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3.2 Maps and submanifolds of symplectic manifolds3.3 K�ahlerian and almost K�ahlerian manifolds3.4 Hamiltonian dynamical systems on symplectic manifoldsReferencesIntroductionThese lecture notes are based on courses I gave in Villa de Leyva in Colombia and inHamburg in Germany, mainly for students of mathematics and/or theoretical physics,during the second half of the year 1999. Since most of the more advanced material of thecourse in Villa de Leyva is available as part of the text [Wu], I concentrated here on thefoundations of the theory of di�erentiable manifolds (and of symplectic geometry), beingat the base of most considerations in the �eld of geometry related to theoretical physics.After a short motivation of the Hamiltonian approach to mechanics, the main body of thetext proceeds as follows:In Chapter 1, we complement standard knowledge in linear algebra by a thorough de-velopment of multilinear algebra, indispensable for the calculus of di�erential forms onmanifolds, as well as of \symplectic algebra", i.e., the basic results on symplectic vectorspaces as, e.g., normal forms and the existence of compatible complex structures.The second chapter develops the theory of �nite dimensional manifolds from scratch. Wegive complete proofs of all crucial points of the text, with the only exceptions of the con-struction of partitions of unity, the proof of Stokes' theorem and of \Moser's formula". Weinclude de Rham cohomology in our presentation since it plays a prominent role in theo-retical physics (and of course in geometry), though admittedly physicists tend to describeit in a di�erent language. We strongly believe that learning the general mathematicalformulation at an early stage is well worth the e�ort since it uni�es several importantnotions.Chapter 3 is an introduction to symplectic geometry and Hamiltonian dynamical systems.The concise formulation and easy proofs of the foundational results of analytical mechanicsas, e.g., the theorems of Darboux and Noether, the existence of symplectic structures onthe total space of the cotangent bundle of a manifold and the properties of the Poissonstructure on a symplectic manifolds here show the usefulness of the preceding chapter.We also give some basic material of contemporary symplectic di�erential geometry as thenotion of a K�ahlerian manifold and rudiments of the theory of non-linear symplectic maps.3



Though there are a few references scattered throughout the text, we conclude each sectionwith some \Bibliographical remarks", where hints on related literature are given, as anincitation for further reading and self-study.Let me take the opportunity to thank all participants of the courses in Villa de Leyvaand Hamburg for their interest and \feedback". Last but not least I would like to thankSergio Adarve, Dorothea Glasenapp, Sylvie Paycha, Peter Slodowy, Andr�es Reyes, RolandoRold�an and M�onica Vargas without whose e�orts these courses and lecture notes wouldnot have been possible and with whom working together was always a pleasure for me.Tilmann WurzbacherStrasbourg, June 26, 2000.0. Motivation0.1 An example from mechanics: from Newton to Lagrange to HamiltonLet us consider a particle of mass m (m > 0, small compared to the mass of the earth),\close" to the earth, subject to the gravitational �eld of the earth. We can assume thesurface of the earth to be the plane q3 = 0 and describe the trajectory of the particle byq(t) = (q1(t); q2(t); q3(t)) with q3 � 0. The exterior force acting on the particle is givenby F = �mg e3 with g denoting the (strictly positive) \gravitational constant" and e3standing for the third unit vector in R3.Newtonian description:The Newtonian equation of motion is F = m�qwith initial conditions q(0) = q0 with q03 � 0 and _q(0) = v0 :Here we have �mge3 = m�q so that the trajectory is given byq(t) = q0 + tv0� g t22 e3 :Observation. The above force �eld ~F is \conservative", i.e. there is a functionU : fq 2 R3 j q3 � 0g ! R such that ~F = �~rU :4



This function, here we can take e.g. U(q) = mgq3, is called the \potential energy", whereasthe function T = m2 ( _q)2 = m2 (( _q1)2+( _q2)2+ ( _q3)2) is considered as the \kinetic energy". Inthe case of a conservative force �eld we can go to theLagrangian description:Let L = L(q; _q; t) := T�U be the \Lagrange function" (that might depend explicitly ont!), then the Lagrangian equation of motion isddt @L@ _qk � @L@qk = 0 for k = 1; 2; 3with initial condition as aboveq(0) = q0 with q03 � 0 and _q(0) = v0 :In our example these equations are obviously the same as in the Newtonian approach.Observation. We have { at least in our example {@L@ _qk = m _qk = pk ;the \(linear) momentum" of the particle. We can thus write the \total energy" H =H(q; p) = T +U as a function of q and p! (This transition from L to H is called \Legendretransformation" and is not always possible! Since later on we will not be concerned withLagrangian mechanics we do not go into this question more deeply.)For such a \Hamilton function" or \Hamiltonian" H we have the following Hamiltonianequations of motion @H@pk = _qk and @H@qk = � _pk for k = 1; 2; 3with initial condition q(0) = q0 and p(0) = p0 :In the example we have H = 12mp2 + mgq3 (setting of course p2 = (p1)2 + (p2)2 + (p3)2)and p(0) = mv0. The equation of motion then reads as follow_qk = @H@pk = 1mpk and _pk = �@H@qk = �mg�k;3 :Di�erentiating the �rst equation with respect to time t and inserting the result into thesecond we �nd the Newtonian equation of motion for q = q(t) and we get p = p(t) then inthe case of the example trivially from q(t) and the �rst equation.Remark.The choice between the Lagrangian and the Hamiltonian approach (in a situationwhere both can be applied) depends on further details: the advantages of the Hamiltonianapproach lie in the equal treatment of the variables q and p, the �rst order of the equations,and a simple transition to quantummechanics. On the other hand, in relativistic mechanics5



or in the transition from classical �eld theory to quantum �eld theory the Lagrangian mightoften be more useful, at least for theoretical physicists.0.2 An in�nite dimensional example: the wave equationWithout going into the (functional-analytic) problems of domains crucial in in�nite di-mensional situations we will give here a simple class of a Hamiltonian equations, which are\equivalent" to certain non-linear wave equations.Let for n � 1S(Rn) = �f : Rn! R j limkxk!1P (x)Q� @@x� f(x) = 0 8P;Q 2 R[T1; :::; Tn]�(with Q( @@x) = Q( @@x1 ; :::; @@xn ) viewed as a scalar partial di�erential operator with constantcoe�cients). Given a function U in, e.g., S(R)we de�ne the vector space E = S(R3)�S(R3)and a function H : E ! R byH(�; �) = ZR3��22 + kr�k22 + U(�)� d3x :By analogy we can consider the following Hamiltonian equation@H@� = _� and @H@� = � _� :We interpret the partial derivatives as \L2-gradients" in the following sense��@H@� � (�0; �0); ~��L2(R3) = (D2H)(�0;�0) (~�) = dd����0H(�0; �0 + �~�)and analogously for �.A direct calculation yields:��@H@� � (�0; �0); ~��L2(R3) = h�0; ~�iL2(R3) and��@H@� � (�0; �0); ~��L2(R3) = D���0 + U 0(�0); ~�EL2(R3) ;where U 0 denotes the derivative of U .In the case at hand the Hamiltonian equation thus reads as follows:_� = @H@� = � and _� = �@H@� = ��0 � U 0(�0) :(We suppress here the discussion of the initial condition as well as the existence anduniqueness questions for the solutions of this equation.)6



Thus a curve t 7! (�; _�) 2 E satis�es the Hamilton equation if and only if the function(t; x) 7! �(t)(x) ful�lls the following nonlinear wave equation on R3:�� = ��� U 0(�) :This example indicates that techniques from Hamiltonian systems might be useful in thestudy of partial di�erential equations. Other applications of in�nite dimensional symplecticgeometry and Hamiltonian systems might come from the extension of geometric quantiza-tion (or any other quantization procedure starting from Hamiltonian mechanics) to in�nitedimensional situations.0.3 Solving the Hamilton equation for one degree of freedomExample. In the theory of small oscillations the basic Newtonian equation is as follows:�q = F (q) = �m!2q with m > 0 and ! > 0 :The corresponding Hamilton function isH : R! R; H(q; p) = 12mp2 + m!22 q2 ;and the Hamiltonian equation is given by_q = @H@p = 1mp and _p = �@H@q = �m!2qwith initial condition q(0) = q0 and p(0) = p0 :This equation is equivalent to the Newtonian equation �q = �!2q and its solution is easilycalculated: q(t) = q0 cos(!t) + p0m! sin(!t); p(t) = p0 cos(!t)� q0m! sin(!t) :Remarks. Let V be open in R2n and H = H(q; p) a real-valued smooth function on V .(1) \Conservation of energy"For each (local) solution t 7! 
(t) = (q(t); p(t)) of the Hamiltonian equation one has:ddtH(
(t)) = 0 ;i.e. for a connected open intervall I and any t0 in I one hasH(
(t)) = H(
(t0)) = H0 for all t 2 I :7



(Proof as an exercise.)(2) A constant solution of the Hamilton equation is called a \stationary solution" or an\equilibrium point".(3) For a Hamilton function of the typeH(q; p) = T + U(q) = 12mp2 + U(q)(with p2 = kpk2 as usual) a (local) solution of the Hamilton equation with initial conditionq(t0) = q0 and p(t0) = p0 is constant if and only if the following holds:�p0 = 0 and (rU)(q0) = 0� :(Proof again as an exercise.)Solution of the Hamilton equation: one degree of freedom.Let us consider here only Hamiltonians of the type H = 12mp2 + U(q) with q; p in an openset in R2. (We denote here the dimension of the \con�guration space", i.e. \the space ofq's", as the number of \degrees of freedom" of a mechanical system; see below in Section3.1.)Case 1. Equilibrium pointsFrom Remark (3) above we know that equilibrium points are caracterized by (p0 = 0 and(rU)(q0) = 0) : Obviously the solutions are then given by 
(t) � 
(t0) = (q0; p0) for all tin R.Case 2. p0 6= 0Since in this case T (p0) > 0 we know by the conservation of energy that E0 � U(q(t)) > 0for t near t0 on a solution. (We denote H(q0; p0) by E0 here.)It follows that p(t) = �p2m(E0 � U(q(t))) and for t � t0 small the sign is given by thesign of p0.Let us assume without loss of generality that p0 > 0. The Hamilton equation implies nowdqdt =r 2m(E0 � U(q(t))) :Since the right hand side is nonvanishing we can writedt = dq(t)q 2m(E0 � U(q(t)))and we thus arrive, at least for t1 � t0 small, at the following equation:t1 � t0 = Z t1t0 dt = Z t1t0 dq(t)q 2m (E0 � U(q(t))) :8



For t in [t0; t1] the function t 7! q(t) is invertible and hencet1 � t0 = Z q(t1)q(t0) 0@ 1q 2m (E0 � U(q))1A dq = Z q(t1)q(t0) f(q)dq = F (q(t1))� F (q(t0)) ;where F 0 = f . This is equivalent toF (q(t)) = t+ (F (q(t0))� t0) for jt� t0j small:Furthermore we observe that F 0(q0) = mp0 6= 0 and thus F is locally invertible near q(t0) =q0, i.e., F�1 = G. This allows the following formula, obtained only by \quadratures"(i.e. integration of functions in one variable) and \algebraic operations" (i.e. the usualoperations on numbers and the calculation of inverses of functions in one variable):q(t) = G(t+ F (q0)� t0); p(t) = m _q(t)for t su�ciently close to t0.Case 3. p0 = 0 and @U@q (q0) 6= 0Since we are not allowed to divide byp2=m(E0 � U(q)) as in the preceding case, we haveto use the condition @U@q (q0) 6= 0 that implies that there exists a function Q = Q(u) locallyde�ned near u0 = U(q0) such that Q � U(q) = q.Using conservation of energy we haveU(q(t)) = E0 � p(t)22m =: f1(p(t))on solutions and thus we have (near p0)q(t) = (Q � f1)(p(t))for solutions of the Hamilton equation.This equation implies furthermore_p = �@U@q = �U 0(q) = ((�U 0) �Q � f1) (p) =: f2(p)and f2(p0) = (�U 0)(q0) 6= 0 and thus we have, for p close to p0 that f2(p) 6= 0.Using f(p) = 1f2(p) we rewrite this for p near p0 as follows:dt = dp(t)f2(p(t)) = f(p(t))dp(t) :We deduce for jt1 � t0j su�ciently small thatt1 � t0 = Z t1t0 dt = Z t1t0 f(p(t))dp(t) = Z p(t1)p(t0) f(p)dp ;9



since _p(t0) = @U@q (q0) 6= 0 implies that t 7! p(t) is a variable transformation for t close tot0. Thus, with F a primitive of f , we have t1 � t0 = F (p(t1))� F (p(t1)) and thereforeF (p(t)) = t+ F (p0)� t0for t close to t0. Since F 0(p) = f(p) = 1f2(p) 6= 0 for p close to p0 and thus { a fortiori { forp(t) with t close to t0, there exists a local inverse G = F�1 with G � F (p) = p for p closeto p0.We arrive at the \explicit" solution formulap(t) = G(t+ F (p0)� t0)and with _q = pm we reach the following conclusionq(t) = Z t1t0 p(s)m ds+ q0 = Z t1t0 G(s+ F (p0)� t0)m ds+ q0 :Back to the example of the harmonic oscillator.Since @U@q = m!2q we �nd that@U@q = 0 if and only if q = 0 :Case 1. Equilibrium pointsThe only equilibrium point is given by p0 = 0; q0 = 0.Case 2. p0 6= 0Let us without loss of generality assume that p0 > 0.The condition E0 � U(q) > 0 is equivalent to jqj <q 2E0m!2 and for these q we havef(q) =r m2E0 1r1 � �m!22E0 � q2with a primitive given by F (q) = 1! arcsin sm!22E0 � q! :For jrj < �2! we have the following explicit inverse of F :G(r) =r 2E0m!2 sin(!r) :10



