S) is irreducible.
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Examples: 1. Let 1 ≤ n ∈ N and K be a field. Then An(K) is a building of type
An.

2. Let 2 ≤ m ∈ N, let Γ = (V,E) be a generalized m-gon and let (D2m, {s, t}) be the
Coxeter system of type I2(m). Let V = X ∪ Y be the bipartite partition. There
exists a unique Weyl-distance on C := E such that the following holds for any two
edges e, f ∈ E: δ(e, f) = s if and only if ∅ 6= e ∩ f ⊆ X and δ(e, f) = t if and only
if ∅ 6= e ∩ f ⊆ Y .

3. A building of rank 1 (that is a building of type (〈s〉, {s})) is just a set C of cardinality
at least 2 where δ(c, d) = s if c 6= d.

4. Let (W,S) be a Coxeter system. Setting C := W and δ(c, d) := c−1d ∈ W for any
two c, d ∈W one obtains the Coxeter building of type (W,S).

The chamber graph and galleries: Let B = (C, δ) be a building of type (W,S). Two
chambers c, d ∈ B are called adjacent (resp. s-adjacent) if δ(c, d) ∈ S (resp. δ(c, d) =
s ∈ S) and the chamber graph is Cham(B) = (C, E) where E = {{c, d} | δ(c, d) ∈ S}.
A gallery is a path γ = (c0, . . . , ck) in Cham(B) and its type is the word typ(γ) =
(s1, . . . , sk) where si := δ(ci−1, ci). A minimal gallery is a minimal path in Cham(B).

Proposition 4.1: A gallery γ is minimal if and only if its type is reduced.

Proof: This follows from Lemma 5.16 b) and Exercise 5.20 in [1]. �

Let c, d ∈ C. A (minimal) gallery from c to d is a (minimal) path from c to d in
Cham(B). We put `(c, d) = dist(c, d) (in Cham(B)).

Proposition 4.2: Let c, d ∈ C and w := δ(c, d) ∈ W . Then γ 7→ typ(γ) is a bijec-
tion from the set of minimal galleries onto the set of reduced representations of w. In
particular, `(c, d) = `(δ(c, d)).

Proof: See Lemma 5.16 b) in [1]. �

Residues and projections: Let B = (C, δ) be a building of type (W,S).
For a chamber c ∈ C and a subset J of S, the set RJ(c) := {d ∈ C | δ(c, d) ∈ 〈J〉} is

called the J-residue of c.

Proposition 4.3: Let c ∈ C, J ⊆ S and R = RJ(c). Then the following hold.

a) For all x, y ∈ R we have δ(x, y) ∈ 〈J〉 and (R, δR) is a building of type (〈J〉, J)
where δR is the restriction of δ on R.

b) For K ⊆ S we have R ∩RK(c) = R(J∩K)(c).

Proof: See Lemma 5.29 and Corollary 5.30 in [1] for a) and Exercise 5.32 for b). �
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A residue of B is a subset R of C such that R = RJ(c). It follows from the previous
proposition that the subset J of S is uniquely determined by the set R. It is called the
type of R and denoted by typ(R). The rank of R is the cardinality of typ(R).

A panel is a residue of rank 1 and an s-panel is a residue of type {s}. The building
B is called thick if each panel contains at least three chambers.

Proposition 4.4: Let R be a residue and c ∈ C. Then there exists a unique chamber
d ∈ R such that `(c, x) = `(c, d) + `(d, x) for all x ∈ R.

If J = typ(R) and w = δ(c, d), then w is the shortest element in w〈J〉.

Proof: See Proposition 5.34 in [1]. �

Let c and R be as in the previous proposition. Then the chamber d is called the
projection of c onto R and denoted by projR c.

Isometries and Automorphisms: Let B = (C, δ) be a building of type (W,S).
Let θ be an automorphism of (W,S). A θ-isometry of B is a permutation α of C such

that δ(α(c), α(d)) = θ(δ(c, d)) for all c, d ∈ C. An automorphism of B is a θ-isometry of B
for some automorphism θ of (W,S) and the group of automorphisms of B is denoted by
Aut(B). An isometry of B is a idW -isometry and the group of isometries of B is denoted
by Spe(B). It is the kernel of a natural homomorphism typ: Aut(B)→ Aut(W,S). Note
that `(c, d) = `(α(c), α(d)) for all c, d ∈ C and all automorphisms α.

