
SIMPLICIAL ARRANGEMENTS

MICHAEL CUNTZ

A simplicial arrangement is a set of linear hyperplanes decomposing the space into simplicial
cones. More generally, a Tits arrangement decomposes a certain convex cone into simplicial
cones. So far, Tits arrangements appeared (at least) in the following areas of mathematics:
(1) The special case in which the arrangement is crystallographic (this is a strong integrality
property, see [Cun11a], [CH15]) can be considered as an invariant of Hopf algebras which is also
called a Weyl groupoid. In particular it may be used to classify the so-called Nichols algebras
(see for example [Cun18]).
(2) Tits arrangements generalize Coxeter groups and thus preserve some of their properties
(see [CMW17]). For example, the complexified complement of a simplicial arrangement is a
K(π, 1)-space (see [Del72]) and thus interesting from a topological point of view.
(3) Like reflection groups, simplicial arrangements produce interesting examples in the context
of freeness of the module of derivations (see for example [BC12]). A counter example to the
famous conjecture by Terao could be related to a simplicial arrangement.
(4) Simplicial arrangements of small rank play a role in the study of frieze patterns and thus of
cluster algebras (see [Cun14]).

In this lecture I report on old results as well as on recent progress, see for example [Cun11b],
[Cun12], [CG15], [CM17], [CG17], [CMW17], [Cun18].

1. Simplicial arrangements

1.1. Arrangements and combinatorics.

Definition 1.1. Let K be a field, r ∈ N, and V := Kr. An arrangement of hyperplanes
(or r-arrangement) (A, V ) (or A for short) is a finite set of hyperplanes A in V .

Definition 1.2. Let r ∈ N, V := Rr, and A an arrangement in V . Let K(A) be the set of
connected components (chambers) of V \

⋃
H∈AH. If every chamber K is an open simplicial

cone, i.e. there exist α∨1 , . . . , α
∨
r ∈ V such that

K =
{ r∑
i=1

aiα
∨
i | ai > 0 for all i = 1, . . . , r

}
=: 〈α∨1 , . . . , α∨r 〉>0,

then A is called a simplicial arrangement.

Figure 1. A simplicial arrangement in R2, a representation of a simplicial ar-
rangement in R3 in the projective plane.

Example 1.3. (1) Figure 1 displays examples for r = 2 and r = 3.
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(2) Let W be a real reflection group, R the set of roots of W . For α ∈ V ∗ we write
α⊥ = ker(α). Then A = {α⊥ | α ∈ R} is a simplicial arrangement.

Definition 1.4. Let A be an arrangement. For X ≤ V , we define the localization

AX := {H ∈ A | X ⊆ H}

of A at X, and the restriction of A to X, (AX , X), where

AX := {X ∩H | H ∈ A \ AX}.

Remark 1.5. If A is simplicial, then all localizations and restrictions to elements of its intersec-
tion lattice are simplicial.

Proposition 1.6. Let A be a central essential arrangement of hyperplanes in Rr, r ≥ 2. Then
A is simplicial if and only if

(1) r|K(A)| = 2
∑
H∈A
|K(AH)|.

Remark 1.7. By Zaslavsky’s theorem, |K(A)| = (−1)rχA(−1) which depends only on the inter-
section lattice of A. Thus simpliciality is a purely combinatorial property.

1.2. History. Achievements so far (possibly incomplete):

• Definition of simplicial arrangements (Melchior 1941).
• Catalogue of simplicial arrangements in the real projective plane (Grünbaum 1971, 2009,

2013).
• Simplicial arrangements are K(π, 1) (Deligne 1972).
• Finite Weyl groupoids (C., Heckenberger 2009-2010).
• Simplicial arrangements with up to 27 lines (C. 2012).
• Some affine simplicial arrangements (C. 2014).
• Tits arrangements and Weyl groupoids (C., Mühlherr 2017).
• Supersolvable simplicial arrangements (C., Mücksch 2017).
• Tits arrangements on a cubic curve (C., Geis 2017).
• Free simplicial arrangements (Geis 2018).

