SIMPLICIAL ARRANGEMENTS

MICHAEL CUNTZ

A simplicial arrangement is a set of linear hyperplanes decomposing the space into simplicial cones. More generally, a Tits arrangement decomposes a certain convex cone into simplicial cones. So far, Tits arrangements appeared (at least) in the following areas of mathematics:

(1) The special case in which the arrangement is crystallographic (this is a strong integrality property, see [Cun11a], [CH15]) can be considered as an invariant of Hopf algebras which is also called a Weyl groupoid. In particular it may be used to classify the so-called Nichols algebras (see for example [Cun18]).

(2) Tits arrangements generalize Coxeter groups and thus preserve some of their properties (see [CMW17]). For example, the complexified complement of a simplicial arrangement is a $K(\pi, 1)$ -space (see [Del72]) and thus interesting from a topological point of view.

(3) Like reflection groups, simplicial arrangements produce interesting examples in the context of freeness of the module of derivations (see for example [BC12]). A counter example to the famous conjecture by Terao could be related to a simplicial arrangement.

(4) Simplicial arrangements of small rank play a role in the study of frieze patterns and thus of cluster algebras (see [Cun14]).

In this lecture I report on old results as well as on recent progress, see for example [Cun11b], [Cun12], [CG15], [CM17], [CG17], [CMW17], [Cun18].

1. SIMPLICIAL ARRANGEMENTS

1.1. Arrangements and combinatorics.

Definition 1.1. Let K be a field, $r \in \mathbb{N}$, and $V := K^r$. An arrangement of hyperplanes (or *r*-arrangement) (\mathcal{A}, V) (or \mathcal{A} for short) is a finite set of hyperplanes \mathcal{A} in V.

Definition 1.2. Let $r \in \mathbb{N}$, $V := \mathbb{R}^r$, and \mathcal{A} an arrangement in V. Let $\mathcal{K}(\mathcal{A})$ be the set of connected components (**chambers**) of $V \setminus \bigcup_{H \in \mathcal{A}} H$. If every chamber K is an **open simplicial cone**, i.e. there exist $\alpha_1^{\vee}, \ldots, \alpha_r^{\vee} \in V$ such that

$$K = \left\{ \sum_{i=1}^{r} a_i \alpha_i^{\vee} \mid a_i > 0 \quad \text{for all} \quad i = 1, \dots, r \right\} =: \langle \alpha_1^{\vee}, \dots, \alpha_r^{\vee} \rangle_{>0},$$

then \mathcal{A} is called a simplicial arrangement.

FIGURE 1. A simplicial arrangement in \mathbb{R}^2 , a representation of a simplicial arrangement in \mathbb{R}^3 in the projective plane.

Example 1.3. (1) Figure 1 displays examples for r = 2 and r = 3.

(2) Let W be a real reflection group, R the set of roots of W. For $\alpha \in V^*$ we write $\alpha^{\perp} = \ker(\alpha)$. Then $\mathcal{A} = \{\alpha^{\perp} \mid \alpha \in R\}$ is a simplicial arrangement.

Definition 1.4. Let \mathcal{A} be an arrangement. For $X \leq V$, we define the **localization**

$$\mathcal{A}_X := \{ H \in \mathcal{A} \mid X \subseteq H \}$$

of \mathcal{A} at X, and the **restriction of** \mathcal{A} to X, (\mathcal{A}^X, X) , where

$$\mathcal{A}^X := \{ X \cap H \mid H \in \mathcal{A} \setminus \mathcal{A}_X \}.$$

Remark 1.5. If \mathcal{A} is simplicial, then all localizations and restrictions to elements of its intersection lattice are simplicial.

Proposition 1.6. Let \mathcal{A} be a central essential arrangement of hyperplanes in \mathbb{R}^r , $r \geq 2$. Then \mathcal{A} is simplicial if and only if

(1)
$$r|\mathcal{K}(\mathcal{A})| = 2\sum_{H \in \mathcal{A}} |\mathcal{K}(\mathcal{A}^H)|.$$

Remark 1.7. By Zaslavsky's theorem, $|\mathcal{K}(\mathcal{A})| = (-1)^r \chi_{\mathcal{A}}(-1)$ which depends only on the intersection lattice of \mathcal{A} . Thus simpliciality is a purely combinatorial property.