The following technical lemma will be used in the proof of the simplicity criterion.

Lemma 4.5: Let G ≤ Spe(B) be transitive on C and R be a J-residue. Suppose that M
is a normal subgroup of G which stabilizes R and is transitive on R. Then [J, S \J ] = 1.

5 Weyl-transitive actions

Let B = (C, δ) be a thick building of type (W,S).
Let G be a group acting on B by isometries. The action of G is called Weyl-transitive

if G is transitive on Xw = {(c, d) ∈ C2 | δ(c, d) = w} for each w ∈W .

1. A Weyl-transitive action of a group G on a building of rank 1 is just a 2-transitive
action on the set of chambers. Hence, the stabilizer of a chamber in G is a maximal
subgroup of G in the rank 1 situation.

2. A Weyl-transitive action is transitive on the set of chambers and hence also on the
set of J-residues of B for each J ⊆ S.

3. Suppose the action of G on B is Weyl-transitive. Let R be a residue and P the
stabilizer of R in G. Then the action of P on R is Weyl-transitive on the building R.

Proposition 5.1: Suppose that the group G acts Weyl-transitively by isometries on the
building B. Let c ∈ C and B denote the stabilizer of c in G. Let H ≤ G be a subgroup
containing B. Then H is the stabilizer of a RJ(c) for some J ⊆ S.
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Proof: Let Ω be the H-orbit of c and let J := {s ∈ S | δ(c, d) = s for some d ∈ Ω}.
Let s ∈ J , let P denote the s-panel containing c and let U be the stabilizer of P in G.

Since B is maximal in U and H ∩ U contains B properly, it follows that U is contained
in H. Thus H is transitive on P . This shows that H is transitive on RJ(c).

Let d ∈ Ω, w := δ(c, d) and s ∈ S such that `(ws) = `(w)− 1. Then one shows that
s ∈ J and hence d ∈ RJ(c) (by induction on `(c, d)). �

Proposition 5.2: Let B be irreducible and let G be a group acting Weyl-transitively on
B. Let M be a normal subgroup of G which is not contained in the kernel of the action.
Then the following hold:

a) The group M is transitive on C.

b) Let c ∈ C and B the stabilizer of c in G. If G is perfect and B is solvable, then
M = G.

6 Spherical buildings

Definition: A Coxeter system (W,S) is called spherical if W is a finite group.

Proposition 6.1: Let (W,S) be a spherical Coxeter system. Then there exists a unique
element ρ ∈ W such that `(w) ≤ `(ρ) for all w ∈ W . The element ρ has the following
properties.

a) ρ2 = 1;

b) `(w) + `(w−1ρ) = `(ρ) for all w ∈W ;

c) ρSρ = S.

Remarks: 1. Let (W,S) be spherical Coxeter system. By the previous proposition
the map s 7→ ρsρ is an automorphism of the diagram of (W,S) whose square is
the identity.

2. The longest element in the Coxeter system of type An is the involution sending k
onto n + 2 − k for all k ∈ [n + 1]; the longest element in I2(m) is the alternating
product of length m.

Lemma 6.2: Let (W,S) be a Coxeter system, w ∈ W and J = {s ∈ S | `(ws) =
`(w) − 1}. Then 〈J〉 is finite and if ρJ denotes the longest element in (〈J〉, J), then
`(wρJ) = `(w)− `(ρJ) and wρJ is the shortest element in w〈J〉.

In particular, if `(ws) = `(w)− 1 for all s ∈ S, then (W,S) is spherical and w is the
longest element in (W,S).

Opposite chambers and apartments: Let B = (C, δ) be a building of spherical type
(W,S) and let ρ denote the longest element in (W,S).
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1. Two chambers c, d are called opposite if δ(c, d) = ρ and cop denotes the set of all
chambers opposite to c.

2. Two chambers c, d in the building An(K) are opposite precisely if X = ck⊕dn+1−k

for all k ∈ [n].

3. For any two chambers c, d ∈ C, Σ(c, d) denotes the set of all chambers which are
on a minimal gallery from c to d. An apartment of B is a subset Σ of C such that
Σ = Σ(c, d) for two opposite chambers c, d.