Thus the local solution of the Hamilton equation isq(t) = G(t+ F (q0)) =r 2E0m!2 sin(!t+ !F (q0)) :A direct calculation shows thatq(t) = q0 cos(!t) + p0m! sin(!t)for jqj <q 2E0m!2 , i.e. as long as p(t) > 0.Observation. The above solution is a priori only locally de�ned, i.e. for t close to t0. Inthe case at hand we can immediately extend it to a solution for all real t.Case 3. p0 = 0 and @U@q (q0) 6= 0We leave the analysis of this case as an exercise.Remark. The aim to �nd explicit formulas for the solutions of Hamiltonian systems ledto the discovery of many important special functions in the 19th century. Notably thetheory of analytic functions in one complex variable and of \Riemann surfaces" was highlystimulated by this search.Bibliographical remarks. Our - highly subjective - choice of physics texts on classicalmechanics include [Ar1], [Gol] and [Sch]. For the mathematical approach to in�nite di-mensional Hamiltonian mechanics see, e.g., [AMR] and [CM]. A good german reference is[Lau] which we followed in Section 0.2.1. Multilinear and symplectic algebraIn Chapter 1 all vector spaces will be �nite dimensional over a �eld K which is R or C ifnot explicitely stated otherwise.1.1 Multilinear formsDe�nition. A \bilinear form" on a K{vector space V is a map B : V � V ! K such that(i) B(v + v0; w) = B(v;w) +B(v0; w)B(� � v;w) = � �B(v;w) and(ii) B(v;w+ w0) = B(v;w) +B(v;w0)B(v; � � w) = � �B(v;w) for all v; v0; w;w0 in V and for all �; � in K.11



Remark. Using the canonical basis fe1; :::; eng of Kn a bilinear form B on Kn can berepresented in a unique way by a square matrix Q = QB in Mat(n� n;K) as follows:B(x; y) = B� nXj=1 xjej; nXk=1 ykek� = nXj;k=1xjB(ej; ek)yk = nXj;k=1 xjQjkyk = tx �QB � y:Lemma. The map B(V ) := fB : V � V ! K jB is bilinearg ! Mat(n� n;K); B 7! QBis a K{vector space isomorphism.Proof. Exercise. 2Remark. Let T : U ! V be a K{linear map and B a bilinear form on V , then we de�nethe \pullback of B unter T" by(T �B)(u1; u2) := B(T (u1); T (u2))for all u1; u2 in U . We observe that T �B is a bilinear form von U .Special Case. Let U = V = Kn and T = TA, the linear map x 7! A�x associated to a(n� n){matrix A. Then QT �B = tA �QB �A.Proof. Exercise. 2De�nition. (1) A bilinear form B on V is called \symmetric"ifB(v; v0) = B(v0; v) for all v; v0 in V:(2) A bilinear form B on V is called \skew{symmetric" (or \anti-symmetric" or \alternat-ing") if B(v; v0) = �B(v0; v) for all v; v0 in V:Remark. If B is skew{symmetric, then B(v; v) = 0 for all v in V .Lemma. (i) Each bilinear formB on V is uniquely decomposed into the sum of a symmetricand an alternating bilinear form.(ii) If B is a bilinear form on Kn and QB the associated matrix, then one has(B is symmetric if and only if t(QB) = QB)and (B is skew{symmetric if and only if t(QB) = �QB):Proof. Exercise. 2Let us recall the \tensor algebra" language: we denote by Nk V � the set of multilinearmaps from V k = V � � � � � V| {z }k times ! K, and by T (V �) the \tensor algebra (over V �)":Mk�0 kOV � = f(m0;m1; : : :)jmk 2 
kV � and mk = 0 for almost all kg:12



If f�1; : : : ; �ng is an ordered basis of V and f��1; : : : ; ��ng the dual basis of V � thenf��i1 
 : : :
 ��ik j i1; : : : ; ik 2 f1; : : : ; nggis a basis of Nk V � and thus its dimension equals nk. The multiplication on T (V �) isgiven as follows: let t 2 
kV �; s 2 
lV � and v1; : : : ; vk+l 2 V . Then the element tN s ofNk+l V � is de�ned by(t
 s)(v1; : : : ; vk; vk+1; : : : ; vk+l) := t(v1; : : : ; vk)s(vk+1; : : : ; vk+l):Lemma. The K{vector space T (V �) together with the multiplication given byN is a non{commutative, associative, unital K{algebra.Proof. Exercise. 2The \symmetric group" Sk of all permutations of the set f1; : : : ; kg acts on Nk V � asfollows: �(t)(v1; : : : ; vk) := t(v�(1); : : : ; v�(k)) 8v1; : : : ; vk 2 V:Lemma. Let � and � be in Sk and t in Nk V �. Then(� � � )(t) = �(� (t)):Proof. Setting wk := v�(k) we have�(� (t))(v1; : : : ; vk) = � (t)(v�(1); : : : ; v�(k)) = � (t)(w1; : : : ; wk) = t(w�(1); : : : ; w�(k)):By de�nition we have v�(�(j)) = w�(j) and thust(w�(1); : : : ; w�(k)) = t(v�(�(1)) : : : ; v�(�(k))) = t(v(���)(1); : : : ; v���(k)) = (� � � )(t)(v1; : : : ; vk):2Lemma. Let � : Sk ! Knf0g be a homomorphism. Then either �(�) = 1 for all � in Skor �(�) = sign(�), de�ned by (�1)r on a product � = �1 � � � � � �r of transpositions �j forj = 1; : : : ; r.Idea of the proof. The group Sk is generated by transpositions and Knf0g is abelian.2De�nition. (1) The space of \symmetric k{forms" is given bySkV � = ft 2 
kV �j�(t) = t 8� 2 Skg:(2) The space of \skew{symmetric (or alternating) k{forms" is given by�kV � = ft 2 
kV �j�(t) = sign(�) � t 8� 2 Skg:Remarks. (1) We have a natural \symmetrizer" mapSymm : 
kV � ! 
kV �; Symm(t) = 1k! X�2Sk �(t)13



such that Symm � Symm = Symm and the image of Symm is SkV �. Obviously Symmextends to a map T (V �)! T (V �) with analogous properties. Combining Symm with thetensor product 
 we obtain a multiplication onS(V �) =Mk�0 SkV � : t _ s := Symm(t
 s) for t; s in S(V �):It follows that S(V �) is a commutative, associative, unital K{algebra. Let us also remarkthat the dimension of SkV � equals � n+ k � 1k � if n is the dimension of V , and thatS(V �) is isomorphic to the space of polynomials on V as a K{algebra. (See [Gre] for proofsof this and more details on symmetric tensors.)(2) Analogously, we have a natural \alternator" or \anti{symmetrizer" mapAlt : 
kV � ! 
kV �; Alt(t) = 1k! X�2Sk sign (�)�(t)such that Alt �Alt = Alt and Alt(
kV �) = �kV �. Again Alt extends to a mapAlt : T (V �)! �(V �) =Mk�0 �kV �:De�niton. Let � be in 
kV � and � in 
lV �, then the \wedge product of � with �" isde�ned as follows: � ^ � := (k + l)!k! l! Alt(�
 �):Remark. The factor in the above de�nition of the wedge product is chosen such that itrelates in the easiest possible way to volumes: let f�1; �2g be a basis of a vector space Vand f��1; ��2g the dual basis, then with the above de�nition��1 ^ ��2(�1; �2) = 1:Proposition. Let � be in 
kV �, � in 
lV � and 
 in 
mV �. Then(i) � ^ � = Alt(�) ^ � = � ^ Alt(�) = Alt(�) ^ Alt(�):(ii) \^" is K{bilinear.(iii) � ^ � = (�1)k�l� ^ �.(iv) � ^ (� ^ 
) = (� ^ �) ^ 
.Proof. Ad (i). Alt(Alt(�)
 �) = Alt� 1k! X�2Sk sign(�)�(�)
 ��= 1(k + l)! X�2Sk+l sign(�)� 1k! X�2Sk sign(�)�(�(�)
 �)�:14



We de�ne �0 in Sk+l by setting �0(j) = �(j) for j = 1; : : : ; k and �0(j) = j for j =k + 1; : : : ; k + l. It followsAlt(Alt(�)
 �) = 1k! X�2Sk0@ 1(k + l)! X�2Sk+l(sign(� � �0))(� � �0)(� 
 �)1A= 1k! X�2Sk Alt(�
 �) = Alt(� 
 �):Analogously one has Alt(� 
Alt(�)) = Alt(� 
 �) and (i) follows easily.Ad (ii). Since Alt is linear and \
" is bilinear, the second assertion follows directly fromthe de�nition of \^".Ad (iii). Let v1; : : : ; vl+k be vectors in V .Then � 
 �(v1; : : : ; vl; vl+1; : : : ; vl+k) = �
 �(vl+1; : : : ; vl+k; v1; : : : ; vl)= �
 �(v�l;k(1); : : : ; v�l;k(l+k));where the permutation �l;k in Sl+k is uniquely de�ned by the last equality sign andsign(�l;k) = (�1)l�k. Thus � 
 � = �l;k(� 
 �) and one �ndsAlt(� 
 �) = 1(k + l)! X�2Sk+l sign(� )� (� 
 �)= sign(�l;k) 1(k + l)! X�2Sk+l sign(� ) � sign(�l;k)� (�l;k(�
 �))= sign(�l;k) 1(k + l)! X�2Sk+l(sign(� � �l;k))(� � �l;k)(� 
 �) = (�1)k�lAlt(�
 �):Thus � ^ � = (�1)k�l � ^ �.Ad (iv). Using (i) we have� ^ (� ^ 
) = � ^ �(l+m)!l!m! Alt(� 
 
)� = (l +m)!l!m! � ^ (� 
 
)= (l +m)!(k + l +m)!l!m!k!(l+m)! Alt(�
 (� 
 
))= (k + l +m)!(k + l)!m!k!l! Alt((� 
 �)
 
) = (k + l)!k!l! (�
 �) ^ 
= �(k + l)!k!l! Alt(�
 �)� ^ 
 = (� ^ �) ^ 
: 2Corollary 1. If f�1; : : : ; �ng is a basis of V with dual basis f��1; : : : ; ��ng thenf��i1 ^ : : : ^ ��ik j1 � i1 < � � � < ik � ng15



is a basis of �kV �.Proof. Exercise. 2Corollary 2. If k > n = dimK V then �kV � = f0g, and for 0 � k � n we havedimK �kV � = � nk �. For the whole \exterior algebra" we have�(V �) =Mk�0 �kV � = nMk=0 �kV �and its dimension equals 2n.Proof. Obvious from Corollary 1. 2Let us make a slight digression with the followingDe�nition. A K{algebra A is called a \K{super algebra" or \Z2{graded K{algebra" ifA = A�0 �A�1 as a K{vector space and the multiplication on A ful�ls (�; � 2 f�0; �1g =Z2):a� � b� 2 A�+� 8a� 2 A�; 8b� 2 A�:We call A�0 resp. A�1 the \even" respectively the \odd" part of A.We call A \super{commutative" or \Z2{graded{commutative" ifa� � b� = (�1)���b� � �� 8 a� 2 A�; 8 b� 2 A�; 8 �; � 2 f�0; �1g =Z2:Lemma. Let A := �(V �), A�0 :=Lk�0�2kV � and A�1 := �l�0�2l+1V �. Then A = A�0�A�1,and (A;+;^) is a super{commutative, associative, unital super algebra over K.Proof. Exercise. 2De�nition. Let U and V be K{vector spaces and let T : U ! V be a K{linear map. Forall k 2 N we de�ne the \pullback operator" T � :Nk V � !Nk U� by(T �m)(u1; : : : ; uk) := m(T (u1); : : : ; T (uk)) 8m 2 
kV �; 8u1; : : : ; uk 2 U:Lemma. Let U and V be K{vector spaces, T : U ! V K{linear and k in N. Then(i) T � :Nk V � !Nk U� is K{linear.(ii) T � : T (V �) =Lk�0Nk V � ! T (U�) =Lk�0Nk U� is a K{algebra homomorphism.(iii) T �(�kV �) � �kU�(iv) T �(� ^ �) = (T ��) ^ (T ��) 8 �; � 2 �(V �).(v) Let W be a further K{vector space and S : V !W a K{linear map. Then we have(S � T )� = T � � S�:Proof. Exercise. 216