1.2. History. Achievements so far (possibly incomplete):

- Definition of simplicial arrangements (Melchior 1941).
- Catalogue of simplicial arrangements in the real projective plane (Grünbaum 1971, 2009, 2013).
- Simplicial arrangements are $K(\pi, 1)$ (Deligne 1972).
- Finite Weyl groupoids (C., Heckenberger 2009-2010).
- Simplicial arrangements with up to 27 lines (C. 2012).
- Some affine simplicial arrangements (C. 2014).
- Tits arrangements and Weyl groupoids (C., Mühlherr 2017).
- Supersolvable simplicial arrangements (C., Mücksch 2017).
- Tits arrangements on a cubic curve (C., Geis 2017).
- Free simplicial arrangements (Geis 2018).

2. Reflection groupoids

2.1. Reflections and Cartan matrices.

Definition 2.1. Let K be a field, $r \in \mathbb{N}$, $V := K^r$, and H a hyperplane in V. A **reflection** on V at H is a $\sigma \in GL(V)$, $\sigma \neq id$ of finite order which fixes H. Notice that the eigenvalues of σ are 1 and ζ for some root of unity $\zeta \in K$.

Lemma 2.2. Let \mathcal{A} be a simplicial arrangement and K a chamber, i.e. there is a basis $B = \{\alpha_1^{\vee}, \ldots, \alpha_r^{\vee}\}$ of V such that $K = \langle B \rangle_{>0}$. Let K' be another chamber with

$$\overline{K} \cap \overline{K'} = \langle \alpha_2^{\vee}, \dots, \alpha_r^{\vee} \rangle_{\geq 0}.$$

Then there is a unique $\beta^{\vee} \in V$ with

$$K' = \langle B' \rangle_{>0}, \quad B' = \{\beta^{\vee}, \alpha_2^{\vee}, \dots, \alpha_r^{\vee}\}, \quad and \quad |B^* \cap -B'^*| = 1.$$

Proof. Choose $\beta^{\vee} \in V$ such that $K' = \langle \beta^{\vee}, \alpha_2^{\vee}, \dots, \alpha_r^{\vee} \rangle_{>0}$. Let $\mu_1, \dots, \mu_r \in \mathbb{R}$ be such that $\beta^{\vee} = \sum_{i=1}^r \mu_i \alpha_i^{\vee}$ (notice $\mu_1 \neq 0$). Let $B'^* = \{\beta_1, \dots, \beta_r\}$ be the dual basis of $\{\beta^{\vee}, \alpha_2^{\vee}, \dots, \alpha_r^{\vee}\}$, and $B^* = \{\alpha_1, \dots, \alpha_r\}$ be dual to B. Then $\beta_1 = \frac{1}{\mu_1}\alpha_1$ and $\beta_j = -\frac{\mu_j}{\mu_1}\alpha_1 + \alpha_j$ for j > 1. To obtain $|B^* \cap -B'^*| = 1$ we need $-\alpha_1 = \beta_1 \in B'^*$ and hence $\mu_1 = -1$, $\beta_1 = -\alpha_1$ and $\beta_j = \mu_j \alpha_1 + \alpha_j$ for j > 1. Thus a β^{\vee} as desired exists and is unique.

Corollary 2.3. Using the notation of the proof of Lemma 2.2, the map

$$\sigma: V^* \to V^*, \quad \alpha_i \mapsto \beta_i$$

is a reflection. With respect to B^* , it becomes the matrix

$$\begin{pmatrix} -1 & \mu_2 & \dots & \mu_r \\ 0 & 1 & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & 1 \end{pmatrix}.$$

Example 2.4. Let $R = \{(1,0), (0,1), (1,2)\} \in (\mathbb{R}^2)^*$, $\mathcal{A} = \{\alpha^{\perp} \mid \alpha \in R\}$. Then $K = \langle B \rangle_{>0}$ is a chamber if $B = \{\alpha_1^{\vee} = (1,0), \alpha_2^{\vee} = (0,1)\}$, $K' = \langle B' \rangle_{>0}$ with $B' = \{\tilde{\beta}^{\vee} = (-2,1), \alpha_2^{\vee} = (0,1)\}$ is an adjacent chamber. To obtain $\mu_1 = -1$, we need to choose $\beta^{\vee} = (-1, \frac{1}{2})$, hence $\mu_2 = \frac{1}{2}$. The unique reflection σ is

$$\begin{pmatrix} -1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

with respect to B^* .