2. Reflection groupoids

2.1. Reflections and Cartan matrices.

Definition 2.1. Let K be a field, r ∈ N, V := Kr, and H a hyperplane in V . A reflection on
V at H is a σ ∈ GL(V ), σ 6= id of finite order which fixes H. Notice that the eigenvalues of σ
are 1 and ζ for some root of unity ζ ∈ K.

Lemma 2.2. Let A be a simplicial arrangement and K a chamber, i.e. there is a basis B =
{α∨1 , . . . , α∨r } of V such that K = 〈B〉>0. Let K ′ be another chamber with

K ∩K ′ = 〈α∨2 , . . . , α∨r 〉≥0.

Then there is a unique β∨ ∈ V with

K ′ = 〈B′〉>0, B′ = {β∨, α∨2 , . . . , α∨r }, and |B∗ ∩ −B′∗| = 1.

Proof. Choose β∨ ∈ V such that K ′ = 〈β∨, α∨2 , . . . , α∨r 〉>0. Let µ1, . . . , µr ∈ R be such that
β∨ =

∑r
i=1 µiα

∨
i (notice µ1 6= 0). Let B′∗ = {β1, . . . , βr} be the dual basis of {β∨, α∨2 , . . . , α∨r },

and B∗ = {α1, . . . , αr} be dual to B. Then β1 = 1
µ1
α1 and βj = −µj

µ1
α1+αj for j > 1. To obtain

|B∗ ∩ −B′∗| = 1 we need −α1 = β1 ∈ B′∗ and hence µ1 = −1, β1 = −α1 and βj = µjα1 + αj
for j > 1. Thus a β∨ as desired exists and is unique. �
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Corollary 2.3. Using the notation of the proof of Lemma 2.2, the map

σ : V ∗ → V ∗, αi 7→ βi

is a reflection. With respect to B∗, it becomes the matrix
−1 µ2 . . . µr
0 1 0
...

. . .

0 0 1

 .

Example 2.4. Let R = {(1, 0), (0, 1), (1, 2)} ∈ (R2)∗, A = {α⊥ | α ∈ R}. Then K = 〈B〉>0 is a

chamber if B = {α∨1 = (1, 0), α∨2 = (0, 1)}, K ′ = 〈B′〉>0 with B′ = {β̃∨ = (−2, 1), α∨2 = (0, 1)}
is an adjacent chamber. To obtain µ1 = −1, we need to choose β∨ = (−1, 12), hence µ2 = 1

2 .
The unique reflection σ is (

−1 1
2

0 1

)
with respect to B∗.

Definition 2.5. Let A be a simplicial arrangement, K = 〈B〉>0, B = {α∨1 , . . . , α∨r } a chamber,
and B∗ = {α1, . . . , αr} be dual to B. Then by Corollary 2.3, there are reflections σ1, . . . , σr,
represented by 

1 0
. . .

µi,1 · · · −1 · · · µi,r
. . .

0 1

 ,

for certain µi,j ∈ R, i 6= j with respect to B∗ and uniquely determined by K, B and its adjacent
chambers.

The matrix CK,B = (ci,j)1≤i,j≤r with

ci,j :=

{
−µi,j if i 6= j

2 if i = j

is called the Cartan matrix of (K,B) in A. Note that

σi(αj) = αj − ci,jαi
for all 1 ≤ i, j ≤ r. We sometimes write σK,Bi to emphasize that σi depends on K and B.

Example 2.6. (1) Let A be as in Example 2.4. Then the Cartan matrix of (K,B) is

CK,B =

(
2 −1

2
−2 2

)
.

(2) If W is a Weyl group with root system R, then all Cartan matrices of (K,B) when B∗ is
a set of simple roots for the chamber K are equal and coincide with the classical Cartan
matrix of W .

Definition 2.7. Let A be a simplicial arrangement in V = Rr. We construct a category C(A)
with

• objects: Obj(C(A)) = {B∗ = (α1, . . . , αr) | 〈B〉>0 ∈ K(A)} (where the simple systems
are ordered).
• morphisms: for each B∗ = (α1, . . . , αr) ∈ Obj(C(A)) and i = 1, . . . , r there is a mor-

phism σK,Bi ∈ Mor(B, (σK,Bi (α1), . . . , σ
K,B
i (αr))). All other morphisms are compositions

of the generators σK,Bi .