Bibliographical remarks.A standard reference for multilinear algebra is of course [Gre].Good books on manifolds as [AMR] also give a thorough account of the material needed here.1.2 Volume and orientationDe�nition. Let V be a m{dimensional K{vector space and T : V ! V a K{linear map.The \determinant of the map T" is the number det(T ) in K de�ned byT �
 = det(T ) �
 8 
 2 �mV �:Lemma. Let V be a m{dimensional K{vector space and T ,S K{linear endomorphisms ofV . Then(i) det(T � S) = det(T ) � det(S),(ii) ( T is invertible if and only if det(T ) 6= 0),(iii) if V = Km and T = TA for A in Mat(m�m;K) thendet(TA) = det(A):Remarks. We recall that TA(x) = A�x and that det(A) = P�2Sm sign(�)a1�(1) � : : : � am�(m)for A in Mat(m�m;K).Proof of the lemma. Exercise. 2De�nition. Let V be a m{dimensional K-vector space. A non{zero element 
 in �mV �is called a \volume form" or a \volume element (on V )"If K = R then such a 
 is also called an \orientation form".Remark. If dimK V = m, then dimK �mV � = 1. Thus two volume forms are proportional.De�nition. Let V be a m{dimensional R{vector space.(1) Two orientation forms 
0 and 
00 on V are called \equivalent" if 
00 = � �
0 for a �in R>0. We write 
0 � 
00 or [
0] = [
00].(2) An equivalence class [
] of orientation forms on V is called an \orientation (on V )".(3) If [
] is an orientation on V , then the pair (V; [
]) is called an \oriented (R{)vectorspace". 17



(4) An ordered basis fv1; : : : ; vmg of an oriented vector space (V; [
]) is called \positively(respectively negatively) oriented" if
(v1; : : : ; vm) > 0 (respectively< 0):Remark. The notions in (4) of the preceding de�nition are well{de�ned.Lemma. Let V be a �nite dimensional R{vector space. Then(i) V has exactly two orientations and(ii) the choice of an ordered basis of V uniquely determines an orientation on V .Proof. Exercise. 2De�nition. Let V and W be �nite dimensional K{vector spaces with volume forms 
Vand 
W , and let T : V ! W be a K{linear map.(1) T is called \volume preserving" if T �(
W ) = 
V .(2) If K = R and T is a vector space isomorphism we de�ne the \pullback orientation" onV by T �[
W ] = [T �
W ]:In this situation, the map T is called \orientation preserving" respectively \orientationreversing" if T �[
W ] = [
V ] respectively T �[
W ] = �[
V ]:Remark. The pullback orientation in (2) is well{de�ned.Lemma. Let V and W be �nite dimensional K{vector spaces with volumes forms 
V and
W , and let T : V ! W be K{linear. Then(i) T is volume preserving implies that T is a K{vector space isomorphism,(ii) if K = R, then a volume preserving map also preserves the induced orientations, i.e.,T �[
W ] = [
V ],(iii) if K = R and T �
W = ��
V with � 2 Rnf0g then T is a R{vector space isomorphism.Proof. Ad(i). The equality T �(
W ) = 
V implies immediately that dimKW = dimK V =:m. Assuming that T is not an isomorphism we �nd a non{zero vector v1 in the kernel ofT . We thus �nd { by the theorem on the completion to a basis { vectors v2; : : : ; vm in Vsuch that fv1; v2; : : : ; vmg is an ordered basis of V . Thus we have0 6= 
V (v1; : : : ; vm) = (T �
W )(v1; : : : ; vm) = 
W (T (v1); : : : ; T (vm)) = 0:This contradicts our assumption and hence T is a K{vector space isomorphism.Ad(ii). We have T �[
W ] = [T �
W ] by de�nition and thus T �[
W ] = [
V ] for a volumepreserving map T .Ad(iii). This assertion follows from the same arguments as the �rst assertion. 218



Exercise. Let V = R2, with volume form 
 = e�1^e�2 and associated orientation [
]. Find(2 � 2){matrices A;B such that(a) the map TA : V ! V; x 7! A�x is orientation preserving, but not volume preserving,and(b) the map TB is a vector space isomorphism, but not orientation preserving.Digression on the elementary geometric volumeLet x = � x1x2 � and y = � y1y2 � be two linearly independent vectors in R2 and letP (x; y) = f�x+ �y 2 R2 j 0 � �; � � 1gbe the oriented parallelogram generated by x and y.The volume Vol(P (x; y)) of P (x; y) is given by �(h � kxk), where h is the length of theprojection of y orthogonal to x and the sign is determined by the elementary geometricde�nition of orientation (see below).Let J be the anti-clockwise rotation by �=2, then it follows that J � x1x2 � = � �x2x1 �and h = kprJxyjj = < Jx; y >kJxk2 Jx = jx1y2 � x2y1jpx21 + x22 ;and thus jVol(P (x; y))j = h � kxk = jx1y2 � x2y1j:An ordered pair (x; y) of two linearly independant vectors x; y in R2 is called \positivelyoriented in the elementary geometric sense" if and only if the anti-clockwise oriented anglefrom x to y is smaller than �. This is equivalent to saying that the (unoriented!) anglebetween Jx and y is at most �=2, i.e., (cos )<(Jx; y)) = x1y2�x2y1kxk�kyk > 0:Thus, the \oriented elementary geometric volume" Vol(P (x; y)) of P (x; y) is given byx1y2 � x2y1.Exercise. Show that Vol(P (x; y)) = e�1 ^ e�2(x; y):Let now x = 0@ x1x2x3 1A ; y =0@ y1y2y3 1A ; z = 0@ z1z2z3 1A be three linearly independent vectors inR3 and P (x; y; z) the parallelotope generated by them. The unoriented volume of P (x; y; z)is given by the following formula:jVol(P (x; y; z))j = h � a;where a = jVol(x; y)j and h = kprx�y(z)k is the height, i.e. the length of the projection ofz perpendicular to the plane generated by x and y.19



The signs of the \cross{product" x� y as well as of the oriented volume of P (x; y; z) are�xed by the \the right hand rule" and we �ndVol(P (x; y; z)) = z1(x2y3 � x3y2) + z2(x3y1 � x1y3) + z3(x1y2 � x2y1):Exercise. Show that Vol(P (x; y; z)) = e�1 ^ e�2 ^ e�3(x; y; z):Exercise. Let A be in Mat(3 � 3;R), T = TA the associated endomorphism of R3, andx; y; z three linearly independent vectors in R3. Show thatdet(A) = Vol(T (P (x; y; z)))Vol(P (x; y; z)) :Bibliographical remarks. See the remarks at the end of the preceding section.1.3 Symplectic vector spacesDe�nition (1) A symmetric or anti{symmetric bilinear form B on a vector space V iscalled \degenerate" if there exists a v in V nf0g such that B(v; v0) = 0 for all v0 in V .Otherwise B is called \non{degenerate".(2) A non{degenerate anti{symmetric bilinear form on a vector space V is called a \sym-plectic form (on V )".(3) A pair (V; !) consisting of a vector space V and a symplectic form ! on V is called a\symplectic vector space".Examples.(1) Let W be a �nite dimensional vector space and V = W � �W . Then the two{form !de�ned by!(v; v0) = !((';w); ('0; w0)) = '(w0)� '0(w) 8 v = (';w); v0 = ('0; w0) 2 Vis symplectic.(2) Let V = K2n with canonical basis fe1; :::; e2ng and v; v0 in V be described by v =nPj=1(xjej + yjen+j); v0 = nPj=1(x0jej + y0jen+j). Then!(v; v0) = nXj=1 (xj�y0j � yj�x0j)20



de�nes a symplectic form on V .Denoting the identity matrix in Mat(n � n;K) by En and the matrix � O En�En 0 � inMat(2n � 2n;K) by Jn, we can rewrite the above form as follows:!(v; v0) = tv � Jn � v0:Yet another description is given by ! = nXj=1 e�j ^ e�n+j :(3) An in�nite dimensional exampleLet V = S(R) and !(f; g) := ZRf(t)dg(t)dt dt 8 f; g 2 V:It is easy to check that ! is an anti{symmetric bilinear form on V that is non{degeneratein the above de�ned sense.Lemma. Let ! be an antisymmetric bilinear form on a �nite dimensional vector space V .Then the following are equivalent:(i) ! is symplectic, i.e. ! is non{degenerate, and(ii) the map ![ : V ! V �, ![(v)(v0) := !(v; v0) is a vector space isomorphism.Remark. If V is in�nite dimensional, ! should be continuous in an appropriate sense.Furthermore the above lemma is wrong in in�nite dimensions, and ful�lling the assertion(i) respectively (ii) is referred to as \weak" respectively \strong" non{degeneracy of a(continuous) anti{symmetric bilinear form.Proof of the lemma. Let us �rst observe that ![ is a linear map for any bilinear form!.If ![ is an isomorphism thenf0g = ker![ := fv 2 V j!(v; v0) = 0 8v0 2 V gand ! is non{degenerate. Thus (ii) implies (i).On the other hand (i) implies that ![ is injective and in �nite dimensions this assures usthat ![ : V ! V � is an isomorphism. 2De�nition. Let ! be an anti{symmetric bilinear form on a vector space V and M � Va subset. Then the \!{annihilator of M" is de�ned as followsM\ = fv 2 V j !(u; v) = 0 8 u 2Mg:Notably in the case thatM = U is a linear subspace of V , we call U\ the \skew{complementof U(in V )" or the \!{complement of U(in V )".21



Lemma. Let ! be an anti{symmetric bilinear form on a K{vector space V , and let M andM 0 be subsets of V . Then(i) M �M 0 implies (M 0)\ �M\,(ii) M\ is a linear subspace of V ,(iii) M\ = f((M))Kg\,(iv) M\\ = ((M))K if ! is symplectic,(v) (M [M 0)\ =M\ \ (M 0)\,(vi) (M \M 0)\ =M\ + (M 0)\.(vii) Let now M = U be a linear subspace of V , then U \ U\ = fu 2 U j!(u; u0) = 08 u0 2 Ug and on U=(U \ U\) one has the following canonical symplectic form!red([u1]; [u2]) = !(u1; u2) for all u1; u2 2 U:(viii) Let V be of �nite dimension, ! be non{degenerate and U a linear subspace of V , thendimK U + dimK U\ = dimK Vand (U\)\ = U .Remarks. (1) For a subset M in a vector space V the expression ((M))K denotes thelinear subspace generated by M .(2) For two linear subspaces U1 and U2 of V the sum U1 + U2 denotes the linear subspacegenerated by U1 [ U2.(3) The symplectic vector space (U=(U \ U\); !red) is called the \symplectic reductionof U". In the case that U = V one has V \ V \ = V \ and this space is also called the\degeneration space of !", ker!.Proof of the lemma.Ad(i) { (vi). Exercise.Ad(vii). Since !jU�U vanishes if one of the arguments is in U \ U\ the function !red iswell{de�ned on U=U\U\�U=U\U\. A direct veri�cation shows that !red inherits bilinearityand anti{symmetry from !.Let [u] be in Ker !red, then !(u; u0) = 0 for all u0 in U , i.e. u is in U \ U\ and therefore[u] = 0. Thus !red is non{degenerate on U=(U \ U\).Ad (vi). The equality U\ = Tu2U ![(u) shows that the codimension of U\ in V equals thedimension of the subspace ![(U) of V �. Since ![ is injective we �nddimV � dimU\ = dimU:Obviously we have U � (U\)\ and since dimU = dim(U\)\ we have equality. 222



Lemma. Let ! be an anti{symmetric bilinear form on a �nite dimensional vector spaceV and ~V a vector space complement of V \ = ker! in V (i.e. V \ � ~V = V ). Then !j ~V�~Vis non{degenerate.Proof. Let ~v be in ~V such that !(~v; ~w) = 0 for all ~w in ~V . Since V = V \ � ~V it followsthat ~v is skew{orthogonal to V and thus ~v 2 V \ \ ~V = f0g, showing the assertion. 2De�nition. Let ! be an anti{symmetric bilinear form on V and U a subspace of V .Then U is called a \symplectic subspace of V (or of (V; !))" if and only if !jU�U is non{degenerate.Remark. The preceding lemma can now be restated as follows: any vector space comple-ment of the degeneracy space V \ = ker! is a symplectic subspace of V .Lemma. Let (V; !) be a �nite dimensional symplectic vector space and U � V a subspace.Then the following are equivalent:(i) U is a symplectic subspace of (V; !)(ii) U \ U\ = f0g(iii) V = U � U\(iv) U\ is a symplectic subspace of (V;w).Proof. Exercise. 2Remark. Let us observe that if U is symplectic in (V; !) then the direct sum decompo-sition V = U � U\ is a \symplectic direct sum", i.e. U and U\ are symplectic subspacesand !(u; v) = 0 for u in U and v in U\.Theorem (\Normal form of linear symplectic forms").Let (V; !) be a symplectic K{vector space of �nite dimension. Then there exists an orderedbasis fe1; : : : ; e2ng of V such that ! = nXj=1 e�j ^ e�n+j :Proof. The dimension m of V is bigger then 0 since a zero{dimensional space does notcarry a non{null two form.Let e1 be in V nf0g, then there is a vector f 01 such that 0 6= �1 = !(e1; f 01). Settingf1 = (1=�1)f 01 we have !(e1; f1) = 1.We set V1 = (((e1; f1))K)\ and observe that V1 is a symplectic !{orthogonal complementto ((e1; f1))K in V .Iteration of the above process yields a linear independant family B = fe1; f1 : : : ; en; fngsuch that !(ej; fk) = �j;k and !(ej; ek) = 0 = !(fj ; fk) for all j; k = 1; : : : ; n;and Vn+1 = B\ is zero or one{dimensional. Since Vn+1 is the !{complement of thesymplectic subspace generated by B it is a symplectic subspace of V . Thus Vn+1 = f0g and23