Proposition 6.3: Let Σ ⊆ C be an apartment. Then the following hold.

a) If c ∈ Σ and P is a panel containing c, then |P ∩ Σ| = 2;

b) for each chamber d ∈ C we have |dop ∩ Σ| 6= ∅.

Opposite residues and projections: Let B = (C, δ) be a building of spherical type
(W,S) and let ρ denote the longest element in (W,S).

Two residues R and T of B are called opposite if there exist chambers c ∈ R, d ∈ T
such that c is opposite to d and if typ(T ) = ρ typ(R)ρ. Thus, two opposite residues have
the same rank.

For two opposite residues R and T we denote the restriction of projT to R by projRT .

Proposition 6.4: Let R and T be opposite residues in B. Then the following hold.

a) The mappings projRT and projTR are adjacency-preserving bijections inverse to each
other.

b) If c ∈ R and d ∈ T , then c is opposite d in B if and only if c is opposite projR d in
the building R.

7 Moufang structures

Throughout this section B = (C, δ) is a building of spherical type (W,S) and ρ denotes
the longest element in (W,S).

Definition: An automorphism u of B is called unipotent, if it satisfies the following
conditions:

(U1) u ∈ Spe(B) and u fixes a chamber of B;

(U2) if u fixes two adjacent chambers, then u fixes all chambers in the panel containing
them.

Lemma 7.1: If a unipotent automorphism of B fixes two opposite chambers, then it is
the identity.
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Definition: A Moufang structure on B is a family U = (Uc)c∈C of unipotent subgroups
of Aut(B) such that the following conditions are satisfied for each c ∈ C:

(MS1) The group Uc stabilizes c and acts transitively on cop;

(MS2) if u ∈ Uc stabilizes a chamber d, then u ∈ Ud;

(MS3) for g ∈ Uc and d ∈ C we have gUdg
−1 = Ug(d).

Note that the action of Uc on cop is regular by the previous lemma.
For a Moufang structure U = (Uc)c∈C the subgroup of Spe(B) generated by the Uc is

denoted by G(U).

Tits’ simplicity theorem

Proposition 7.2: Suppose that B is thick, that U = (Uc)c∈C is a Moufang structure on
B and let G := 〈Uc | c ∈ C〉. Then the following hold:

a) G is Weyl-transitive on ∆.

b) If (W,S) is irreducible, the Ucs are solvable and G is perfect, then G is simple.

Remarks on Moufang structures: Let B = (C, δ) be thick building of type (W,S).

1. If [s, S] 6= 1 for all s ∈ S, then B admits at most one Moufang structure. This
follows from Theorem 4.1.1 in [15].

2. If (W,S) is irreducible and of rank at least 3, then B admits a Moufang structure
(which is unique by the previous remar.k). This follows from Theorem 4.1.2 in
[15].

3. All Moufang structures for irreducible spherical buildings of rank at least 2 are
known by the classification of Moufang polygons due to Tits and Weiss in [17]. It
turns out that in all examples the Ucs are nilpotent and that G is perfect except
for three small cases.

4. Moufang structures on rank 1 buildings are precisely the Moufang sets (also known
as rank 1 groups). The classification of all proper Moufang sets is an open problem.
In all known examples the Ucs are nilpotent and G is perfect except for some small
cases. A basic reference for Moufang sets is [3].

8 The center theorem

Convex subsets of buildings and subbuildings: Let B = (C, δ) be a building of
type (W,S). A subset X of C is called convex if Σ(c, d) = {x ∈ C | `(c, x) + `(x, d) =
`(c, d)} ⊆ X for all c, d ∈ X .

Let X of C and let δX denote the restriction of δ on X . Then X is called a subbuilding
if (X , δX ) is a building of type (W,S).
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Remarks: 1. Let H ≤ Spe(B). Then the set of its fixed points in C is convex.

2. Let R be a J-residue of B. Then (R, δR) is a building of type (〈J〉, J), but it is not
a subbuilding if J 6= S.

Lemma 8.1: Let X ⊆ C be a convex subset of chambers. Then the following hold.

a) If R ∩ X 6= ∅ for some residue R, then projR x ∈ X for all x ∈ X ;

b) if |P ∩ X | 6= 1 for each panel P of B, then X is a subbuilding;

c) if (W,S) is spherical and if X contains a pair of opposite chambers, then X is a
subbuilding of B.