Definition 2.5. Let \mathcal{A} be a simplicial arrangement, $K = \langle B \rangle_{>0}$, $B = \{\alpha_1^{\vee}, \ldots, \alpha_r^{\vee}\}$ a chamber, and $B^* = \{\alpha_1, \ldots, \alpha_r\}$ be dual to B. Then by Corollary 2.3, there are reflections $\sigma_1, \ldots, \sigma_r$, represented by

$$\begin{pmatrix} 1 & & 0 \\ & \ddots & & \\ & & & \\ \mu_{i,1} & \cdots & -1 & \cdots & \mu_{i,r} \\ & & & \ddots & \\ 0 & & & 1 \end{pmatrix},$$

for certain $\mu_{i,j} \in \mathbb{R}$, $i \neq j$ with respect to B^* and uniquely determined by K, B and its adjacent chambers.

The matrix $C^{K,B} = (c_{i,j})_{1 \le i,j \le r}$ with

$$c_{i,j} := \begin{cases} -\mu_{i,j} & \text{if } i \neq j \\ 2 & \text{if } i = j \end{cases}$$

is called the **Cartan matrix** of (K, B) in \mathcal{A} . Note that

$$\sigma_i(\alpha_j) = \alpha_j - c_{i,j}\alpha_i$$

for all $1 \leq i, j \leq r$. We sometimes write $\sigma_i^{K,B}$ to emphasize that σ_i depends on K and B.

Example 2.6. (1) Let \mathcal{A} be as in Example 2.4. Then the Cartan matrix of (K, B) is

$$C^{K,B} = \begin{pmatrix} 2 & -\frac{1}{2} \\ -2 & 2 \end{pmatrix}$$

(2) If W is a Weyl group with root system R, then all Cartan matrices of (K, B) when B^* is a set of simple roots for the chamber K are equal and coincide with the classical Cartan matrix of W.

Definition 2.7. Let \mathcal{A} be a simplicial arrangement in $V = \mathbb{R}^r$. We construct a category $\mathcal{C}(\mathcal{A})$ with

- objects: $\text{Obj}(\mathcal{C}(\mathcal{A})) = \{B^* = (\alpha_1, \dots, \alpha_r) \mid \langle B \rangle_{>0} \in \mathcal{K}(\mathcal{A})\}$ (where the simple systems are ordered).
- morphisms: for each $B^* = (\alpha_1, \ldots, \alpha_r) \in \text{Obj}(\mathcal{C}(\mathcal{A}))$ and $i = 1, \ldots, r$ there is a morphism $\sigma_i^{K,B} \in \text{Mor}(B, (\sigma_i^{K,B}(\alpha_1), \ldots, \sigma_i^{K,B}(\alpha_r)))$. All other morphisms are compositions of the generators $\sigma_i^{K,B}$.

A reflection groupoid $\mathcal{W}(\mathcal{A})$ of \mathcal{A} is a connected component of $\mathcal{C}(\mathcal{A})$. A Weyl groupoid is a reflection groupoid for which all Cartan matrices are integral.

2.2. Crystallographic arrangements. Let $\mathcal{A} = \{H_1, \ldots, H_n\}, |\mathcal{A}| = n$ be simplicial. For each H_i , $i = 1, \ldots, n$ we choose an element $\beta_i \in V^*$ such that $H_i = \beta_i^{\perp}$ and let $R := \{\pm \beta_1, \ldots, \pm \beta_n\} \subseteq V^*$. For each chamber $K \in \mathcal{K}(\mathcal{A})$ set

$$B^{K} = \{ \alpha \in R \mid \forall x \in K : \alpha(x) \ge 0, \ \langle \alpha^{\perp} \cap \overline{K} \rangle = \alpha^{\perp} \}$$

= { "normal vectors in R of the walls of K pointing to the inside" }.