B is a basis of V . Obviously we have ! = nPj=1 e�j ^ f�j and renaming fj as en+j the assertionof the theorem follows. 2Corollary 1. A �nite dimensional symplectic vector space is of even dimension.Proof. Obvious from the above theorem. 2De�nition. An ordered basis fe1; : : : ; e2ng of a symplectic vector space (V; !) such that! = nPj=1 e�j ^ e�n+j is called a \symplectic basis of (V; !)".Remark. The word \symplectic basis" is also used for a basis fe1; : : : ; en; f1; : : : ; fng asin the proof of the last theorem.Corollary 2. Let (V; !) and (V 0; !0) be two symplectic vector spaces having the same �nitedimension. Then there exists a vector space isomorphism T : V ! V 0 such that T �(!0) = !.Proof. Let 2n = dimK V = dimK V 0 and fe1; : : : ; e2ng respectively fe01; : : : ; e02ng be sym-plectic basis of V respectively of V 0. De�ningT : V ! V 0; T� 2nXj=1 xjej� = 2nXj=1 xje0jwe �nd T �(!0) = !. 2Remark. Corollary 2 shows that all �nite dimensional symplectic vector spaces \looklike" the Example (2) given at the beginning of the section.Corallary 3. Let V be a �nite dimensional vector space and ! an anti{symmetric bilinearform on V . Then there exists a basis fe1; : : : ; e2p; e2p+1; : : : ; emg such that ! = pPj=1 e�j ^ e�p+j.Proof. Exercise. 2Lemma. Let V be a K{vector space having �nite dimension m and ! in �2V �. Then ! issymplectic if an only if ![m2 ] is a volume form on V .Proof. Assuming that ! is symplectic we know that m = 2n and thus �m2 � = n. Using asymplectic basis we have ! = nPj=1 e�j ^ e�n+j and thus!n = ! ^ : : : ^ !| {z }n factors = Cn � (e�1 ^ e�n+1 ^ : : : ^ e�n ^ e�2n)with Cn = (n!). Thus !n 6= 0.Assuming now that ! is not symplectic there exists v1 6= 0 in V \ = ker!.By induction we �nd that !k(v1; v02; : : : ; v02k) = 0 for all k � 1 and for all v02; : : : ; v02k in V .Taking v2; : : : ; v2[m2 ] such that fv1; : : : ; v2[m2 ]g is a linearly independent family it followsthat ![m2 ](v1; : : : ; v2[m2 ]) = 0 and thus ![m2 ] can not be a volume form on V . 224



Corollary. Let (V; !) be a symplectic vector space of �nite dimension 2n and let
 =  (�1) (n�1)n2n! !!n:Then for all symplectic basis fe1; : : : ; e2ng of V we have 
 = e�1 ^ e�2 ^ : : : ^ e�2n�1 ^ e�2n.Proof. Exercise. 2Remark. The above de�ned 
 is called the \canonical volume form on (V; !)" and [
]the \canonical orientation on (V; !)".Bibliographical remarks. Any of our preferred standard references on symplectic geom-etry as [Ar1], [Bry] and [GS] does some linear symplectic geometry.1.4 Linear symplectic geometryDe�nition. Let (V; !) be a symplectic vector space of �nite dimension and W a linearsubspace of V . We call W(1) \symplectic" if !jW is symplectic.(2) \isotropic" if !jW is zero.(3) \coisotropic" if W\ is isotropic.(4) \Lagrangian" (or a \Lagrange subspace") if W is isotropic and coisotropic.Lemma. For a linear subspace W in a �nite dimensional symplectic vector space one has:(i) W is symplectic if and only if W\ \W = f0g.(ii) W is isotropic if and only if W � W\.(iii) W is coisotropic if and only if W\ �W .(iv) W is Lagrangian if and only if W\ =W .Proof. Exercise. 2Theorem (\Normal form of subspaces of symplectic vector spaces").Let W be a linear subspace of a symplectic vector space (V; !) of dimension 2n.Let d = d(W ) = dimKW and � = �(W ) = dimKW \ W\ and 2n0 = d ��. Then there exists a symplectic basis fe1; : : : ; en; f1; : : : ; fng of (V; !) such thatfe1; : : : ; en0; en0+1; : : : ; en0+� ; f1; : : : ; fn0g is a basis of W .Proof. Step 1: isotropic case.We �rst show the assertion by induction over � in this case:25



if � = 0 the result is trivial and for � = 1 the result easily follows from the existence of avector f such that ![(f)jW 6= 0 and the fact that thus W � ((f))K is a symplectic subspaceof V .Assuming now that the assertion is true for a � � 1 we consider an isotropic subspace Wof dimension � + 1. Let e0 be a non{zero element of W and f 0 a vector in V such that!(e0; f 0) = 1. The space W 0 = ker(![(f 0)jW ) � W is an isotropic subspace of (V; !) ofdimension � and is contained in the symplectic vector space V 0 = (((e0; f 0))K)\. Applyingthe induction hypothesis to W 0 in V 0 and setting e�+1 = e0 yields the assertion.Step 2: general case.Given any linear subspace W in (V; !) there is a symplectic subspace ~W of V such thatW = ~W � (W \ W\). Since ~W is symplectic, V = ~W � ( ~W )\ is a symplectic directsum (i.e. ~W and ( ~W )\ are symplectic and they are !{perpendicular) and by constructionW \W\ � ( ~W )\. Applying the result of the theorem on the normal form of a symplecticform to ~W and the result of Step 1 to W \W\ � ( ~W )\ and numbering the union of thetwo basis appropriately we get the result. 2Corollary. Let (V; !) be a �nite dimensional symplectic vector space. Then(i) each isotropic subspace of V is contained in a Lagrangian subspace of V .(ii) each coisotropic subspace of V contains a Lagrangian subspace.(iii) for each Lagrangian subspace L there is vector space isomorphism AL : V ! L � L�such that ALjL = IdL and (AL)�!L�L� = !,where !L�L� is the canonical symplectic form de�ned in Example (1) in the beginning ofSection 1.3.Proof. Exercise. 2De�nition. Let (V1; !1) and (V2; !2) be symplectic vector spaces. The \symplectic sumof (V1; !1) and (V2; !2)" is the vector space V1 � V2 together with the following 2{tensor(!1 � !2)((v1; v2); (v01; v02)) := !1(v1; v01) + !2(v2; v02) 8 v1; v01 2 V1 8v2; v02 2 V2:Remark. It is easily checked that !1 � !2 is anti{symmetric and non{degenerate, i.e.symplectic.De�nition. Let (V1; !1) and (V2; !2) be symplectic K{vector spaces and T : V1 ! V2K{linear. We call T \symplectic" if T �!2 = !1.Remarks. (1) A symplectic linear map is always injective.(2) If V1 = V2 = V and !1 = !2 = ! then the canonical volume 
 is preserved by allsymplectic maps.If furthermore K = R then the induced orientation [
] is preserved as well.Lemma. An endomorphism T of a �nite dimensional symplectic vector space (V; !) issymplectic if and only if �T , the graph of the map T , is Lagrangian in (V �V; !� (�!)).Proof. Exercise. 226



De�nitions. (1) Let (V; !) be a �nite dimensional symplectic K{vector space. Then the\symplectic group of (V; !)" is de�ned as follows:Sp(V; !) = fT 2 GL(V ) j T �! = !g:(2) If V = K2n and !0 := nPj=1 e�j ^ e�n+j then we set Sp(n;K) := Sp(K2n ; !0).Remarks. (1) Obviously we have Sp(V; !) � SL(V ) := fT 2 GL(V )jdetT = 1g andthus Sp(n;K) � SL(2n;K) := SL(K2n).(2) We have the identity Sp(1;K) = SL(2;K).Proposition. Let W and W 0 be linear subspaces of a �nite dimensional symplectic vectorspace (V; !). Then there exists an element T of Sp(V; !) such that T (W ) = W 0 if and onlyif (dimKW = dimKW 0 and dimKW \W\ = dimKW 0 \ (W 0)\).Proof. We leave it as an exercise that T (W ) = W 0 for a T in Sp(V; !) implies that the\numerical invariants" d and � (de�ned in the above theorem) are the same.Let nowW andW 0 be subspaces of (V; !) and let fe1; : : : ; fng and fe01; : : : ; f 0ng be symplec-tic basis of (V; !) as given by the theorem on the normal form of subspaces of a symplecticvector space.If d(W ) = dimKW = dimKW 0 = d(W 0) and �(W ) = dimKW \W\ = dimKW 0\ (W 0)\ =�(W 0) then the symplectic map T de�ned by T (ej) = e0j; T (fj) = f 0j (for j = 1; : : : ; n)ful�lls T (W ) = W 0 (and is of course in Sp(V; !)). 2Bibliographical remarks. See the remarks at the end of Section 1.3.1.5 Complex structures on real symplectic vector spacesDe�nition Let V be a real vector space and g a symmetric bilinear form on V .(1) We call g \non{degenerate" or a \pseudo{Riemannian metric (on V )" if for all v 6= 0in V there is a w in V such that g(v;w) 6= 0.(2) We call g \positive de�nite" or a \Riemannian metric (on V )" if g(v; v) > 0 for allv 6= 0 in V .(3) A pair (V; g) of a real vector space V and a pseudo{Riemannian respectively a Rie-mannian metric g on V is called a \pseudo{Riemannian" respectively \Riemannian vectorspace".Examples. (1) Let V = Rm and g(x; y) = tx�y. This is called the \standard Riemannianmetric on Rm". 27



(2) Let V = Rd = R�Rd�1 and an element of V be described as follows: x = x0e0+d�1Pj=1 xjej.Then the \standard Lorentz metric on Rd" is the following pseudo-Riemannian metric:gL(x; y) = x0 � y0 � t(x0) � (y0), where x0 = t(x1; : : : ; xd�1); y0 = t(y1; : : : ; yd�1).(3) Let V be the space of real (m� n){matrices (m;n � 1) and g be de�ned as follows:g(A;B) = trace (tA �B) 8 A;B 2 V = Mat (m� n;R):The bilinear form g is symmetric and positive de�nite.De�nitions. (1) Let (V; g) be a pseudo{Riemannian vector space and U a linear subspace.The \orthocomplement of U (in (V; g))" is the subspaceU? = fv 2 V j g(u; v) = 0 8 u 2 Ug:(2) For a pseudo{Riemannian vector space (V; g) we set O(V; g) = fT 2 GL(V ) j T �g = gg,the \orthogonal group of (V; g)" and SO(V; g) = O(V; g)\SL(V ), the \special orthogonalgroup of (V; g)".Remark. If (V; g) is a Riemannian vector space and U a linear subspace of V , thenV = U � U?. This does not necessarily hold true for pseudo{Riemannian vector spaces.De�nition. Let V be a real vector space and J a real endomorphism of V . Then J iscalled a \complex structure (on the real vector space V )" if J2 = �IdV .Remarks. (1) LetW be a complex vector space andWRthe \underlying real vector space"obtained by restriction to the real scalars (R� C ). The multiplication by i = p�1 on theset WR is a real linear endomorphism. Denoting it by J we obviously have J2 = �IdWR sothat J is a complex structure on WR.(2) If J is a complex structure on a real vector space V then the following map de�nes amultiplication of elements of V with complex scalars:C � V ! V; (a+ ib; v) 7! av + bJv for a; b 2 R and v 2 V:(3) If a real �nite dimensional vector space V carries a complex structure then its dimensionis even.(4) If J is a complex structure on V then �J is a complex structure as well.(5) Let V = R2n and Jn = � 0 �EnEn 0 � (where En is the identity matrix of size (n�n)).Then �Jn are complex structures on V .(6) If J is a complex structure on V we set GL(V; J) = fT 2 GLR(V ) j T � J = J � Tg.Exercise. Let W = C n and 	 : W ! R2n be de�ned by 	(t(z1; : : : ; zn)) =t(Re(z1); : : : ; Re(zn); Im(z1); : : : ; Im(zn)). Then 	 is a linear isomorphism (over the reals!)between WR and R2n. Furthermore the complex structure J on WR induced by multipli-cation by i on W ful�lls: 	 � J = Jn �	 (compare Remark (5) above for the de�nition ofJn). 28