Centers of chamber sets: Let B = (C, δ) be a building of type (W,S) and X ⊆ C. A
center of X in B is a residue R 6= C such that the stabilizer of X in Aut(B) stabilizes R.

Proposition 8.2 (Center theorem for spherical buildings): Let B = (C, δ) be a
building of spherical type (W,S) and X ⊆ C be a convex set of chambers that is not a
subbuilding of B. Then there exists a center of X .

Remarks (about the proof): 1. The proof can be reduced to the case that (W,S)
is irreducible. The cases |S| ≤ 2 are trivial. The cases An, Bn = Cn, Dn are dealt
in [6] and the cases F4 and E6 are dealt in [4].

2. The hardest case is E8 and it has been dealt by Ramos-Cuevas in [10] (which
includes also the case E7).

3. A proof that is almost uniform for all cases can be found in [7]. It uses the fact
that all irreducible buildings of rank at least 3 are Moufang. The key argument
is based on deep results of Timmesfeld about groups generated by abstract root
groups [11].

Application of the center theorem to unipotent groups

Throughout this subsection B = (C, δ) is a thick building of spherical type (W,S). A
group U ≤ Aut(B) is called unipotent if all u ∈ U are unipotent and if U fixes at least
one chamber.

Proposition 8.3: Let U ≤ Aut(B) be a non-trivial unipotent group and let C denote
its centralizer in Aut(B). Then there exists a residue R 6= C such that C stabilizes R
and such that U stabilizes all chambers in R.

Proof: Let X be the set of chambers fixed by U and let D be the stabilizer of X in
Aut(B). Since U is non-trivial and unipotent, X is not a subbuilding. By the center
theorem, there exist non-trivial residues stabilized by D. Let R be a minimal residue
stabilized by D. We have U ≤ D and C ≤ D and therefore U and C both stabilize
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R. Let x ∈ X , then U stabilizes x and hence also the chamber projR x. Let U1 be the
image of U in Aut(R). Then U1 is a unipotent subgroup of Aut(R) and the set of fixed
chambers of U1 is X ∩ R. Let D1 be the image of D in Aut(R). Then D1 stabilizes
R ∩ X .

Assume, by contradiction, that R ∩ X 6= R. Then the center theorem applied to
the building R yields the existence of a residue R1 properly contained in R which is
stabilized by D1. As D1 is the image of D in Aut(R), D stabilizes R1. Hence R1 is a
residue properly contained in R and stabilized by D. This contradicts our choice of R.

We conclude that R ⊆ X which means that U fixes all chambers in R. �

Let U = (Uc)c∈C be a Moufang structure on B. Then AutU (B) denotes the group of
all automorphisms of B which normalize the Moufang structure U .

By the first remark on Moufang structures above, AutU (B) = Aut(B) if [s, S] 6= 1 for all
s ∈ S.

Corollary 8.4: Let U = (Uc)c∈C be a Moufang structure on B, let U ≤ Uc for some
c ∈ C and let Γ ≤ AutU (B) be such that Γ centralizes U . Then there is a residue R
stabilized by Γ such that U ≤ ∩d∈RUd.

9 Parallel residues

Throughout this section B = (C, δ) is a building of type (W,S).

Lemma 9.1: Let R, T ⊆ C be residues of B. Then projT R := {projT x | x ∈ R} is a
residue contained in T .

Proof: See Lemma 5.36 in [1]. �

Definition: Let R, T be residues of B. Then R and T are said to be parallel if projR T =
R and projT R = T .

Remarks: 1. Two opposite residues in a spherical building are parallel.

2. Parallelism is not an equivalence relation on the set of residues. It is an equivalence
relation if B is a Coxeter building.

Proposition 9.2: Let R, T be residues of B which are parallel and let c ∈ R. Let
J = typ(R) ⊆ S and w := δ(c,projT c). Then the following hold.

a) projTR : T → R and projRT : R → T are adjacence-preserving bijections which are
inverse to each other;

b) for each x ∈ R we have δ(x,projT x) = w;

c) typ(T ) = wJw−1.

Definition: Let R and T be parallel residues in B. Then we put δ(R, T ) := δ(c,projR c)
for some chamber c ∈ R.
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10 Fixed point sets in buildings

Throughout this section B = (C, δ) is a building of type (W,S), Γ ≤ Aut(B) and Θ :=
typ(Γ) ≤ Aut(W,S).

