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Definition. For a nonempty open convex cone I in a real vector space
V , and a hyperplane arrangement A in I, we set

M(A) = (I × I) \

( ⋃
H∈A

H × H

)
.

If (W ,S) is a Vinberg system and A is the Coxeter arrangement of
(W ,S), then we set M(W ,S) = M(A). Note that W acts freely and
properly discontinuously on M(W ,S). We set

N(W ,S) = M(W ,S)/W .
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Theorem (Van der Lek [1983]). Let (W ,S) be a Vinberg system, and
let Γ be the Coxeter graph of the pair (W ,S). Then π1(N(W ,S)) = AΓ,
π1(M(W ,S)) = CAΓ, and the short exact sequence associated with
the regular covering M(W ,S)→ N(W ,S) is

1 // CAΓ
// AΓ

θ //WΓ
// 1 .
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Definition. A space X is an Eilenberg MacLane space for a discrete
group G if the fundamental group of X is G and the universal cover of
X is contractible. We also say that X is aspherical or that it is a
K (G,1) space. Eilenberg MacLane spaces play a prominent role in
cohomology of groups.

Conjecture (K (π,1) conjecture). Let (W ,S) be a Vinberg system,
and let Γ be the Coxeter graph of the pair (W ,S). Then N(W ,S) is an
Eilenberg MacLane space for AΓ.
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Example. Consider the symmetric group Sn+1 acting on the vector
space V = Rn+1 by permutation of the coordinates. For
i , j ∈ {1, . . . ,n + 1}, i 6= j , we set Hi,j = {x ∈ V | xi = xj}. For
i ∈ {1, . . . ,n}, si = (i , i + 1) is a reflection with respect to Hi,i+1. Recall
that The pair (Sn+1,S) is a Vinberg system, and its associated
Coxeter graph is An.

1 2 3 n

In this case we have I = Ī = V . The set R of reflections coincides with
the set of transpositions, and A = {Hi,j | 1 ≤ i < j ≤ n + 1}.
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We identify V × V with Cn+1 = C⊗ V . Then

M(Sn+1,S) = Cn+1 \

⋃
i<j

C⊗ Hi,j


is the space of ordered configurations of n + 1 points in C.

N(Sn+1,S) = M(Sn+1,S)/Sn+1

is the space of (non-ordered) configurations of n + 1 points in C.

Theorem (Artin [1947]) π1(N(Sn+1,S)) = Bn+1, the braid group on
n + 1 strands.
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Definition. Let f ,g ∈ C[x ] be two non-constant polynomials. Set

f = a0xm + a1xm−1 + · · ·+ am , a0 6= 0

g = b0xn + b1xn−1 + · · ·+ bn , b0 6= 0 .

The Sylvester matrix of f and g is

Sylv(f ,g) =



a0 0 · · · 0 b0 0 · · · 0

a1 a0
. . .

... b1 b0
. . .

...
... a1

. . . 0
... b1

. . . 0

am
...

. . . a0 bn
...

. . . b0
0 am a1 0 bn b1
...

. . . . . .
...

...
. . . . . .

...
0 · · · 0 am 0 · · · 0 bn



Luis Paris Artin Groups II September 2018 7 / 22



Definition. The resultant of f and g is

Res(f ,g) = det(Sylv(f ,g)) .

Theorem. f and g have a common root if and only if Res(f ,g) = 0.

Corollary. Let f ∈ C[x ] be a polynomial of degree d ≥ 2. Then f has a
multiple root if and only if Res(f , f ′) = 0.

Definition. Res(f , f ′) is the discriminant of f . It is denoted by Disc(f ).

Example. If f = ax2 + bx + c, then Disc(f ) = b2 − 4ac.
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Definition. Cn[x ] is the set of monic polynomials of degree n. Note
that Cn[x ] ' Cn. Disc : Cn[x ]→ C is an algebraic function. Thus

D = {f ∈ Cn[x ]; f has a multiple root} = {f ∈ Cn[x ]; Disc(f ) = 0}

is an algebraic hypersurface. D is the n-th discriminant.

Proposition. N(Sn,S) = Cn[x ] \ D.
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Proof. Let Φ : M(Sn)→ Cn[x ] \ D be

Φ(z1, . . . , zn) = (x − z1) · · · (x − zn) .