Finally we have 	 � C = CR� 	, where for C = M + iB in Mat (n � n; C ) and A;B inMat (n�n;R) the matrix CR is given by � A �BB A � in Mat (2n� 2n;R). Thus C 7! CRde�nes a group isomorphism GL(n; C ) = GLC (W )! GL(R2n;Jn).De�nitions. Let J be a complex structure on a real vector space V and W a linearsubspace of V . Then W is called(1) \complex" if J(W ) = W , and(2) \totally real" if J(W ) \W = f0g.De�nitions. (1) Let (V; J) be a real vector space with a complex structure J . A\(pseudo{)Hermitian metric (on (V; J))" is a (pseudo{)Riemannian metric g on V suchthat g(J(v); J(w)) = g(v;w) for all v;w in V .(2) A \(pseudo{)Hermitian vector space" is a triple (V; J; g) consisting of a real vectorspace V , a complex structure J on V and a (pseudo{)Hermitian metric g on (V; J).(3) The \unitary group" of a pseudo{Hermitian vector space (V; J; g) is given byU(V; J; g) = fT 2 GL(V; J) j T �g = gg = GL(V; J) \O(V; g).Proposition. Let (V; J; g) be a pseudo{Hermitian vector space and let!(v;w) := g(J(v); w) 8 v;w 2 V:Then ! is a symplectic form on V ful�lling !(J(v); J(w)) = !(v;w) for all v and w in V .Proof. Since g is bilinear and J is linear ! is a bilinear form on V . Since g is pseudo{Hermitian ! is anti{symmetric and !(J(v); J(w)) = !(v;w) 8 v;w 2 V .Given v 6= 0 there is a u in V such that g(v; u) 6= 0 since g is nondegenerate. Settingw = J(u) we have !(v;w) 6= 0 and thus ! is nondegenerate. 2Remarks. (1) The symplectic structure ! associated by the above proposition to a(pseudo{)Hermitian vector space is called the \(pseudo{)K�ahler form on (V; J; g)".(2) For V = R2n; J = Jn and g the standard Riemannian structure on V , we observe thatg is Hermitian on (V; J) and that the associated K�ahler form is the standard symplecticform on R2n.Lemma. Let (V; J; g) be a pseudo{Hermitian vector space with associated pseudo{K�ahlerform !. Then(i) U\ = J(U?) for all linear subspaces U of V .If g is Riemannian, i.e. positive de�nit, we have furthermore(ii) all complex subspaces of V are symplectic, and(iii) all isotropic subspaces of V are totally real.Proof. Exercise. 229



Remark. The last two assertions of the preceding lemma do not hold true if g is onlynon{degenerate.Reversing the order of the data we haveDe�nitions. Let (V; !) be a symplectic real vector space.(1) A complex structure J on V is called \compatible with !" ifgJ(v;w) := !(v; J(w)) 8 v;w in Vde�nes a Hermitian metric on (V; J).(2) The set of all complex structures on V that are compatible with ! will be denoted byJ!(V ).Remarks. If a complex structure J on a symplectic vector space (V; !) preserves ! thengJ , de�ned as above in (1), is pseudo{Hermitian, but not necessarily positive de�nite.In this situation the pseudo{K�ahler form of (V; J; gJ ) is of course the original !.Denoting the set of Riemannian metrics on a vector space V by R(V ) we haveTheorem. Let (V; !) be a real �nite dimensional symplectic vector space. Then there isa real{analytic map R(V ) 	�!J!(V ); g 7! J(g)such that for each J in J!(V ) we have 	(gJ) = J , where gJ is de�ned in (1) of the lastde�nition.Corollary 1. The set J!(V ) is not empty for a �nite dimensional real symplectic vectorspace (V; !).Corollary 2. The topological space J!(V ) � EndR(V ) is smoothly contractible to a point,i.e. given a J1 in J!(V ) there is a smooth map H : [0; 1]�J!(V )! J!(V ) such that H0 =Id;H1(J) � J1 for all J in J!(V ), and Ht(J1) � J1 for all t in [0; 1] (Ht(J) := H(t; J)).Proof of the theorem. Given a non{degenerate symmetric bilinear form g on V onehas an isomorphism g[ : V ! V �; g[(v)(w) := g(v;w). Thus for each g in R(V) we have anisomorphism A = A(g) = (g[)�1 � ![ such that!(v;w) = g(A(v); w) 8 v;w 2 V:Since R(V ) is open in the �nite dimensional vector space S2(V �) it follows by the vonNeumann series that A depends real{analytically on g.Furthermore, it is easy to see that g(v;A(w)) = �g(A(v); w), i.e. A is anti{selfadjoint withrespect to g (A�g = �A). Thus B = B(g) = A�g � A = �A2 is self{adjoint and positivewith respect to g (i.e. g(B(v); v) > 0 for v 6= 0).It follows that B has a \square root" pB : a selfadjoint and positive operator such that(pB) � (pB) = B. Since the square root is given by the series of the square root func-tion on R+ applied to a positive endomorphism we conclude that B 7! pB is a real{analytic map. We de�ne J = J(g) = 	(g) by Ap�A2 = A � (p�A2)�1 = (p�A2)�1 � A30



(A commutes with p�A2). It follows that J2 = �IdV , J � A = A � J; J�g = �J and!(J(v); J(w)) = !(v;w) 8 v;w 2 V . A direct calculation then shows that the pseudo{Hermitian metric gJ (v;w) = !(v; J(w)) is positive de�nite, i.e. J = 	(g) is in J!(V ). Ifnow g = gJ for a J in J!(V ) then gJ (A(v); w) = !(v;w) = gJ (J(v); w) and thus A = J . Itobviously follows that Ap�A2 = J and thus 	(gJ) = J for all J in J!(V ). 2Proof of the corollaries. Since R(V ) is open and non{empty in S2(V �), the �rstcorollary is obviously true.Let now g1 be an arbitrary element of R(V ) then the mapK : [0; 1]�R(V )!R(V );K(t; g) = (1� t)g + tg1is smooth if we give S2(V �) � 
2V � any vector space topology, for example by identify-ing S2(V �) with symmetric matrices of the appropriate size. Furthermore, with Kt(g) :=K(t; g) we haveK0(g) = g and K1(g) = g1 8 g 2 R(V ); and Kt(g1) = g1 8 t 2 [0; 1]:Thus K is a \smooth retraction from R(V ) to g1 in R(V )".Using the map 	 : R(V ) ! J!(V ) ful�lling 	(gJ ) = J for all J in J!(V ) we constructa retraction of J!(V ) as follows: Let J1 be in J!(V ) and g1 = gJ1 and K the above re-traction from R(V ) to g1. We set H(t; J) = 	(K(t; gJ)), then H : [0; 1]�J!(V )! J!(V )is smooth and ful�lls the assertion of Corollary 2. 2Exercises. (1) Fill in the details concerning the real{analytic dependence of J(g) in thevariable g.(2) Show that 	 is not injective.Bibliographical remarks. Compare, e.g., [Bry], [McDS] and [Wei2] for complex struc-tures on real symplectic vector spaces.2. Elementary di�erential topologyThe notion of di�erentiable manifolds and bundles over them allows to give a rigorous anduseful framework for e.g. the following questions in mathematical physics:* what is a force �eld on a set given by constraints in a con�guration space?* what does the reduction of the number of degrees of freedom mean and how can one useit to solve Hamilton's equation?* what is curved space{time and what is a tensor on it?31



* what is a Lie group and how does the representation theory of Lie groups relate to therepresentation theory of Lie algebras?Of course, we can not go into all these subjects, but we need the basics of the calculus onmanifolds in order to de�ne and study \symplectic manifolds".2.1 Di�erentiable manifoldsDe�nition. Let (M;T ) be a topological space and m in N0. We call (M;T ) a \topologicalmanifold of dimension m" if for each p in M there is an open set U containing p, an openset V in Rm and a homeomorphism ' : U ! V: An open covering U = fU�j� 2 Agof M (A an index set) together with homeomorphisms '� : U� ! '�(U�) = V�, withV� open in Rm is called an \atlas of the topological manifold M" and is often denotedby A = f(U�; '�)j� 2 Ag. Each U� is called a \chart domain" and '� : U� ! V� a\coordinate chart on M". Furthermore we call the m{tuple of functions t(x�1 ; : : : ; x�m)de�ned by x�j = prj �'� : U� ! R a \local coordinate system onM" (prj is the projectionon the j{th coordinate from Rm to R).Remark. If U�� = U� \ U� is not empty the map'�� := ('� � '�1� )���'�(U��) : '�(U��)! '�(U��)is a homeomorphism and is called a \change of coordinates (map)".Examples. (1) Let U be an open, non{empty subset of Rm; U0 = U; V0 = U and '0 = Id :U0 ! V0.Then A = f(U0; '0)g is an atlas of the m{dimensional topological manifold U .(2) Let Sm = fy 2 Rm+1 jkyk = 1g � Rm+1 (kyk2 = m+1Pj=1 jyjj2 here ) with the subspacetopology induced from the metric topology on the normed vector space (Rm+1; k k). Weset U�j = fy 2 Smj � yj > 0g and'�j : U�j ! Rm; '�j (y) = t(y1; : : : ; yj�1; yj+1; : : : ; ym+1) :Then '�j is a homeomorphism onto its image V �j = fx 2 Rmj kxk < 1g and its inverse isgiven as follows('�j )�1 : V �j ! U�j ; x 7! t(x1; : : : ; xj�1;�p1� kxk2; xj; : : : ; xm) :The set f(U�j ; '�j )jj = 1; : : : ;m+1g is a topological atlas and Sm is a topological manifoldof dimension m.De�nition. A \topological manifold of �nite dimension" is a disjoint union of topologicalmanifolds Mj of dimension mj such that the set of the mj is bounded. A topologicalmanifold of dimension m is also called a \ pure{dimensional topological manifold".32



Example. The set fx 2 R2j kxk2 2Zg is a topological manifold of �nite dimension, thatis not pure dimensional.Lemma. Let (M;T ) be a topological manifold of �nite dimension and A = f(U�; '�)j� 2Ag a topological atlas on M . Then a subset U of M is open if and only if '�(U \ U�) isopen in V� = '�(U�) � Rm(�) for all � in A. (Here '� : U� ! Rm(�) vor a m(�) in N0.)Proof. If U is open, so are U\U� and '�(U\U�), since '� : U� ! V� is a homeomorphism.If '�(U \ U�) is open in V� then U \ U� is open in U� and therefore in M . It follows thatU = S�2A(U \ U�) is open in M . 2Corollary. Let M be a set, fU�j� 2 Ag a covering of M , '� : U� ! V� bijective withV� open in Rm(�) for all � in A (with m(�) in N0 and fm(�)j� 2 Ag bounded). Assumefurthermore that '�(U��) is open in V� and '�� = '� � '�1� : '�(U��) ! '�(U��) is ahomeomorphism for all � and � in A. Then T = fU � M j'�(U \ U�) is open 8 � 2 Agis a topology on M , A = f(U�; '�)j� 2 Ag a topological atlas on (M;T ) and M a �nitedimensional topological manifold.Proof. A direct inspection shows that T is a topology. Since '�(U��) is open for all �and �, U� is open in (M;T ) and it follows easily that A is a topological atlas. Therefore(M;T ) is a topological manifold of �nite dimension. 2De�nition. A topological atlas A = f(U�; '�)j� 2 Ag on a �nite dimensional topologicalmanifold (M;T ) is called a \smooth atlas" or a \C1{atlas" if '�� is a smooth mapwhenever U�� is not empty.Remarks.(1) Similarly one de�nes a \Ck{atlas" (for k 2 N�1) and a \real{analytic atlas" (or \C!{atlas"). We will not need these notions in this text.(2) If the charts take value in C n(�) �= R2�n(�) and the coordinate changes '�� are holomor-phic maps, the atlas is called \holomorphic" or \complex{analytic". Such an atlas alwayshas an \underlying smooth atlas" de�ned by identifying C n with R2n and considering the'�� as smooth(!) real mappings.(3) Replacing the \local model" Rm by an in�nite dimensional vector space with an appro-priate topology and notion of di�erentiability we would arrive at the notion of an \in�nitedimensional manifold".(4) If we require the '�� to be smooth in the last corollary the conclusion is that the atlasA is smooth.De�nitions. (1) Two smooth atlases on a topological space (M;T ) are called \equivalent"if their union is again a smooth atlas.(2) A \di�erentiable or smooth structure" on a topological space (M;T ) is an equivalenceclass of smooth atlases.(3) The union of all atlases in a di�erentiable structure is called the \maximal atlas of thedi�erentiable structure". 33