If $\alpha_1^{\vee}, \ldots, \alpha_r^{\vee}$ is the dual basis to $B^K = \{\alpha_1, \ldots, \alpha_r\}$, then $K = \langle \alpha_1^{\vee}, \ldots, \alpha_r^{\vee} \rangle_{>0}$ since \mathcal{A} is simplicial.

Definition 2.8. Let \mathcal{A} be a simplicial arrangement in V and $R \subseteq V^*$ a finite set such that $\mathcal{A} = \{\alpha^{\perp} \mid \alpha \in R\}$ and $\mathbb{R}\alpha \cap R = \{\pm \alpha\}$ for all $\alpha \in R$. We call (\mathcal{A}, R) a **crystallographic** arrangement if for all $K \in \mathcal{K}(\mathcal{A})$:

$$R \subseteq \sum_{\alpha \in B^K} \mathbb{Z}\alpha.$$

Two crystallographic arrangements (\mathcal{A}, R) , (\mathcal{A}', R') in V are called **equivalent** if there exists $\psi \in \operatorname{Aut}(V^*)$ with $\psi(R) = R'$. We then write $(\mathcal{A}, R) \cong (\mathcal{A}', R')$.

- **Example 2.9.** (1) Let R be the set of roots of the root system of a crystallographic Coxeter group. Then $(\{\alpha^{\perp} \mid \alpha \in R\}, R)$ is a crystallographic arrangement.
 - (2) If $R_+ := \{(1,0), (3,1), (2,1), (5,3), (3,2), (1,1), (0,1)\}$, then
 - $\{\alpha^{\perp} \mid \alpha \in R_+\}$ is a crystallographic arrangement.

Remark 2.10. Weyl groupoids are reflection groupoids of crystallographic arrangements.

Definition 2.11. Fix an object B in a reflection groupoid $\mathcal{C}(\mathcal{A})$. Then

$$R^{B} = \{\gamma_{B}(\varphi(\alpha)) \mid \alpha \in B', \ \varphi \in \operatorname{Mor}(B', B)\} \subseteq \mathbb{R}^{r}$$

where $\gamma_B : V \to \mathbb{R}^r$ is the coordinate map with respect to B, is the set of **real roots** (at B). The collection $(\mathbb{R}^B)_B$ is denoted by $\mathcal{R}^{\text{re}}(\mathcal{W})$. A real root $\alpha \in \mathbb{R}^B$, is called **positive** (resp. **negative**) if $\alpha \in \mathbb{R}^r_{>0}$ (resp. $\alpha \in \mathbb{R}^r_{<0}$).

Let $\{\alpha_1, \ldots, \alpha_r\}$ be the standard basis of \mathbb{R}^r . We call the α_i simple roots.

Definition 2.12. Let $\mathcal{W}(\mathcal{A})$ be a reflection groupoid and \mathcal{A} the set of objects. The real roots of $\mathcal{W}(\mathcal{A})$ are called a **root system** if they satisfy:

- (R1) $R^a = R^a_+ \cup -R^a_+$, where $R^a_+ = R^a \cap \mathbb{R}^r_{\geq 0}$, for all $a \in A$.
- (R2) $R^a \cap \mathbb{R}\alpha_i = \{\alpha_i, -\alpha_i\}$ for all $i = 1, \dots, r, a \in A$.
- (R3) $\sigma_i^a(R^a) = R^{\sigma_i(a)}$ for all $i = 1, \dots, r, a \in A$.
- (R4) If $i, j \in \{1, \ldots, r\}$ and $a \in A$ such that $i \neq j$ and $m_{i,j}^a$ is finite, then $(\sigma_i \sigma_j)^{m_{i,j}^a}(a) = a$.