A reflection groupoid W(A) of A is a connected component of C(A). A Weyl groupoid is
a reflection groupoid for which all Cartan matrices are integral.
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2.2. Crystallographic arrangements. Let A = {H1, . . . ,Hn}, |A| = n be simplicial. For
each Hi, i = 1, . . . , n we choose an element βi ∈ V ∗ such that Hi = β⊥i and let R :=
{±β1, . . . ,±βn} ⊆ V ∗. For each chamber K ∈ K(A) set

BK = {α ∈ R | ∀x ∈ K : α(x) ≥ 0, 〈α⊥ ∩K〉 = α⊥}
= { “normal vectors in R of the walls of K

pointing to the inside” }.

If α∨1 , . . . , α
∨
r is the dual basis to BK = {α1, . . . , αr}, then K = 〈α∨1 , . . . , α∨r 〉>0 since A is

simplicial.

Definition 2.8. Let A be a simplicial arrangement in V and R ⊆ V ∗ a finite set such that
A = {α⊥ | α ∈ R} and Rα ∩ R = {±α} for all α ∈ R. We call (A, R) a crystallographic
arrangement if for all K ∈ K(A):

R ⊆
∑
α∈BK

Zα.

Two crystallographic arrangements (A, R), (A′, R′) in V are called equivalent if there exists
ψ ∈ Aut(V ∗) with ψ(R) = R′. We then write (A, R) ∼= (A′, R′).

Example 2.9. (1) Let R be the set of roots of the root system of a crystallographic Coxeter
group. Then ({α⊥ | α ∈ R}, R) is a crystallographic arrangement.

(2) If R+ := {(1, 0), (3, 1), (2, 1), (5, 3), (3, 2), (1, 1), (0, 1)}, then
{α⊥ | α ∈ R+} is a crystallographic arrangement.

Remark 2.10. Weyl groupoids are reflection groupoids of crystallographic arrangements.

Definition 2.11. Fix an object B in a reflection groupoid C(A). Then

RB = {γB(ϕ(α)) | α ∈ B′, ϕ ∈ Mor(B′, B)} ⊆ Rr

where γB : V → Rr is the coordinate map with respect to B, is the set of real roots (at B).
The collection (RB)B is denoted by Rre(W). A real root α ∈ RB, is called positive (resp.
negative) if α ∈ Rr≥0 (resp. α ∈ Rr≤0).

Let {α1, . . . , αr} be the standard basis of Rr. We call the αi simple roots.

Definition 2.12. Let W(A) be a reflection groupoid and A the set of objects. The real roots
of W(A) are called a root system if they satisfy:

(R1) Ra = Ra+ ∪ −Ra+, where Ra+ = Ra ∩ Rr≥0, for all a ∈ A.

(R2) Ra ∩ Rαi = {αi,−αi} for all i = 1, . . . , r, a ∈ A.

(R3) σai (Ra) = Rσi(a) for all i = 1, . . . , r, a ∈ A.

(R4) If i, j ∈ {1, . . . , r} and a ∈ A such that i 6= j and ma
i,j is finite, then (σiσj)

ma
i,j (a) = a.

Here, ma
i,j = |Ra ∩ (R≥0αi + R≥0αj)|.

A root system is called finite if for all a ∈ A the set Ra is finite.

2.3. Frieze patterns and quiddity cycles.

Example 2.13.

0 1 1 3 2 1 0
0 1 4 3 2 1 0

0 1 1 1 1 1 0
0 1 2 3 4 1 0

0 1 2 3 1 1 0
0 1 2 1 2 1 0

Definition 2.14. Let R be a subset of a commutative ring.
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(1) A frieze pattern over R is an array F of the form

. . .
. . .

0 1 ci−1,i+1 ci−1,i+2 · · · · · · ci−1,n+i 1 0
0 1 ci,i+2 ci,i+3 · · · · · · ci,n+i+1 1 0

0 1 ci+1,i+3 ci+1,i+4 · · · · · · ci+1,n+i+2 1 0
. . .