(4) A \di�erentiable or smooth manifold (of �nite dimension)" is a pair consisting of atopological space (M;T ) and a di�erentiable structure on it.(5) A coordinate chart in the maximal atlas of the di�erentiable structure of a di�erentiablemanifold is called an \admissible (coordinate) chart (on the di�erentiable manifold)".Remark. Practically one usually constructs a smooth atlas with as few as possible chartsand considers the di�erentiable structure and maximal atlas de�ned by it.Examples.(1) Open sets U � Rm with the atlas given in the preceding example (1) are smoothmanifolds.(2) The spheres Sm with the atlas given in the preceding example (2) are smooth manifolds.(3) Let (M;T ) be a di�erentiable manifold with an atlas f(U�; '�)j� 2 Ag, and let 
 bean open subset of M . Then f(U� \ 
; '�jU�\
)j� 2 A and U� \ 
 6= ;g is a smooth atlason 
 with the subspace topology.(4) Let M and N be smooth manifolds. Then the cartesian product M � N carries anatural topology, the \product topology", and a natural di�erentiable structure.(5) Let M and N be smooth manifolds. Then the disjoint union M _[N carries a naturaltopology and a natural di�erentiable structure.(6) Let K = R or C and IPm(K) = IP(Km+1) the \projective m{space over K", i.e. the setof 1{dimensional linear subspaces of Km+1 . Then there is a natural projection� : Km+1nf0g ! IPm(K); �((z0; z1; : : : ; zm)) = [z0; z1; : : : ; zm] = (((z0; z1; : : : ; zm)))K:(We will write elements of Km+1 here in this example as line{vectors.) In words �(z) is theline through z. We set Uj = fzj 6= 0g � IPm(K) and'j : Uj ! Vj = Km ; [z0 : : : ; zm] 7! �z0zj ; : : : ; zj�1zj ; zj+1zj ; : : : ; zmzj �for j = 0; 1; : : : ;m. (Observe that Uj and 'j are well{de�ned, since [z] = [z0] ifand only if z0 = ��z for a � in Knf0g.) The inverse is given by '�1j (w1; : : : ; wm) =[w1; : : : ; wj; 1; wj+1; : : : ; wm], the intersection Ujk = fzj 6= 0 and zk 6= 0g and the change ofcoordinates on 'j(Ujk) = fw 2 Km jwk 6= 0g as follows (here for j < k):'k � '�1j : 'j(Ujk)! 'k(Ujk) � Km ;(w1; : : : ; wm) 7! �w1wk ; : : : ; wjwk ; 1wk ; wj+1wk ; : : : ; wk�1wk ; wk+1wk ; : : : ; wmwk �:It follows that the atlas f(Uj; 'j)jj = 0; 1; : : : ;mg is smooth for K = R and complex{analytic for K = C :(7) Let H be a N{dimensional real vector space with a Riemannian metric or a N{dimensional complex vector space with a Hermitian metric (on the underlying real vectorspace HR with its natural complex structure). We call the set Gk(H) = fW � H j W is34



a K{linear subspace of dimension kg for k in f1; : : : ; N � 1g the \Grassmann manifold ofk{planes in H". Let us de�ne U(W ) := f�T � H j T :W ! W? is K{linearg and observethat fU(W ) j W 2 Gk(H)g covers Gk(H). Furthermore we set'W : U(W )! V (W ) = HomK(W;W?); 'W (�T ) = T :Since HomK(W;W?) has the natural norm kTk1 := supfkT (w)k j w 2 W and kwk = 1g(here k k is the norm induced by the Riemannian respectively Hermitian structure onH) and since all norms are equivalent on a �nite dimensional vector space, we can useany basis of W and W? to identify HomK(W;W?) linearly and homeomorphically withMat ((N�k)�k;K) �= K(N�k)�k . This way we can consider 'W as a bijection taking valuesin K(N�k)�h , i.e., a chart.Let now W = �T1 in U(W1) and W = �T2 in U(W2) for W1 6= W2. Writing the identity ofH as a map W1 �W?1 ! W2 �W?2 we get a matrix of linear operators � a bc d � witha : W1 ! W2, b : W?1 ! W2 etc. Since W = Im � IdW1T1 � = fw1 + T1(w1)j w1 2 Wg =Im� IdW2T2 � there is a K{linear isomorphism q : W1 ! W2 such that� a bc d � �� IdW1T1 � = � IdW2T2 � � q :W1 ! H = W2 �W?2 :Thus T2 = (c + d � T1) � (a + b � T1)�1 = ('W2 � ('W1)�1)(T1) and the coordinatechanges 'W2 � ('W1)�1 are \algebraic" maps de�ned on 'W1(U(W1) \ U(W2)) = fT1 2HomK(W1;W?1 )ja + b � T1 is invertible g. Hence Gk(H) is a smooth manifold for K = Rand a complex{analytic manifold for K = C .Exercises. Fill in the details in proving that the preceding examples (1) { (7) yieldsmooth (respectively complex{analytic) manifolds.De�nition. LetM and N be di�erentiable manifolds and let F :M ! N be a continuousmap. Then F is called \smooth" if for all p in M and for all admissible charts ' : U =U(p) ! V near p and  : U 0 = U 0(F (p))! V 0 near F (p) the maps � F � '�1 : '(U \ F�1(U 0))! V 0are smooth.Remarks.(1) It is of course enough to check that  � � F � '�1� is smooth for an admissible atlasf(U�; '�)j� 2 Ag of M and an admissible atlas f(U 0�;  �)j� 2 Bg of N . (Of course  � �F �'�1� must be restricted to the open set '�(U�\F�1(U 0�)) and there is nothing to checkif this set is empty.)(2) Let us observe that this de�nition does not make sense if the coordinate changes arenot smooth maps: this is the very reason why we consider smooth atlases. On the other35



hand with the above de�nition every chart ' : U ! V and its inverse '�1 : V ! U arenow smooth maps.(3) Obviously the composition of two smooth maps is again smooth.Examples.(1) F : R! S1; F (t) = (cos t; sin t).(2) F : S2n+1 ! IPn(C ); F ((z0; : : : ; zn)) = �((z0; : : : ; zn)) = [z0; : : : ; zn].(3) Let  : S2nft(0; 0; 1)g ! R2 be given by the stereographic projection from the 2{sphere to the plane fx3 = 0g � R3, and '0 : f[z0; z1] 2 IP1(C )jz0 6= 0g = U0 ! C the usualchart [z0; z1] 7! z1z0 . Then the map F : IP1(C ) ! S2 de�ned by F ([0; 1]) = t(0; 0; 1) andF jU0 =  �1 �R � '0, where R : C ! R2; w 7! t(Re(w); Im(w)), is a smooth map from thesmooth (real!) manifold underlying the complex manifold IP1(C ) to the 2{sphere.De�nition. Let M and N be smooth manifolds and F :M ! N a smooth map. Then Fis called a \di�eomorphism" if F is bijective and F�1 is smooth.Examples. (1) Let A be in GL(m;R) and F = TA : Rm ! Rm. Then F is a di�eomor-phism.(2) The map F : IP1(C ) ! S2 de�ned in the preceding Example (3) of smooth maps is adi�eomorphism.De�nition. Let M be a smooth manifold of �nite dimension and N a subset of M . Wecall N a \closed submanifold of M" if N is closed in M and if for each p in N there is anadmissible chart U(p) '! V � Rm such that '(p) = 0 and '(U(p) \N) = V \ fx1 = : : : =xn = 0g for a n in f0; : : : ;mg. (Note that m and n may depend on the point p in N .)Examples.(1) Let f1; : : : ; fk be smooth functions on Rm(1 � k � m) and c1; : : : ; ck real numbers suchthat the gradients rf1(p); : : : ;rfk(p) are linearly independant for all p in the commonlevel set ff1 = c1; : : : ; fk = ckg � Rm. Then this level set is a closed (m� k){dimensionalsubmanifold of Rm.(2) Let L = fW 2 G2(R4)jW is Lagrangian g (with respect to the standard symplecticform ! = ��1 ^ ��3 + ��2 ^ ��4, where f�1; : : : ; �4g denotes the canonical basis of R4 here. ThenL is a closed submanifold of G2(R4).In closing this subsection we would like to slightly restrict our class of manifolds.Let us �rst recall that a topological space (M;T ) is called a \Hausdor� space" or simply\Hausdor�" if for distinct points p and q in M there are open sets U and V in M suchthat p 2 U; q 2 V and U \ V = ;.Examples. (1) Let 
 be open in Rm with the subspace topology induced from the usualmetric topology on Rm and let p1 and p2 be distinct points in 
. Then there exists �1 and�2 in R>0 such that B�k (pk) = fx 2 Rmj kx� pkk < �kg are contained in 
 and disjoint,i.e. 
 is Hausdor�.(2) LetM = (Rnf0g) _[fp1; p2g and let T be de�ned as follows: a subset U 0 �M containedin Rnf0g is open if and only if it is open as a subset of Rnf0g � R with its usual subspace36



topology, and a subset U � M containing p1 or p2 (or both of them) is open if and onlyif (U \ (Rnf0g) is open in Rnf0g and there is a � > 0 such that B�(0)nf0g is containedin U \ (Rnf0g)). This de�nes a non{Hausdor� topological space that allows for a smoothatlas.Let us also recall that a subset B � T of the topology of a topological space (M;T ) iscalled a \basis of the topology" if for each U in T there is a family fU�j� 2 �g � Bsuch that [�2�U� = U . Furthermore we call a topological space \second countable" if itstopology has a countable basis.Examples.(1) The set B = fB1=n(q) j n 2 N�1; q 2 Qmg is a countable basis of the usual topology ofRm.(2) A non{countable set M equipped with the discrete topology (i.e. T is the power setP(M)) is not second{countable.(3) There are non{second countable Hausdor� topological spaces that have a smooth atlas(see [Sp]).In order to avoid lengthy statements in the sequel of the text { unless it is explicitelystated otherwise { we will assume that a \manifold" is always a �nite dimensional, smooth,Hausdor� and second countable manifold.On the other hand we will neither assume that a manifold is connected nor that it ispure{dimensional.Bibliographical remarks.Beside [Sp] quoted above we recommend [AMR],[Bo] and [Lan]for further reading on the foundations of di�erentiable manifolds.2.2 Lie groups and smooth actionsDe�nition. A \Lie group" is a manifold that carries a group structure such that the mapG �G! G ; (g; h) 7! g � h�1is smooth.Remark. Equivalently one can ask for the smoothness of the following two maps:I : G! G; g 7! g�1 and M : G�G! G; (g; h) 7! g � h:Examples.(1) Let V be a real respectively complex vector space of �nite dimension. Then the addition\+" of vectors makes (V;+) into an abelian smooth respectively complex{analytic Liegroup. 37



(2) Let � be a countable group. Then the discrete topology makes � a zero{dimensionalmanifold and it follows that � is a zero{dimensional Lie group.(3) Considering S1 as a subgroup of C nf0g and S3 as a subgroup of Hnf0g (H denotes theskew{�eld of quaternions) give rise to Lie group structures on these spheres.(4) For K = R and C , the \general linear group" GL(n;K) is open in Mat (n � n;K)and matrix multiplication induces a group structure on this set. The usual formulas formultiplication and the invese of a matrix show that GL(n;R) is a smooth real Lie group andGL(n; C ) a \complex{analytic Lie group". Analogously GLK(V ) is a smooth respectivelycomplex{analytic Lie group if V is a �nite dimensional vector space over K = R respectivelyover K = C .(5) If V is a �nite dimensional K{vector space (K = R or C ) then the \special lineargroup" SL(V ) = SLK(V ) = fT 2 GLK(V ) j det(T ) = 1g is a closed submanifold ofGLK(V ) and a Lie group. If V is furthermore equipped with a symplectic form ! then thesome assertions hold for Sp(V; !).(6) The sets O(n;K) = fA 2 Mat(n � n;K) j tO � O = Eng are closed submanifoldsof Mat(n � n;K) and Lie groups, the so{called \real (respectively complex) orthogonalgroups".(7) The sets U(n) = fA 2 Mat (n�n; C )jt �A �A = Eng and SU(n) = fA 2 U(n)jdet(A) =1g are closed submanifolds of GL(n; C ) (looked upon as a real manifold) and Lie groups.De�nition. Let G be a Lie group and H a subset of G. We callH a \closed Lie subgroup"if H is a closed submanifold of G and a subgroup of G.Exercices. (1) Show that a closed Lie subgroup is a Lie group.(2) Show that SL(n;R) and O(n;R) are closed Lie subgroups of GL(n;R).De�nition. Let G1 and G2 be two Lie groups. A map F : G1 ! G2 is called a \Lie grouphomomorphism" if F is smooth and a group homomorphism.A Lie group homomorphismFis called a \Lie group isomorphism" if F is bijective and F�1 is a Lie group homomorphism.We call two Lie groups G1 and G2 \isomorphic (as Lie groups)" if there exists a Lie groupisomorphism F : G1 ! G2.Example. The following Lie groups are isomorphic: S1; U(1) and SO(2;R) = O(2;R)\SL(2;R).De�nition. Let M be a manifold and G a Lie group. A smooth map # : G�M !M iscalled a \smooth (left){action (of G on M)" if the following two conditions hold(i) #(e; p) = p for all p in M (e denotes the neutral element of the group G),(ii) #(g; #(h; p)) = #(g�h; p) for all g; h in G and all p in M .Remarks. (1) The map M ! M;p 7! #(g; p) for �xed g is often denoted by #g. Since#g � #g�1 = IdM it follows that #g is a di�eomorphism for each g in G. Another usefulnotation is g�p for #g(p).(2) A right-action is de�ned similarly replacing condition (ii) by(ii') #(g; #(h; p)) = #(h�g; p) for all g; h in G and all p in M .38