Here, $m_{i,j}^a = |R^a \cap (\mathbb{R}_{\geq 0}\alpha_i + \mathbb{R}_{\geq 0}\alpha_j)|.$

A root system is called **finite** if for all $a \in A$ the set R^a is finite.

2.3. Frieze patterns and quiddity cycles.

	0	1	1	3	2	1	0					
Example 2.13.		0	1	4	3	2	1	0				
			0	1	1	1	1	1	0			
				0	1	2	3	4	1	0		
					0	1	2	3	1	1	0	
						0	1	2	1	2	1	0

Definition 2.14. Let R be a subset of a commutative ring.

(1) A **frieze pattern** over R is an array \mathcal{F} of the form

where $c_{i,j}$ are numbers in R, and such that every (complete) adjacent 2×2 submatrix has determinant 1. We call n the **height** of the frieze pattern \mathcal{F} . We say that the frieze pattern \mathcal{F} is **periodic** with period m > 0 if $c_{i,j} = c_{i+m,j+m}$ for all i, j.

(2) A frieze pattern is called **tame** if every adjacent 3×3 -submatrix has determinant 0.

The following matrices are the key to the structure of tame frieze patterns.

Definition 2.15. For c in a commutative ring, let

$$\eta(c) := \begin{pmatrix} c & -1 \\ 1 & 0 \end{pmatrix}.$$

Remark 2.16. Notice that up to a transposition, $\eta(c)$ may be viewed as a reflection:

$$\eta(c) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & c \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \eta(c) = \begin{pmatrix} 1 & 0 \\ c & -1 \end{pmatrix}$$

We will see later why this implies that frieze patterns may be seen as reflection groupoids.

Proposition 2.17. Let R be a commutative ring.

(1) Let $\mathcal{F} = (c_{i,j})$ be a tame frieze pattern over R of height $n, c_k := c_{k,k+2}$ for $k \in \mathbb{Z}$. Then \mathcal{F} is periodic with period m = n+3 and

$$\prod_{k=1}^{m} \eta(c_k) = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}, \quad and \quad c_{i,j+2} = (M_{i,j})_{1,1}, \quad where \quad M_{i,j} := \prod_{k=i}^{j} \eta(c_k).$$

(2) Let $(c_1, \ldots, c_m) \in \mathbb{R}^m$ satisfy $\prod_{k=1}^m \eta(c_k) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, and let $M_{i,j} := \prod_{k=i}^j \eta(c_k)$ be as above. Then the $(a_{i,j+2})_{i,j} = ((M_{i,j})_{1,1})_{i,j}$ (where $i-1 \leq j \leq m+i-3$) defines a periodic tame frieze pattern over \mathbb{R} with period m and height m-3.

Definition 2.18. Let R be a subset of a commutative ring and $\lambda \in \{\pm 1\}$. A λ -quiddity cycle over R is a sequence $(c_1, \ldots, c_m) \in \mathbb{R}^m$ satisfying

(2)
$$\prod_{k=1}^{m} \eta(c_k) = \begin{pmatrix} \lambda & 0\\ 0 & \lambda \end{pmatrix} = \lambda \mathrm{id}$$

A (-1)-quiddity cycle is called a **quiddity cycle** for short.

Example 2.19. Consider the commutative ring \mathbb{C} and $R = \mathbb{C}$.

- (1) (0,0) is the only λ -quiddity cycle of length 2.
- (2) (1,1,1) and (-1,-1,-1) are the only λ -quiddity cycles of length 3.
- (3) (t, 2/t, t, 2/t), t a unit and (a, 0, -a, 0), a arbitrary, are the only λ -quiddity cycles of length 4 (check this as an exercise).

Remark 2.20. Let $\underline{c} = (c_1, \ldots, c_m)$ be a λ -quiddity cycle. Then for any $\sigma \in D_n$, the cycle \underline{c}^{σ} is a λ -quiddity cycle as well.

The following useful lemma is inspired by old results on continued fractions.

