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Two (and a half) corrections from Lecture III

• As observed in the lecture, one has a disjoint union: U ′ = U t U ′′, where
U , U ′, and U ′′ are the complements of the arrangement A and its deletion
A′ and contraction A′′, respectively. The long exact sequence of the pair
(U ′, U), in cohomology (with complex coefficients), looks like

· · · → Hp(U ′)→ Hp(U)→ Hp+1(U ′, U)→ · · · .

(In the lecture I wrote Hp(U ′, U).) Using excision and the tubular neigh-
borhood theorem, and the fact that the normal bundle of U ′′ in U ′ is
trivial, one has Hp(U ′, U) ∼= Hp(U ′′ × (C,C×). The relative cohomology
Hk(C,C×) is isomorphic to C if k = 2 and vanishes otherwise. Then
the Künneth formula gives Hp+1(U ′, U) ∼= Hp−1(U ′′). The rest of the
argument given in lecture is correct.

• In the lecture I wrote two relations among Poincaré polynomials:

P (A, t) = P (A′, t) + tP (A′′, t),

and
P (A1 ⊕A2, t) = P (A1, t)P (A2, t),

and said this implies P (A, t) is an evaluation of the Tutte polynomial of
the underlying matroid of A, obtained by evaluating P (A, t) for the loop
and coloop. This is incorrect. Let Q(A, t) = t−r(A)P (A, t), where r(A)
denotes the rank of (the underlying matroid of) A. Then from the equality
above one concludes Q(A, t) = Q(A′, t) + Q(A′′, t) if r(A′) = r(A), i.e.,
if the deleted hyperplane is not an “isthmus” of the underlying matroid
(or a “separator” of A), and Q(A1 ⊕ A2, t) = Q(A1, t)Q(A2, t). (The
latter equation covers the case when the deleted element is an isthmus;
the identity P (A, t) = P (A′, t) + tP (A′′, t) still holds in this case.) These
two identities for Q imply that Q(A, t) is a Tutte-Grothendieck invariant
of the underlying matroid, and therefore is an evaluation of the Tutte
polynomial TM (x, y):

Q(A, t) = TM (Q(loop), Q(coloop)),

and one calculates Q(loop) = 1 and Q(coloop) = t−1(1 + t) = t−1 + 1.
Thus

P (A, t) = tr(A)TM (1, t−1 + 1).

• As Luis pointed out, the identity nbc(A) = nbc(A′) ∪ (S ∪ {en} | S ∈
nbc(A′′)} is nonsense - the second set on the right is not a subset of the
set on the left. For this identity I was actually thinking of the underlying
matroids, with ground sets {1, . . . , n} for A, and {1, . . . , n − 1} for both
A′ and A′′, so that all three sets are collections of subsets of {1, . . . , n}.
With this interpretation the statement is correct. Note that this requires
to consider A′′ as an arrangement with multiple copies of the same hyper-
plane (formulated as the “Ziegler multiplicity” in Masahiko’s lecture). As
pointed out, the OS algebra of the multiarrangement is the same as for
the underlying “simple” arrangement, and nbc(A′′) reflects that.
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