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Q-factorial domains

Adviser G. Scheja

Definition
A Krull domain A is called Q-factorial (or almost factorial) if
Cl(A)⊗Q = 0 or, equivalently, if every element in Cl(A) is torsion.

Standard properties:

1. factorial⇒ Q-factorial

2. If A Q-factorial ⇒ A[X ] is Q-factorial

3. If A Q-factorial ⇒ S−1A is Q-factorial
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Q-factorial domains

Some results:

1. If R → R ′ is an integral extension of Krull rings and R ′ is
Q-factorial then so is A.

2. In particular: if a finite group G acts on R ′ and R = R ′G then
R is Q-factorial.

3. If Am[[T ]] Q-factorial ∀m⇒ A[[T ]] is Q-factorial

4. If A complete Q-factorial, depthA ≥ 3⇒ A[[T ]] is Q-factorial

5. If dim A = 2 then A is Q-factorial iff it has a rational
singularity.

6. Numerous examples, e.g. A = C{x , y , z}/(x r + y s + z t)
(r , s, t pairwise coprime) is Q-factorial iff (r , s, t) = (2, 3, 5).
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Background

Mumford (Pub. Math. 61), Brieskorn (Invent. 67) and Lipman
(Pub.Math. 69)

Question of Samuel: is Cl(A)→ Cl(A[[T ]]) always an
isomorphism? First counterexample by P. Salmon 1966.
Scheja: if A is complete and factorial with depthA ≥ 3 then
A[[X ]] is factorial.

Theorem
Storch Math. Ann. 183(1969): If A is analytic C-algebra, Cl(A) is
finitely generated then Cl(A)→ Cl(A{T}) is an isomorphism.
Moreover Cl(A) is finitely generated iff A is 1-rational.

Definition (Danilov 70): A is said to have discrete divisor class
groups if Cl(A)→ Cl(A[[T ]]) an isomorphism.
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The work with Bingener

Definition
An excellent Q-algebra A is said to have s-rational singularities if
for some resolution of singularities f : X → SpecA we have
R i f∗(OX ) = 0 for i = 1, . . . , s.

Bingener, Jürgen; Storch, Uwe: Zur Berechnung der
Divisorenklassengruppen kompletter lokaler Ringe. [On the
computation of the divisor class groups of complete local rings]
Leopoldina Symposium: Singularities (Thüringen, 1978). Nova
Acta Leopoldina (N.F.) 52 (1981), no. 240, 7–63.
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The work with Bingener

1. s-rational singularities (Review and generalization of work of
Boutot, Elkik, Kempf)
Kempf: A is rational iff A is CM and all forms in ωA are
liftable to resolution of singularites.

2. Description of Cl(Â)/Cl(A) if A is (quasi)homogenous:

Theorem
If A is a homogeneous Q-algebra and X → SpecA is an equivariant
resolution of singularities then Cl(Â)/Cl(A) ∼=

∏
i>0 H1(E ,OE (i)).

3. N.B.:Later: −−: quasihomogeneous case.

4. Calculation of many examples, e.g. Brieskorn polynomials in
dimension 3 but only in the case that there are no period
relations.
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The work with Bingener

Let A be a quasihomogeneous isolated hypersurface singularity of
dimension 3 over C and E = ProjA. Main observations:

1. Cl(A) has no torsion

2. rkCl(A) = rk(PicE )− 1

3. The exponential sequence induces

0 = H1(E ,OE )→ Pic(E )→ H1(E ,Z)→ H2(E ,OE ) ∼= (ωA)0

Theorem
If (ωA)0 = 0 then Cl(A) ∼= Z%(E)−1, where
%(E ) := rkPic(E ) = H2(E ,Z).
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Brieskorn singularities

Storch, J. Reine Angew. Math. 350 (1984), 188–202

Theorem
There is an algorithm to compute the Picard-numbers of
tr11 + tr22 + tr33 + tr44 = 0.

Difficult case: 1
r1

+ . . .+ 1
r4
≥ 0.
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Differential modules of (semi-)analytic algebras
Differential dependence of ideals

Scheja, Günter; Storch, Uwe: Differentielle Eigenschaften der
Lokalisierungen analytischer Algebren. Math. Ann. 197 (1972),
137–170

Aim: Generalize the theory of differentials to much wider classes
of rings

I Universally finite (prefinite, separated) modules of differentials
(e.g. algebraic varieties, analytic algebras, Stein algebras)

I Localization for semianalytic algebras.

I Regularity criterion; seperabilty questions

I Estimates for minimal number of generators and rank.

Theorem
The Zariski-Lipman conjecture for hypersurface singularities holds.
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Theorem
If chark = 0, A = R/a and R = k[[x1, . . . , xn]] is regular then

dim A ≥ dimk Hom(Ω1
A, k)− dimk Ext1A(Ω1

A, k)

≥ dim R − µ(a).

Exact sequence: 0→ %(a)→ Ω1
R/aΩ1

R → Ω1
A → 0

and dimk Ext1A(Ω1
A, k) = dimk %(a)/m%(a) ≤ dimk a/ma.
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Theorem
Suppose that f : X → Y is a dominant finite morphism of
algebraic varieties over C, where X is normal. Then a vector field
V on Y admits a lifting to X if and only if it is tangent to f (C )
for every component C of the critical set of f .
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Number of equations
The Oberseminar in Osnabrück
(Quasi-)Frobenius Algebras

Storch, Uwe: Bemerkung zu einem Satz von M. Kneser. Arch.
Math. (Basel) 23 (1972), 403–404

Theorem
Every algebraic set in An is set-theoretically the intersection of n
hypersurfaces.

(M. Kneser: n = 3.)

Eisenbud, David; Evans, E. Graham, Jr.: Every algebraic set in
n-space is the intersection of n hypersurfaces. Invent. Math. 19
(1973), 107–112
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(Quasi-)Frobenius Algebras

Scheja; Storch: Quasi-Frobenius-Algebren und lokal vollständige
Durchschnitte. Manuscripta Math. 1976

Definition
A finite projective A-algebra B is called

I Quasi-Frobenius if HomA(B,A) is projective,

I Frobenius if HomA(B,A) ∼= B,

I a (local) complete intersection over A if B = A[X1, . . . ,Xn]/I
such that I/I 2 is a (locally) free B-module.

If A is a DVR: Roquette
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Application to curves

Theorem
Let B = k[X1, . . . ,Xn]/I be a smooth curve over the infinite field
k such that Ω1

B/k
∼= B. Then I is generated by n − 1 elements.

Murthy Tauber 74: k is algebraically closed
Mohan Kumar: 77 more general result.
Further work on (quasi-)Frobenius algebras and complete
intersections:
Explicit construction of a trace map for local complete
intersections.
When are Dedekind’s, Noether’s and Kaehler’s different equal
(they describe all the ramification locus of A→ B.)
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vollständigen Durchschnitten. J. Reine Angew. Math. 278/279
(1975), 174–190.

Bingener, Jürgen; Storch, Uwe: Resträume zu analytischen
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