Lemma 2.21. Let $(c_1, \ldots, c_m) \in \mathbb{C}^m$ such that $\prod_{j=1}^m \eta(c_j)$ is a scalar multiple of the identity matrix. Then there are two different indices $j, k \in \{1, \ldots, m\}$ with $|c_j| < 2$ and $|c_k| < 2$.

Using $\eta(a)\eta(b) = \eta(a+1)\eta(1)\eta(b+1)$ for all a, b we conclude:

Corollary 2.22. Frieze patterns with entries in \mathbb{N} correspond to triangulations of polygons by non-intersecting diagonals.

3. FINITE WEYL GROUPOIDS

3.1. Rank two.

Remark 3.1. The set of quiddity cycles with entries in $\mathbb{N}_{>0}$ corresponds to the sequences of Cartan entries of finite Weyl groupoids of rank two.

Definition 3.2. A reflection groupoid and its root system are called **irreducible** if all Cartan matrices are indecomposable.

These are the roots of irreducible finite Weyl groupoids of rank two.

Definition 3.3. Define \mathcal{F} -sequences as finite sequences of length ≥ 3 with entries in \mathbb{N}_0^2 given by the following recursion.

(1) ((0,1), (1,1), (1,0)) is an \mathcal{F} -sequence.

(2) If (v_1, \ldots, v_n) is an \mathcal{F} -sequence, then

$$(v_1,\ldots,v_i,v_i+v_{i+1},v_{i+1},\ldots,v_n)$$

are \mathcal{F} -sequences for $i = 1, \ldots, n-1$.

(3) Every \mathcal{F} -sequence is obtained recursively by (1) and (2).

Proposition 3.4. Crystallographic arrangements of rank two correspond to \mathcal{F} -sequences: each \mathcal{F} -sequence is a set of roots of a Weyl groupoid.

Corollary 3.5. Assume that $\mathcal{R}^{re}(\mathcal{W}(\mathcal{A}))$ is a finite root system of a Weyl groupoid. Then for all objects a and $\alpha \in \mathbb{R}^{a}_{+}$, either α is simple or it is the sum of two positive roots in \mathbb{R}^{a}_{+} .

Corollary 3.6. Let \mathbb{R}^a be the set of roots at an object a of a finite Weyl groupoid of rank two and $(c^a_{i,j})$ the Cartan matrix at a. Then

$$c_{i,j} = -\max\{k \in \mathbb{N}_{\geq 0} \mid k\alpha_i + \alpha_j \in \mathbb{R}^a\}$$

for $i \neq j$. Moreover, $k\alpha_i + \alpha_j \in R^a$ for $k = 0, \ldots, -c_{i,j}$.

3.2. Rank three. Let A be the set of objects of an irreducible reflection groupoid and $a \in A$. The last observation on root systems of rank two implies the following central result:

Theorem 3.7. Let $\alpha \in R^a_+$. Then either α is simple, or it is the sum of two positive roots.

Theorem 3.8. Let $\alpha_1, \ldots, \alpha_r$ be the simple roots at a. Then $\sum_{i=1}^r \alpha_i \in R^a$.

View the roots as elements of \mathbb{Z}^3 with the lexicographic ordering \leq .

Lemma 3.9. Let $\alpha, \beta \in R^a_+$ be minimal in $\langle \alpha, \beta \rangle_{\mathbb{Q}} \cap R^a_+$ with respect to \leq . Then $\langle \alpha, \beta \rangle_{\mathbb{Q}} \cap R^a \subseteq \pm(\mathbb{N}_0\alpha + \mathbb{N}_0\beta)$.

Theorem 3.10 (Weak Convexity). Let $a \in A$ and $\alpha, \beta, \gamma \in R^a_+$. If $det(\alpha, \beta, \gamma)^2 = 1$ and α, β are the two smallest elements of $\langle \alpha, \beta \rangle \cap R^a_+$, then either α, β, γ are simple, or one of $\gamma - \alpha$, $\gamma - \beta$ is in R^a .

