Artin groups and hyperplane arrangements II

Luis Paris

Université de Bourgogne Dijon, France

Summer School – New Perspectives in Hyperplane Arrangements Ruhr-Universität Bochum 10 - 14 September 2018 **Definition.** For a nonempty open convex cone *I* in a real vector space *V*, and a hyperplane arrangement A in *I*, we set

$$M(\mathcal{A}) = (I \times I) \setminus \left(\bigcup_{H \in \mathcal{A}} H \times H\right)$$

If (W, S) is a Vinberg system and A is the Coxeter arrangement of (W, S), then we set M(W, S) = M(A). Note that W acts freely and properly discontinuously on M(W, S). We set

$$N(W, S) = M(W, S)/W$$
.

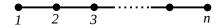
Theorem (Van der Lek [1983]). Let (W, S) be a Vinberg system, and let Γ be the Coxeter graph of the pair (W, S). Then $\pi_1(N(W, S)) = A_{\Gamma}$, $\pi_1(M(W, S)) = CA_{\Gamma}$, and the short exact sequence associated with the regular covering $M(W, S) \rightarrow N(W, S)$ is

$$1 \longrightarrow CA_{\Gamma} \longrightarrow A_{\Gamma} \stackrel{\theta}{\longrightarrow} W_{\Gamma} \longrightarrow 1$$
.

Definition. A space X is an **Eilenberg MacLane space** for a discrete group G if the fundamental group of X is G and the universal cover of X is contractible. We also say that X is **aspherical** or that it is a K(G, 1) **space**. Eilenberg MacLane spaces play a prominent role in cohomology of groups.

Conjecture ($K(\pi, 1)$ conjecture). Let (W, S) be a Vinberg system, and let Γ be the Coxeter graph of the pair (W, S). Then N(W, S) is an Eilenberg MacLane space for A_{Γ} .

Example. Consider the symmetric group \mathfrak{S}_{n+1} acting on the vector space $V = \mathbb{R}^{n+1}$ by permutation of the coordinates. For $i, j \in \{1, ..., n+1\}, i \neq j$, we set $H_{i,j} = \{x \in V \mid x_i = x_j\}$. For $i \in \{1, ..., n\}, s_i = (i, i+1)$ is a reflection with respect to $H_{i,i+1}$. Recall that The pair (\mathfrak{S}_{n+1}, S) is a Vinberg system, and its associated Coxeter graph is A_n .



In this case we have $I = \overline{I} = V$. The set \mathcal{R} of reflections coincides with the set of transpositions, and $\mathcal{A} = \{H_{i,j} \mid 1 \le i < j \le n+1\}$.

We identify $V \times V$ with $\mathbb{C}^{n+1} = \mathbb{C} \otimes V$. Then

$$M(\mathfrak{S}_{n+1}, S) = \mathbb{C}^{n+1} \setminus \left(\bigcup_{i < j} \mathbb{C} \otimes H_{i,j} \right)$$

is the space of ordered configurations of n + 1 points in \mathbb{C} .

$$N(\mathfrak{S}_{n+1}, \mathcal{S}) = M(\mathfrak{S}_{n+1}, \mathcal{S})/\mathfrak{S}_{n+1}$$

is the space of (non-ordered) configurations of n + 1 points in \mathbb{C} .

Theorem (Artin [1947]) $\pi_1(N(\mathfrak{S}_{n+1}, S)) = \mathcal{B}_{n+1}$, the braid group on n+1 strands.

Definition. Let $f, g \in \mathbb{C}[x]$ be two non-constant polynomials. Set

$$f = a_0 x^m + a_1 x^{m-1} + \dots + a_m, \quad a_0 \neq 0$$

$$g = b_0 x^n + b_1 x^{n-1} + \dots + b_n, \quad b_0 \neq 0.$$

The **Sylvester matrix** of *f* and *g* is

$$Sylv(f,g) = \begin{pmatrix} a_0 & 0 & \cdots & 0 & b_0 & 0 & \cdots & 0 \\ a_1 & a_0 & \ddots & \vdots & b_1 & b_0 & \ddots & \vdots \\ \vdots & a_1 & \ddots & 0 & \vdots & b_1 & \ddots & 0 \\ a_m & \vdots & \ddots & a_0 & b_n & \vdots & \ddots & b_0 \\ 0 & a_m & & a_1 & 0 & b_n & & b_1 \\ \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_m & 0 & \cdots & 0 & b_n \end{pmatrix}$$

Definition. The **resultant** of *f* and *g* is

 $\operatorname{Res}(f,g) = \operatorname{det}(\operatorname{Sylv}(f,g)).$

Theorem. *f* and *g* have a common root if and only if Res(f, g) = 0.