Then Φ is surjective and we have Φ(u) = Φ(v) if and only if there exists
χ ∈ Sn such that v = χu. Thus Cn[x ] \ D ' M(Sn)/Sn = N(Sn).
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Theorem (Fox–Neuwirth [1962]). N(Sn) is an Eilenberg MacLane
space for Bn.

Proof. We use (and do not prove) the following three statements.
(1) Let X → Y be a covering map. Then X is an Eilenberg MacLane

space if and only if Y is an Eilenberg MacLane space.
(2) Let X → B be a locally trivial fibration map with connected fiber F .

If B and F are both Eilenberg MacLane spaces, then X is an
Eilenberg MacLane space, too.

(3) Any graph is an Eilenberg MacLane space.
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By (1), in order to prove that N(Sn) is an Eilenberg MacLane space, it
suffices to prove that M(Sn) is an Eilenberg MacLane space. We show
that M(Sn) is an Eilenberg MacLane space by induction on n.

Suppose n = 2. Then

M(S2) = C2 \ {(z1, z2) ∈ C2 | z1 = z2} ' C× C∗ .

C is an Eilenberg MacLane space because it is contractible.
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The circle is a deformation retract of C∗,

thus C∗ has the same homotopy type as the circle, therefore C∗ is an
Eilenberg MacLane space by (3). By (2) we conclude that M(S2) is an
Eilenberg MacLane space.
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Suppose that M(Sn) is an Eilenberg MacLane space.

M(Sn+1) → M(Sn)
(z1, . . . , zn, zn+1) 7→ (z1, . . . , zn)

is a locally trivial fibration. The fiber above (1, . . . ,n) is

{(1, . . . ,n, zn+1) | zn+1 6∈ {1, . . . ,n}} ' C \ {1, . . . ,n} .
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There is a graph which is a deformation retract of C \ {1, . . . ,n}.

Thus C \ {1, . . . ,n} is an Eilenberg MacLane space by (3). We
conclude by (2) that M(Sn+1,S) is an Eilenberg MacLane space.
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Γ be a Coxeter graph, and (W ,S) be its Coxeter system. Take an
abstract set {es | s ∈ S}. Denote by V the real vector space having
{es | s ∈ S} as a basis. Define B : V × V → R by

B(es,et ) =

{
− cos( π

ms,t
) if ms,t 6=∞

−1 if ms,t =∞

For s ∈ S define ρs ∈ GL(V ) by

ρs(x) = x − 2 B(x ,es)es , x ∈ V .

Then ρs is a linear reflection for all s ∈ S. S → GL(V ), s 7→ ρs, induces
a linear representation ρ : W → GL(V ).
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V ∗ be the dual space of V . Recall that any linear map f ∈ GL(V )
determines a linear map f t ∈ GL(V ∗) defined by

〈f t (α), x〉 = 〈α, f (x)〉

The dual representation ρ∗ : W → GL(V ∗) of ρ is defined by

ρ∗(w) = (ρ(w)t )−1

For s ∈ S, we set Hs = {α ∈ V ∗ | 〈α,es〉 = 0}. Let

C̄0 = {α ∈ V ∗ | 〈α,es〉 ≥ 0 for all s ∈ S} .
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Theorem (Tits, Bourbaki [1968]).
(1) ρ : W → GL(V ) and ρ∗ : W ∗ → GL(V ∗) are faithful.
(2) C̄0 is a simplicial cone whose walls are Hs, s ∈ S. ρ∗(s) is a linear

reflection whose fixed hyperplane is Hs, for all s ∈ S. We have
ρ∗(w)C0 ∩ C0 = ∅ for all w ∈W \ {1}.

In particular, (ρ∗(W ), ρ∗(S)) is a Vinberg system whose associated
Coxeter graph is Γ.
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Γ is of spherical type if WΓ is finite.

Observation. If Γ1, . . . , Γ` are the connected components of Γ, then
WΓ = WΓ1 × · · · ×WΓ`

. In particular, Γ is of spherical type if and only if
all its connected components are of spherical type.

Theorem (Coxeter [1934, 1935]).
(1) Γ is of spherical type if and only if the bilinear form B : V × V → R

is positive definite.
(2) The spherical type connected Coxeter graphs are precisely those

listed in the following figure.
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An n≥1

n≥2Bn
4

n≥4Dn
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4

H3
5 5H4

I2(p)
p
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Theorem (Deligne [1972]). Let (W ,S) be a Vinberg system. If W is
finite, then N(W ) is an Eilenberg MacLane space.
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THE END of II

Thank you for your attention!
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