Examples.(1) GL(n;R)�Rn! Rn; #(A;x) = TA(x) = A � x.(2) GL(n;R)�Gk(Rn)! Gk(Rn); #(A;W ) = TA(W ).(3) Sp(n;R)� L ! L, where L = fW � Gn(R2n)jW is Lagrangiang and # as in (2).(4) Let G be a Lie group and M = G, then #L : G �M ! M;#L(g)(h) = g � h and#R : G �M ! M;#R(g)(h) = h�g�1 are smooth transitive actions. (5) # : Z2 � Sm !Sm; #(�0; x) = x; #(�1; x) = �x.(6) # :Zn�Rn! Rn; #(a; x) = x+ a.(7) # : GL(n + 1;K) � Pn(K) ! Pn(K); #(A; [z]) = [A � z] for K = R and C . (The linegenerated by z is as usual denoted by [z].)De�nition. Let # : G �M !M be a smooth action.(1) The action is called \transitive" if for each pair p; q in M there is at least one g in Gsuch that g � p = q.(2) The \�xed point set of an element g in G" is the set fp 2M jg � p = pg and the \�xedpoint set of G" is the set MG = Tg2Gfp 2M jg � p = pg = fp 2M jg � p = p 8g 2 Gg.(3) The \G{orbit through p" is the set fg � pjg 2 Gg �M (for p a point in M).(4) The \isotropy group (or stabilizer) of p (under the G{action)" is Gp = fg 2 Gjg�p = pg.(5) The \orbit space" is the space of equivalence classes M=� = f[p]jp 2Mg, where p � qif and only if there exists a g in G such that g � p = q. The map M ! M=�; p 7! [p] iscalled the \canonical projection" and is often denoted by �.Exercice. Go through the examples of actions (1) { (7) above and determine the �xedpoint sets of the group, the G{orbits, the isotropy groups and (set{theoretically) the orbitspaces of these actions.De�nition. Let � be a discrete Lie group, M a manifold and # : � �M !M a smoothaction. We call the action \free" if the �xed point set is empty for all 
 in �nfeg. We call theaction \properly discontinuous" if for all K compact in M the set f
 2 �j
(K) \K 6= ;gis �nite.Proposition. Let # : ��M !M be a properly discontinuous and free action. Then theorbit space M=� carries a unique di�erentiable structure such that the projection � :M !M=� is a local di�eomorphism.Remark. A smooth map F :M ! N is a \local di�eomorphism" if for each p inM thereis an open set U containing p such that F jU : U ! F (U) is a di�eomorphism.Proof of the proposition.Let T be the quotient topology on M=�, i.e. U is in T if and only if ��1(U) is open in M .Since M is a manifold and � is countable it follows easily that T has a countable basis.Let now x be in M and W '! V be a coordinate chart such that B 2('(x)) � V . LetW1=n = '�1(B 1=n('(x)) and Kn = W1=n for n � 1. (The notation B � (p) denotes the �{ball39



around a point p in Rm.) Then the Kn are compact and contained in W . Consider now a
 6= e such that 
(K1) \K1 6= ;. Since K1 is compact and 
 has no �xed{point it followseasily that there is a N(
) � 1 such that 
(Kn) \ Kn = ; for n � N(
). Since the setf
 2 �j
(K1)\K1 6= ;g is �nite there is a N � 1 such that KN \ 
(KN ) = ; for all 
 6= e.Thus �jW1=N :W1=N ! �(W1=N) is a homeomorphism.Starting with any atlas we can now construct an atlas f(Wx;	x)jx 2Mg such that Wx \
(Wx) = ; for all 
 6= e (and for all x 2 M). Since �(Wx) =: Ux is an open set in M=�containing �(x) we have an open covering fUxjx 2Mg for M=� and homeomorphisms'x = 	x � (�jWx)�1 : Ux ! 	x(Wx):Let now y 6= x such that Ux\Uy contains a point �(z) (with z 2 Wx.) Then by constructionof the Wp for p in M the connected component of (�jWx)�1(Ux \ Uy) containing z is inWx \ 
(Uy) for a unique 
 in �. It follows that the coordinate changes of the topologicalatlas f(Ux; 'x)jx 2Mg of M=� are given by 'y � '�1x = 	y � #
�1 �	�1x for appropriate 
in �; thus they are smooth maps.Let now �(x) 6= �(y) in M=�, i.e. � � x \ � � y = ; for x and y in M . De�ning Kn(x) andKn(y) as in the beginning of the proof and K = KN0(x) [KN0(y) for N0 su�ciently bigsuch that KN0(x) \ KN0(y) = ;, we have only a �nite set of 
 6= e with K \ 
(K) 6= ;.Obviously this implies KN0(x) \ 
(KN0(y)) 6= ; or 
(KN0(x)) \KN0(y) 6= ;. Compactnessof the KN (x) and KN (y) and the absence of �xed point for 
 6= e imply then that forN su�ciently big �� �W1=N(x)� \ �� �W1=N(y)� = ;, i.e. �(W1=N(x)) and �(W1=N(y)) aredisjoint open neighborhoods of �(x) and �(y). Thus the quotient topology on M= � isHausdor�. 2Examples of properly discontinuous and free actions.(1) # : Z2 � Sm ! Sm as in Example (5) of smooth actions. The orbit space with theinduced di�erentiable structure is di�eomorphic to Pm(R)(2) Let � be theZ{module in Rm generated by k R{linearly vectors v1; : : : ; vk in Rm. Thenthe orbit space Rm=� is di�eomorphic to (S1)k �Rm�k.(3) A general recipe to produce free, properly discontinuous actions is the following:let � be a subgroup of a Lie group G such that the subspace topology on � is the discretetopology. Then � is a discrete Lie group and acts by restricting to it the actions #L and#R on M = G. Let, for example, # = #Lj� : � �M ! M . Then for each 
 in �nfeg the�xed point set fg 2M = Gj
 � g = gg is empty.Assuming now that the action # is not properly discontinuous, then there is a compactset K in G and a sequence f
njn 2 N�1g in � such that 
n 6= 
m for n 6= m and
n(K) \ K 3 gn = 
n � hn with gn and hn in K for n � 1. Going to subsequences andrelabelling there are g0 and h0 in K such that gn ! g0 and hn ! h0. Thus �nally we have
n ! g0 � h�10 , a convergent sequence in � with 
n 6= 
m for n 6= m. This contradicts thefact that � carries the discrete topology and thus our assumption was wrong and � actsproperly discontinously by # = #Lj� on M = G.40



The quotientM=� being the set f� �gjg 2 Gg of left restclasses, we denote it sometimes by�=G as in abstract group theory. The corresponding quotient for the action #Rj� is thenof course denoted by G=�.As an illustration we give some concrete examples.(3.1) Let R be a unital ring andGR = 8<:� 1 a b0 1 c0 0 1 �����a; b; c 2 R9=; :Then GR is a group, and GR respectively GC is a real Lie group respectively a complex{analytic Lie group. Examples of discrete Lie subgroups are GZ� GR and GZ[i] � GC , andGZnGR respective GZ[i]nGC are compact smooth respective complex{analytic manifolds.(3.2) Let R be as in (3.1) andNR = GR �R = 8<:�� 1 a b0 1 c0 0 1 �; d�����a; b; c; d 2 R9=; ;the product of the group GR, de�ned above in (3.1) with the abelian group (R;+). ThenNZis a discrete subgroup of NR, and NZnNR and NR=NZare compact smooth real four{dimensional manifolds.Bibliographical remarks. A good reference for the elementary theory of quotients bydiscrete groups is [Bo]. A lot of material on di�erentiable actions of compact Lie groupscan be found in the classic [Bre].2.3 Vector bundlesDe�nition. A \smooth (real respectively complex) vector bundle of rank r (over a man-ifold M)" is a manifold E together with a smooth projection p : E ! M such that foreach x in M the �ber p�1(x) =: Ex has the structure of a r{dimensional (real respec-tively complex) vector space and such that the following condition of \local triviality"is satis�ed: for each x in M there is an open set U containing x and a di�eomorphism	U : p�1(U) ! U � Kr such that pr1 �	U = p and 	U jEx : Ex ! fxg � Kr is a K{vectorspace isomorphism for each x 2 U . (K equals R or C here).Remark. We will often speak of the \vector bundle E p! M" in order to have a shortnotation including the projection map p. FurthermoreE will sometimes be called the \totalspace" and M the \base" of the vector bundle.Examples. Let K be R or C . 41



(1) The product manifold M � Kr with p = pr1 is a vector bundle, the so{called \trivialvector bundle of rank r over M".(2) Let # :Z� (R�R)! R�R; #(n; (x; v)) = (x+ n; (�1)n � v) and E = (R�R)/� p!R=Z; p([x; v]) = [x].Then E is a vector bundle over R=Z�= S1.(3) Let H = f([z]; v) 2 Pm(K) � Km+1 jv 2 ((z))Kg. Then H is a closed submanifold ofPm(K) � Km+1 and the �bers of the projection p : H ! Pm(K); p([z]; v) = [z] are theone{dimensional K{vector spaces p�1([z]) = f([z]; v)jv 2 ((z))Kg(�= ((z))K � Km+1).\Local trivializations" are obtained as follows: let Uj = f[z] 2 Pm(K)jzj 6= 0g and �j :Uj � K ! p�1(Uj) be de�ned by�j([z]; �) = �[z]; � � (z0zj ; : : : ; zj�1zj ; 1; zj+1zj ; : : : ; zmzj )�:It is easy to check that �j is a di�eomorphism, that is \�ber-wise linear" and thus 	j = ��1jis a local trivialization of H p! Pm(K) over Uj (for j = 0; : : : ;m).De�nitions. (1) Let E p!M a vector bundle. A \smooth section of E" is a smooth maps : M ! E such that p � s = IdM . The set of smooth sections of E form a vector spacewhich is denoted by �C1(M;E). The \zero{section" is de�ned by s : M ! E; s(x) = 0x,where 0x is the zero{element of the vector space Ex = p�1(x).(2) Let E1 p1!M1 and E2 p2!M2 be vector bundles and let f :M1 !M2 be a smooth map.A smooth map F : E1 ! E2 is called a \smooth vector bundle homomorphism (over f)"if F ((E1)x) � (E2)f(x) for all x in M1 and F j(E1)x : (E1)x ! (E2)f(x) is a linear map for allx in M1. (Sometimes we refer to these properties by saying that F is \�ber{preserving"and \�ber{wise linear".)If f is a di�eomorphism and F j(E1)x is an isomorphism for all x in M the map F is calleda \smooth vector bundle isomorphism (over f)".(3) Two vector bundles over the same base manifold M are called \isomorphic" if thereexists a smooth vector bundle isomorphism over f = IdM .A vector bundle is called \trivializable" or shortly \trivial" if it is isomorphic to the trivialbundle of the same rank.Remark. The vector bundle E of Example (2) is non-trivial.De�nition. Let E p!M be a vector bundle of rank r and fU�j� 2 Ag an open coveringof M such that 	� : p�1(U�) ! U� � Kr are local trivializations of E. Then the mapsg�� : U�� = U� \ U� ! GL(Kr ) de�ned by	� �	�1� : U�� � Kr ! U�� � Kr ;	� �	�1� (x; v) = (x; g��(x) � v)are called the \transition functions of E with respect to the local trivializations fU�j� 2Ag".Remark. The family fg��j�; � 2 Ag ful�lls the following \cocycle identities":42



(1) g��(x) = 1 for all x in U�,(2) (g��(x))�1 = g��(x) for all x in U��,(3) g��(x) � g�
(x) � g
�(x) = 1 for all x in U��
 = U� \ U� \ U
 .Proposition. Let M be a manifold. Then(i) If fU�j� 2 Ag is an open covering of M and g�� : U�� ! GL(Kr ) is a family ofmaps ful�lling the cocycle identities given above then the set � _S�2A(U� �Kr )�.�, where(x; v) in U� � Kr and (y;w) in U� � Kr are equivalent if and only if x = y 2 U�� andw = g��(x) � v, is a vector bundle of rank r over M .(ii) If E p! M is a vector bundle of rank r and if fg��j�; � 2 Ag are its transitionfunctions with respect to a trivializing open cover fU�j� 2 Ag then E is isomorphic as avector bundle to � _S�2A(U� � Kr )�.�.(iii) Given the situation of (ii) then a section s of E de�nes (and is de�ned by) a familyof smooth maps s� : U� ! Kr (� 2 A) such that s�(x) = g��(x) � s�(x) for all x in U�� andfor all �; � in A.Proof. Exercise. 2Remarks. (1) Using the transition functions we can apply pointwise the usual operationsfrom multilinear algebra to construct new vector bundles from given ones. Let E and Fbe vectorbundles then E � F with �ber (E � F )x = Ex � Fx is called the \direct sum ofthe vector bundles E and F". Similarly one de�nes E 
 F , Hom(E;F ), and, if F � E isa \subbundle", E=F . Furthermore we have the bundles E� with �ber (E�)x = (Ex)� and
kE�;SkE� and �kE� for k 2 N0.(2) If f :M ! N is a smooth map and p : E ! N a vector bundle we have the \pullbackof E under f" (or simply the \pullback bundle") with total spacef�E = f(x; l) 2M � Ejf(x) = p(l)g;a closed submanifold of M � E, and projection f�p : f�E !M given by (f�p)(x; l) = x.Bibliographical remarks.We recommend [BT] to get some intuition for vector bundlesand [AMR] for many technical details.2.4 The tangent bundleDe�nition. Let M be a manifold and p in M .(1) A \curve at p" is a smooth map 
 : I !M , where I is an open intervall in R containing0, such that 
(0) = p. 43