Definition: 1. A Γ-residue is a residue of B stabilized by Γ;

2. a Γ-chamber is a minimal Γ-residue;

3. the set of all Γ-chambers is denoted by C̃.

Some observations: 1. Suppose that R is a Γ-residue and that T is a residue con-
taining R. Then T is a Γ-residue if an only if typ(T ) is stabilized by Θ.

2. Suppose that R and T are both Γ-residues. Then projR T is a Γ-residue.

3. Any two Γ-chambers are parallel.

Lemma 10.1: Suppose that (W,S) is spherical and let ρJ denote the longest element in
(〈J〉, J) for each J ⊆ S. Let R is a Γ-chamber and set A := typ(R). Suppose that S \A
is a Θ-orbit. Then the following hold.

a) If T is a Γ-chamber with T 6= R, then T and R are opposite residues in B and
S \ typ(T ) is a Θ-orbit in S;

b) if there exist at least three Γ-chambers, then ρAρ = ρρA and all Γ-chambers have
type A.

11 Tits indices

Definition: A Tits index is a triple T = ((W,S),Θ, A) where (W,S) is a Coxeter
system, Θ ≤ Aut(W,S) and A ⊆ S satisfy the following conditions:

(Ti1) A is spherical and Θ stabilizes A;

(Ti2) for each s ∈ S \A the set A ∪Θ(s) is spherical and ρA commutes with ρA∪Θ(s).

Let T = ((W,S),Θ, A) be a Tits index. For each s ∈ S \ A we set s̃ := ρAρΘ(s)∪A.
Note that s̃ = t̃ if s and t are in the same Θ-orbit.

We put S̃ := {s̃ | s ∈ S \A} and W̃ := 〈S̃〉 ≤W .

Lemma 11.1: The pair (W̃ , S̃) is a Coxeter system.

Proof: This is Theorem 20.32 a) in [5]. �

Remarks: 1. Let T = ((W,S),Θ, A) be a Tits index. The Coxeter system (W,S)
is called the absolute Coxeter system of T, (W̃ , S̃) is called the relative Coxeter
system of T and A is called the anisotropic kernel of T.
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2. The Tits index T = ((W,S),Θ, A) is called of inner type if Θ is trivial and it is
called quasi-split if A = ∅.

3. Tits indices can be represented by decorated diagrams as in the Tables II of [14]).
The Tits-indices here are defined in a purely combinatorial way and only a few
of them arise as indices of semi simple algebraic groups. There is one index of
absolute type F4 which not an index of a semi simple group, but arises as index of
a pseudo-reductive group.

12 Descent groups

Throughout this section B = (C, δ) is a spherical building of type (W,S) and Γ ≤ Aut(B).
Furthermore, we let C̃ denote the set of all Γ-chambers and Θ := typ(Γ) ≤ Aut(W,S).

Theorem 12.1: Suppose that each Γ-residue which is not a Γ-chamber contains at least
three Γ-chambers. Let c̃ ∈ C̃ and A := typ(c̃) ⊆ S. Then the following hold.

a) T := ((W,S),Θ, A) is a Tits-index.

b) If (W̃ , S̃) is the relative Coxeter system of T, then δ(c̃, d̃) ∈ W̃ for all c̃, d̃ ∈ C̃.

c) Let δ̃ : C̃ × C̃ → W̃ , (c̃, d̃) 7→ δ(c̃, d̃), then B̃ = (C̃, δ̃) is a thick building of type
(W̃ , S̃).

From now on we a assume that U = (Uc)c∈ is a Moufang structure on B. For each
residue R of B we set UR :=

⋂
x∈R Ux.

Lemma 12.2: For each residue R of B the group UR is sharply transitive on the set
Rop.

Assume now that Γ ≤ AutU (B). Then Γ normalizes UR for each Γ-residue R. For
c̃ ∈ C̃ we denote the centralizer of Γ in Uc̃ by Ũc̃ and we set Ũ := (Ũc̃)c̃∈C̃ .

Theorem 12.3: Let Γ ≤ AutU (B) be a descent group. Then Ũ := (Ũc̃)c̃∈C̃ is a Moufang

structure on B̃.
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