Roots on the plane (1, *, *)Example: $\alpha = (0, 1, 0), \beta = (0, 0, 1), \gamma = (1, 7, 3)$ 6

Theorem 3.11 (Required roots). Let $a \in A$ and $\alpha, \beta, \gamma \in R^a_+$. Assume that $\det(\alpha, \beta, \gamma)^2 = 1$ and that $\gamma - \alpha, \gamma - \beta \notin R^a$. Then $\gamma + \alpha \in R^a$ or $\gamma + \beta \in R^a$.

Theorem 3.12 (Bound for the Cartan entries). All entries of the Cartan matrices are greater or equal to -7.

Remark 3.13. In fact, all entries of the Cartan matrices are greater or equal to -6.

The preceding theorems suggest the following algorithm.

Function **Enumerate**(R)

- (1) If R defines a crystallographic arrangement, output R and continue.
- (2) $Y := \{ \alpha + \beta \mid \alpha, \beta \in R, \ \alpha \neq \beta \} \setminus R.$
- (3) For all $\alpha \in Y$ with $\alpha > \max R$:
 - (a) Compute all "subgroupoids of rank two" in $R \cup \{\alpha\}$.
 - (b) If all Cartan entries are ≥ -7 , all rank two root sets are \mathcal{F} -sequences, and the "Weak Convexity" is satisfied, then call **Enumerate** $(R \cup \{\alpha\})$.

Remark 3.14. We use Theorem "Required roots" as a further obstruction.

The algorithm terminates and yields the result:

Theorem 3.15 (Cuntz, Heckenberger (2012)). Up to equivalences, there are 55 irreducible crystallographic arrangements of rank three.

3.3. **Higher rank.** With the knowledge about rank three, we enumerate crystallographic arrangements in ranks four to eight with a similar algorithm.

An analysis of Dynkin diagrams leads to a complete classification in rank > 8.

Theorem 3.16 (Cuntz, Heckenberger (2015)). There are exactly three families of irreducible crystallographic arrangements:

- (1) The family of rank two parametrized by triangulations of a convex n-gons by nonintersecting diagonals.
- (2) For each rank r > 2, arrangements of type A_r , B_r , C_r and D_r , and a further series of r-1 arrangements.
- (3) Further 74 "sporadic" arrangements of rank $r, 3 \le r \le 8$.

Remark 3.17. The proof of the classification relies on enumerations by the computer. In rank three, approximately 60.000.000 cases need to be considered. A "short" proof is work in progress. At least an enumeration of all potential parabolics seems to be possible.

References

- [BC12] M. Barakat and M. Cuntz, Coxeter and crystallographic arrangements are inductively free, Adv. Math. 229 (2012), no. 1, 691–709.
- [CG15] M. Cuntz and D. Geis, Combinatorial simpliciality of arrangements of hyperplanes, Beitr. Algebra Geom. 56 (2015), no. 2, 439–458.
- [CG17] _____, Tits arrangements on cubic curves, ArXiv e-prints (2017), 15 pp.
- [CH15] M. Cuntz and I. Heckenberger, *Finite Weyl groupoids*, J. Reine Angew. Math. **702** (2015), 77–108.
- [CM17] M. Cuntz and P. Mücksch, Supersolvable simplicial arrangements, ArXiv e-prints (2017), 33 pp.
- [CMW17] M. Cuntz, B. Mühlherr, and C. J. Weigel, Simplicial arrangements on convex cones, Rend. Semin. Mat. Univ. Padova 138 (2017), 147–191, available at arXiv:1505.08024.
- [Cun11a] M. Cuntz, Crystallographic arrangements: Weyl groupoids and simplicial arrangements, Bull. London Math. Soc. 43 (2011), no. 4, 734–744.
- [Cun11b] _____, Minimal fields of definition for simplicial arrangements in the real projective plane, Innov. Incidence Geom. **12** (2011), 49–60.
- [Cun12] _____, Simplicial arrangements with up to 27 lines, Discrete Comput. Geom. 48 (2012), no. 3, 682–701.
- [Cun14] _____, Frieze patterns as root posets and affine triangulations, European J. Combin. 42 (2014), 167–178.
- [Cun18] _____, On subsequences of quiddity cycles and nichols algebras, J. Algebra **502** (2018), 315 327.
- [Del72] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302.