Corollary. Let $f \in \mathbb{C}[x]$ be a polynomial of degree $d \ge 2$. Then f has a multiple root if and only if Res(f, f') = 0.

Definition. $\operatorname{Res}(f, f')$ is the **discriminant** of *f*. It is denoted by $\operatorname{Disc}(f)$.

Example. If $f = ax^2 + bx + c$, then $\text{Disc}(f) = b^2 - 4ac$.

Definition. $\mathbb{C}_n[x]$ is the set of monic polynomials of degree *n*. Note that $\mathbb{C}_n[x] \simeq \mathbb{C}^n$. Disc : $\mathbb{C}_n[x] \to \mathbb{C}$ is an algebraic function. Thus

 $\mathcal{D} = \{f \in \mathbb{C}_n[x]; f \text{ has a multiple root}\} = \{f \in \mathbb{C}_n[x]; \text{Disc}(f) = 0\}$

is an algebraic hypersurface. D is the *n*-th discriminant.

Proposition. $N(\mathfrak{S}_n, \mathcal{S}) = \mathbb{C}_n[x] \setminus \mathcal{D}.$

Proof. Let $\Phi : M(\mathfrak{S}_n) \to \mathbb{C}_n[x] \setminus \mathcal{D}$ be

$$\Phi(z_1,\ldots,z_n)=(x-z_1)\cdots(x-z_n).$$

Then Φ is surjective and we have $\Phi(u) = \Phi(v)$ if and only if there exists $\chi \in \mathfrak{S}_n$ such that $v = \chi u$. Thus $\mathbb{C}_n[x] \setminus \mathcal{D} \simeq M(\mathfrak{S}_n)/\mathfrak{S}_n = N(\mathfrak{S}_n)$. \Box

Theorem (Fox–Neuwirth [1962]). $N(\mathfrak{S}_n)$ is an Eilenberg MacLane space for \mathcal{B}_n .

Proof. We use (and do not prove) the following three statements.

- (1) Let $X \to Y$ be a covering map. Then X is an Eilenberg MacLane space if and only if Y is an Eilenberg MacLane space.
- (2) Let X → B be a locally trivial fibration map with connected fiber F. If B and F are both Eilenberg MacLane spaces, then X is an Eilenberg MacLane space, too.
- (3) Any graph is an Eilenberg MacLane space.

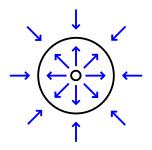
By (1), in order to prove that $N(\mathfrak{S}_n)$ is an Eilenberg MacLane space, it suffices to prove that $M(\mathfrak{S}_n)$ is an Eilenberg MacLane space. We show that $M(\mathfrak{S}_n)$ is an Eilenberg MacLane space by induction on *n*.

Suppose n = 2. Then

$$M(\mathfrak{S}_2) = \mathbb{C}^2 \setminus \{(z_1, z_2) \in \mathbb{C}^2 \mid z_1 = z_2\} \simeq \mathbb{C} \times \mathbb{C}^*$$

 $\mathbb C$ is an Eilenberg MacLane space because it is contractible.

The circle is a deformation retract of \mathbb{C}^* ,



thus \mathbb{C}^* has the same homotopy type as the circle, therefore \mathbb{C}^* is an Eilenberg MacLane space by (3). By (2) we conclude that $M(\mathfrak{S}_2)$ is an Eilenberg MacLane space.