. . .

where ci,j are numbers in R, and such that every (complete) adjacent 2 × 2 submatrix has
determinant 1. We call n the height of the frieze pattern F . We say that the frieze pattern F
is periodic with period m > 0 if ci,j = ci+m,j+m for all i, j.
(2) A frieze pattern is called tame if every adjacent 3× 3-submatrix has determinant 0.

The following matrices are the key to the structure of tame frieze patterns.

Definition 2.15. For c in a commutative ring, let

η(c) :=

(
c −1
1 0

)
.

Remark 2.16. Notice that up to a transposition, η(c) may be viewed as a reflection:

η(c)

(
0 1
1 0

)
=

(
−1 c
0 1

)
and

(
0 1
1 0

)
η(c) =

(
1 0
c −1

)
.

We will see later why this implies that frieze patterns may be seen as reflection groupoids.

Proposition 2.17. Let R be a commutative ring.

(1) Let F = (ci,j) be a tame frieze pattern over R of height n, ck := ck,k+2 for k ∈ Z. Then
F is periodic with period m = n+ 3 and

m∏
k=1

η(ck) =

(
−1 0
0 −1

)
, and ci,j+2 = (Mi,j)1,1, where Mi,j :=

j∏
k=i

η(ck).

(2) Let (c1, . . . , cm) ∈ Rm satisfy
∏m
k=1 η(ck) =

(
−1 0
0 −1

)
, and let Mi,j :=

∏j
k=i η(ck) be

as above. Then the (ai,j+2)i,j = ((Mi,j)1,1)i,j (where i − 1 ≤ j ≤ m + i − 3) defines a
periodic tame frieze pattern over R with period m and height m− 3.

Definition 2.18. Let R be a subset of a commutative ring and λ ∈ {±1}. A λ-quiddity cycle
over R is a sequence (c1, . . . , cm) ∈ Rm satisfying

(2)
m∏
k=1

η(ck) =

(
λ 0
0 λ

)
= λid.

A (−1)-quiddity cycle is called a quiddity cycle for short.

Example 2.19. Consider the commutative ring C and R = C.

(1) (0, 0) is the only λ-quiddity cycle of length 2.
(2) (1, 1, 1) and (−1,−1,−1) are the only λ-quiddity cycles of length 3.
(3) (t, 2/t, t, 2/t), t a unit and (a, 0,−a, 0), a arbitrary, are the only λ-quiddity cycles of

length 4 (check this as an exercise).

Remark 2.20. Let c = (c1, . . . , cm) be a λ-quiddity cycle. Then for any σ ∈ Dn, the cycle cσ is
a λ-quiddity cycle as well.

The following useful lemma is inspired by old results on continued fractions.

Lemma 2.21. Let (c1, . . . , cm) ∈ Cm such that
∏m
j=1 η(cj) is a scalar multiple of the identity

matrix. Then there are two different indices j, k ∈ {1, . . . ,m} with |cj | < 2 and |ck| < 2.
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Using η(a)η(b) = η(a+ 1)η(1)η(b+ 1) for all a, b we conclude:

Corollary 2.22. Frieze patterns with entries in N correspond to triangulations of polygons by
non-intersecting diagonals.

3. Finite Weyl groupoids

3.1. Rank two.

Remark 3.1. The set of quiddity cycles with entries in N>0 corresponds to the sequences of
Cartan entries of finite Weyl groupoids of rank two.

Definition 3.2. A reflection groupoid and its root system are called irreducible if all Cartan
matrices are indecomposable.

These are the roots of irreducible finite Weyl groupoids of rank two.

Definition 3.3. Define F-sequences as finite sequences of length ≥ 3 with entries in N2
0 given

by the following recursion.

(1) ((0, 1), (1, 1), (1, 0)) is an F-sequence.
(2) If (v1, . . . , vn) is an F-sequence, then

(v1, . . . , vi, vi + vi+1, vi+1, . . . , vn)

are F-sequences for i = 1, . . . , n− 1.
(3) Every F-sequence is obtained recursively by (1) and (2).

Proposition 3.4. Crystallographic arrangements of rank two correspond to F-sequences: each
F-sequence is a set of roots of a Weyl groupoid.

Corollary 3.5. Assume that Rre(W(A)) is a finite root system of a Weyl groupoid. Then for
all objects a and α ∈ Ra+, either α is simple or it is the sum of two positive roots in Ra+.

Corollary 3.6. Let Ra be the set of roots at an object a of a finite Weyl groupoid of rank two
and (cai,j) the Cartan matrix at a. Then

ci,j = −max{k ∈ N≥0 | kαi + αj ∈ Ra}
for i 6= j. Moreover, kαi + αj ∈ Ra for k = 0, . . . ,−ci,j.
3.2. Rank three. Let A be the set of objects of an irreducible reflection groupoid and a ∈ A.
The last observation on root systems of rank two implies the following central result:

Theorem 3.7. Let α ∈ Ra+. Then either α is simple, or it is the sum of two positive roots.

Theorem 3.8. Let α1, . . . , αr be the simple roots at a. Then
∑r

i=1 αi ∈ Ra.

View the roots as elements of Z3 with the lexicographic ordering ≤.

Lemma 3.9. Let α, β ∈ Ra+ be minimal in 〈α, β〉Q∩Ra+ with respect to ≤. Then 〈α, β〉Q∩Ra ⊆
±(N0α+ N0β).

Theorem 3.10 (Weak Convexity). Let a ∈ A and α, β, γ ∈ Ra+. If det(α, β, γ)2 = 1 and α, β
are the two smallest elements of 〈α, β〉 ∩ Ra+, then either α, β, γ are simple, or one of γ − α,
γ − β is in Ra.

Roots on the plane (1, ∗, ∗)
Example: α = (0, 1, 0), β = (0, 0, 1), γ = (1, 7, 3)
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Theorem 3.11 (Required roots). Let a ∈ A and α, β, γ ∈ Ra+. Assume that det(α, β, γ)2 = 1
and that γ − α, γ − β /∈ Ra. Then γ + α ∈ Ra or γ + β ∈ Ra.

Theorem 3.12 (Bound for the Cartan entries). All entries of the Cartan matrices are greater
or equal to −7.

Remark 3.13. In fact, all entries of the Cartan matrices are greater or equal to −6.

The preceding theorems suggest the following algorithm.

Function Enumerate(R)

(1) If R defines a crystallographic arrangement, output R and continue.
(2) Y := {α+ β | α, β ∈ R, α 6= β}\R.
(3) For all α ∈ Y with α > maxR:

(a) Compute all “subgroupoids of rank two” in R ∪ {α}.
(b) If all Cartan entries are ≥ −7, all rank two root sets are F-sequences, and the

“Weak Convexity” is satisfied, then call Enumerate(R ∪ {α}).
Remark 3.14. We use Theorem “Required roots” as a further obstruction.

The algorithm terminates and yields the result:

Theorem 3.15 (Cuntz, Heckenberger (2012)). Up to equivalences, there are 55 irreducible
crystallographic arrangements of rank three.

3.3. Higher rank. With the knowledge about rank three, we enumerate crystallographic ar-
rangements in ranks four to eight with a similar algorithm.

An analysis of Dynkin diagrams leads to a complete classification in rank > 8.

Theorem 3.16 (Cuntz, Heckenberger (2015)). There are exactly three families of irreducible
crystallographic arrangements:

(1) The family of rank two parametrized by triangulations of a convex n-gons by non-
intersecting diagonals.

(2) For each rank r > 2, arrangements of type Ar, Br, Cr and Dr, and a further series of
r − 1 arrangements.

(3) Further 74 “sporadic” arrangements of rank r, 3 ≤ r ≤ 8.

Remark 3.17. The proof of the classification relies on enumerations by the computer. In rank
three, approximately 60.000.000 cases need to be considered. A “short” proof is work in progress.
At least an enumeration of all potential parabolics seems to be possible.
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