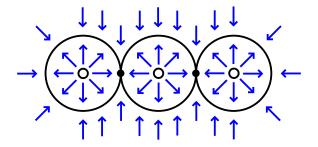
Suppose that $M(\mathfrak{S}_n)$ is an Eilenberg MacLane space.

$$\begin{array}{rcl} M(\mathfrak{S}_{n+1}) & \to & M(\mathfrak{S}_n) \\ (z_1, \dots, z_n, z_{n+1}) & \mapsto & (z_1, \dots, z_n) \end{array}$$

is a locally trivial fibration. The fiber above $(1, \ldots, n)$ is

$$\left\{ \left(1,\ldots,n,z_{n+1}\right) \mid z_{n+1} \notin \{1,\ldots,n\} \right\} \simeq \mathbb{C} \setminus \left\{1,\ldots,n\right\}.$$

There is a graph which is a deformation retract of $\mathbb{C} \setminus \{1, ..., n\}$.



Thus $\mathbb{C} \setminus \{1, ..., n\}$ is an Eilenberg MacLane space by (3). We conclude by (2) that $M(\mathfrak{S}_{n+1}, S)$ is an Eilenberg MacLane space.

$$B(e_s, e_t) = \begin{cases} -\cos(\frac{\pi}{m_{s,t}}) & \text{if } m_{s,t} \neq \infty \\ -1 & \text{if } m_{s,t} = \infty \end{cases}$$

For $s \in S$ define $\rho_s \in GL(V)$ by

$$\rho_s(x) = x - 2 B(x, e_s) e_s, \quad x \in V.$$

Then ρ_s is a linear reflection for all $s \in S$. $S \to GL(V)$, $s \mapsto \rho_s$, induces a linear representation $\rho : W \to GL(V)$.

 V^* be the dual space of V. Recall that any linear map $f \in GL(V)$ determines a linear map $f^t \in GL(V^*)$ defined by

$$\langle f^t(\alpha), \mathbf{x} \rangle = \langle \alpha, f(\mathbf{x}) \rangle$$

The dual representation $\rho^* : W \to GL(V^*)$ of ρ is defined by

$$\rho^*(\boldsymbol{w}) = (\rho(\boldsymbol{w})^t)^{-1}$$

For $s \in S$, we set $H_s = \{ \alpha \in V^* \mid \langle \alpha, e_s \rangle = 0 \}$. Let

$$\bar{C}_0 = \{ \alpha \in V^* \mid \langle \alpha, \boldsymbol{e_s} \rangle \ge 0 \text{ for all } \boldsymbol{s} \in \boldsymbol{S} \}.$$

Theorem (Tits, Bourbaki [1968]).

- (1) $\rho: W \to \operatorname{GL}(V)$ and $\rho^*: W^* \to \operatorname{GL}(V^*)$ are faithful.
- (2) C
 ₀ is a simplicial cone whose walls are H_s, s ∈ S. ρ*(s) is a linear reflection whose fixed hyperplane is H_s, for all s ∈ S. We have ρ*(w)C₀ ∩ C₀ = Ø for all w ∈ W \ {1}.

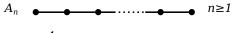
In particular, $(\rho^*(W), \rho^*(S))$ is a Vinberg system whose associated Coxeter graph is Γ .

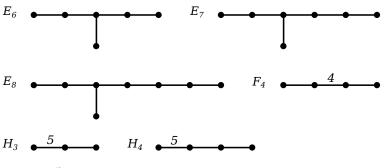
 Γ is of **spherical type** if W_{Γ} is finite.

Observation. If $\Gamma_1, \ldots, \Gamma_\ell$ are the connected components of Γ , then $W_{\Gamma} = W_{\Gamma_1} \times \cdots \times W_{\Gamma_\ell}$. In particular, Γ is of spherical type if and only if all its connected components are of spherical type.

Theorem (Coxeter [1934, 1935]).

- (1) Γ is of spherical type if and only if the bilinear form $B: V \times V \to \mathbb{R}$ is positive definite.
- (2) The spherical type connected Coxeter graphs are precisely those listed in the following figure.





Theorem (Deligne [1972]). Let (W, S) be a Vinberg system. If W is finite, then N(W) is an Eilenberg MacLane space.

THE END of II

Thank you for your attention!