(2) Two curves 
1 and 
2 at p are called \tangent with respect to the chart (U;')" if p isin U and ddt���0(' � 
1)(t) = ddt���0(' � 
2)(t).Lemma. Let (U;'); (U 0; '0) be charts on a manifold M and p in U \U 0. Then two curves
1 and 
2 are tangent with respect to (U;') if and only if they are tangent with respect to(U 0; '0).Proof. Let 
1 and 
2 be equivalent with respect to (U;'). Thenddt���0('0 � 
1)(t) = ddt���0((' � '�1) � (' � 
1))(t) = (D'(p)('0 � '�1)) ddt���0(' � 
1)(t)= �D'(p)('0 � '�1)� ddt���0(' � 
2)(t) = ddt���0('0 � 
2)(t):Exchanging the roles of ' and '0 we arrive at the assertion. 2Remark. Let V be open in Rm; V 0 open in Rn and 	 : V ! V 0 a smooth map. Werecall that the \derivative of 	" in a point x in V is given by the unique linear mapDx	 : Rm! Rn such that for w 2 Rmnf0glimkwk!0 k	(x+ w) �	(x)� (Dx	)(w)kkwk = 0:De�nitions. Let M be a manifold and let p be a point in M .(1) Two curves 
1 and 
2 at p are called \equivalent" if 
1 and 
2 are tangent with respectto one (and thus every) chart.(2) The space f[
]p j 
 curve at pg of equivalence classes of curves at p is called the \tangentspace to M at p" and is denoted by TpM .(3) The disjoint union _Sp2MTpM is called the \tangent bundle of M" and is denoted byTM .(4) Let N be a manifold and f : M ! N a smooth map. The map Tpf : TpM !Tf(p)N; [
]p 7! [f � 
]f(p) is called the \tangent of f at p".Remarks. (1) The tangent of a map f at p is well{de�ned. Proof as an exercise.)(2) Despite the terminology it is not obvious that the tangent bundle is a vector bundle!(The proof will be given in the course of this section.)(3) Given a smooth map f :M ! N we have set{theoretically the \tangent of f"Tf : TM ! TN; (Tf)([
]p) = (Tpf)([
]p):Denoting the projection TM !M; [
]p 7! p by pTM (and analogously for N) we obviouslyhave pTN � Tf = f � pTM .Lemma. Let L;M;N be manifolds and f :M ! N and g : L!M be smooth maps.(i) Then T (f � g) = (Tf) � (Tg). 44



(ii) If M = N and f = IdM then Tf = T IdM = IdTM .(iii) If f is a di�eomorphism then Tf is bijective and (Tf)�1 = T (f�1).Proof. Exercise. 2Lemma. Let V be open in Rm; x in V and w in Rm. Let us set 
w(t) = x+ tw. Then(i) [
w0 ]x = [
w00]x if and only if w0 = w00 in Rm, and(ii) �x : Rm! TxV;w 7! [
w]x is bijective.Remark. To be completely unambiguous one should note the curve t 7! x+tw by 
w;x. Inorder to simplify the notation we will stick to 
w especially if we consider the equivalenceclasses [
w]x, where no danger of confusion can arise.Proof of the lemma.Ad(i). Let us assume that [
w0]x = [
w00 ]x. Then 0 = ddt���0(
w0(t)� 
w00(t)) = w0 �w00. Thusthe �rst assertion is proven.Ad(ii). By (i) �x is injective. Let now 
 be any curve at x and w = _
(0). It follows thatddt���0(
(t)� 
w(t)) = 0, i.e. [
]x = [
w]x. 2Proposition. Let V be open in Rm. Then(i) TxV is a vector space with a basis given by [
ek ]x for k = 1; : : : ;m. (The vector ek is ofcourse the k{th unit vector in Rm.)(ii) TV carries naturally the structure of a trivial vector bundle over V via the bijection�V = V �Rm! TV; �V (x;w) = �x(w) = [
w]x;ful�lling pTV � �V = pr1.(iii) If V 0 is open in Rn and f : V ! V 0 is a smooth map then Tf : TV ! TV 0 is asmooth vector bundle homomorphism over f . Identifying TV with V � Rm and TV 0 withV 0 �Rn we have (Tf)(x;w) = (Txf)(w) = (x; (Dxf)(w)).(iv) If a map f as in (iii) is a di�eomorphism then Tf is a vector bundle isomorphism.Proof. The �rst assertion follows immediately from the preceding lemma.Let �V : V �Rm! TV be given by �V (x;w) = [
w]x then we have �V � pTV = IdV � pr1and thus TV carries canonically the structure of a smooth real vector bundle of rank m,proving (ii).Since (Tf)[
w]x = [f � 
w]f(x) and ddt���0(f � 
w)(0) = (Dxf)(w) we arrive at(Tf)[
w]x = [
(Dxf)(w)]f(x):This implies with 	V = (�V )�1 and 	0V 0 = (�V 0)�1 that	0V 0 � Tf � (	V )�1 : V �Rm! V 0 �Rn45



is the map (x;w) 7! (f(x); (Dxf)(w)). Obviously this map is a smooth vector bundlehomomorphism over the map f : V ! V 0.The last assertion follows from (iii) and the properties we have shown for Tf as a set{theoretic map. 2Remark. Let V be open in Rm; V 0 open in Rn and f : V ! V 0 smooth. Denoting thecanonical basis of Rm by fe1; : : : ; emg and the canonical basis of Rn by f�1; : : : ; �ng we havefor each x in V a matrix Ax in Mat(n �m;R) such that (Txf)(ej) = nPi=1(Ax)ij�i. Writingf = t(f1; : : : ; fn) with n scalar functions fi it follows that (Ax)ij = @fi@xj (x), i.e. Ax is theJacobi matrix of f in x. (Fill in the details of the computation as an exercise.)De�nition. Let M be a manifold and ' : U ! V � Rm a chart. We call the bijectionT' : TU ! TV the \natural bundle chart (associated to the chart (U;'))".Proposition. Let M be a manifold and A = f(U�; '�)j� 2 Ag an admissible atlas for M .Then the \natural bundle atlas associated to A", TA = f(TU�; T'�)j� 2 Ag is a smoothatlas on TM such that TM together with its canonical projection pTM to M is a smoothvector bundle over M .Furthermore the di�erentiable structure of (TM;TA) depends only on the di�erentiablestructure of (M;A).Proof. Since the TU� cover set{theoretically TM and T'� : TU� ! TV� (V� = '(U�) �Rm) is bijective for each � we can de�ne a topology T on TM as usual, i.e. 
 is open inTM if and only if (T'�)(
 \ TU�) is open in TV� for all � in A. The continuity of pTV�implies that pTM : TM !M is continuous, and it follows that (TM;T ) is Hausdor� andsecond{countable.The coordinate changes of the atlas TA are given by(T'�) � (T'�)�1 = T ('� � '�1� ) : (T'�)(TU��)! (T'�)(TU��):Since T ('� �'�1� ) is a di�eomorphism, it follows that the atlas TA on TM is smooth, andfurthermore that pTM is a smooth map. Since TV� is isomorphic as a vector bundle over V�to the trivial vector bundle V��Rm via the vector bundle isomorphism (��)�1 := (�V�)�1,for a given �, TU� inherits the structure of a vector bundle from TV�. (We denote themap V� � Rm ! TV�; (x;w) 7! [
w]x again by �V�.) Using the fact that the transitionmaps T ('� � '�1� ) are vector bundle isomorphisms, the linear structures on the �bers ofpTM : TM !M are well{de�ned and('�1� � pr1; pr2) � �� � T'� : TU� ! U� �Rmare local trivializiations of TM over U�. 2Exercise. Show the last assertion of the proposition, i.e. the independence of this con-struction of the chosen admissible atlas given a �xed di�erentiable structure on M .46



Proposition. Let M and N be manifolds and f :M ! N a smooth map. Then(i) Tf : TM ! TN is a smooth vector bundle homomorphism over f , and(ii) if '� = (x�1 ; : : : ; x�m) : U� ! V� � Rm respectively  � = (y�1 ; : : : ; y�n) : U 0� ! V 0� � Rnare local coordinates near p inM respectively f(p) in N , then the map Tpf : TpM ! Tf(p)Nis given by the \Jacobi{matrix of f in the local coordinate systems", i.e. settingt( ~f1; : : : ; ~fn) = ~f =  � � f � '�1� : '�(U� \ f�1(U 0�))! Rnand denoting the canonical basis of Rm and Rn again by fe1; : : : ; emg and f�1; : : : ; �ng wehave T � � Tf � T'�1� = T ~f andT ~f([
ej ]'�(p)) = nXi=1 @ ~fi@x�j ('�(p)) � [��i ]	�(f(p)) ;where, as usual, [
ej ]x is the tangent vector in x represented by 
ej (t) = x+ tej and analo-gously for [��i ]y.Proof. Exercise. 2Remark. Obviously the basic theorems of di�erential calculus in several variables cannow be applied to smooth manifolds and yield for example the followingProposition. Let f :M ! N be a smooth map and q in N . If the rank of Tpf is eithermaximal for all p in f�1(q) or constant on a neighborhood of f�1(q) in M then f�1(q) isa (smooth) closed submanifold of M .Proof. Exercise using the rank theorem in local coordinates. 2Bibliographical remarks. Beside the books mentioned at the end of Section 2.1 we wouldlike to recommend [Br�oJ�a] and [Br�o] - the latter being unfortunately available only ingerman language.2.5 Vector �elds on manifoldsDe�nitions. Let M be a manifold.(1) The vector space of real{valued smooth functions on M is denoted by E(M) =C1(M;R).(2) Let Uf and Ug be open neighborhoods of p in M and f 2 E(Uf ); g 2 E(Ug). We say\f and g are equivalent in p", f �p g, if and only if there is an open neighborhood V of psuch that V � Uf \ Ug and f jV = gjV . The set of equivalence classesff : Uf ! Rjp 2 Uf ; Uf open in M;f smooth g=�p47



is denoted by Ep(M) and an equivalence class [f : Uf ! R]p is denoted by f�p and calleda \germ of a smooth function in p".Proposition. Let M be a manifold and p in M . Then(i) Ep(M) is a commutative, associative, unital R{algebra, and(ii) the vector space Der (Ep(M)) :=fDp : Ep(M)! RjDp is R{linear and Dp( f�p � g�p ) = Dp( f�p ) � g(p)+ f(p) �Dp( g�p )gof its \(scalar{valued) derivations" is R{linearly isomorphic to TpM .Proof. The �rst assertion follows from the observation that E(U) is a commutative,associative, unital R{algebra for each open set U in M .Since E(U�) ! E(V�); f 7! f � '�1� is a R{algebra isomorphism for each chart '� : U� !V� � Rm, we can assume that M = Rm and p = 0.The map T0Rm �0�! Der (E0(Rm)); �0([
]0)( f�0 ) = ddt���0(f � 
)(t)is well{de�ned and an injective R{vector space homomorphism. In order to show that �0is surjective we use the \Fundamental lemma" below to develop a smooth function f near0 in Rm as follows f(x) = f(0) + mXj=1 fj(x) � xj;where fj is a smooth function near 0 ful�lling fj(0) = @f@xj (0). Given now D0 in Der (E0(Rm))we set aj = D0(xj) 2 R, w =Pmj=1 ajej, and 
w(t) = t � w as usual. Then we have�0([
w]0)( f�0 ) = ddt���0f(tw) = mXj=1 aj � @f@xj (0) = mXj=1 fj(0)D0(xj) = D0( f�0 ): 2Lemma (\Fundamental lemma").Let U be an open neighborhood of 0 in Rm and f : U ! R a smooth function. Then thereare smooth function fj de�ned near 0 (for j = 1; : : : ;m) such that fj(0) = @f@xj (0) andf(x) = f(0) + mXj=1 fj(x) � xjfor all x in a ball B �(0) for � > 0 su�ciently small.Proof.Let � > 0 such that the ball B � (0) is contained in U . For all x in B � (0) we havef(x)� f(0) = Z 10 ddtf(t � x)dt = mXj=1 �Z 10 @f@xj (t � x)dt� � xj:48



Obviously fj(x) := R 10 @f@xj (t � x)dt is a smooth function on B �(0) and fj(0) = @f@xj (0). 2Corollary. Let V be open in Rm and x in V . Then the isomorphismTxV �x�! Der(Ex(V )); �x([
]x)( f�x ) = ddt���0(f � 
)(t)maps [
ek ]x to the partial derivative @@xk ���x.Proof. Exercise. 2De�nition. Let M be a manifold. A \vector �eld (on M)" is a smooth section of thetangent bundle TM of M . We denote the R{vector space of all vector �elds by X(M) =�C1 (M;TM).Proposition. Let V be open in Rm and letDer(E(V )) = fD : E(V )! E(V )jD is R{linear and D(f � g) = D(f) � g + f �D(g)gbe the space of all \derivations of E(V )". Then the maps �x : TxV ! Derx(Ex(V )) yield aR{vector space isomorphism � : X(V )! Der(E(V )).Proof. Identifying TV via �V with V �Rm, a vector �eldX on V is given by a smooth mapw : V ! Rm (X(x) = [
w(x)]x in TxV ). The map �x takes X(x) to Pmj=1 wj(x) @@xj ���x, wherew = t(w1; : : : ; wm). Obviously DX := Pmj=1 wj @@xj is an element of Der(E(V )), since thefunctions wj are smooth, and furthermore we observe that the map � : X(V )! Der(E(V )),�(X) = DX is injective. Let now D be in Der(E(V )), then applying D to germs of smoothfunctions yields a map Dx : Ex(V ) ! R;Dx( f�x ) = (D(f))(x), which is an element ofDerx(Ex(V )). Let now the functions wj be de�ned by wj(x) = Dx(xj) (xj being again thej{th coordinate on V � Rm). Since Dx(xj) = D(xj)(x), these functions are smooth andthus de�ne a vector �eld X on V . It follows that for f in E(V )DX (f)(x) = DXx ( f�x ) = mXj=1 � @f@xj ���x�wj(x) = Dx( f�x )by applying the fundamental lemma to functions de�ned near x. Since D is uniquely deter-mined by the family fDxjx 2 V g it follows that D = DX = �(x) i.e. � is an isomorphism.2Corollary. Let M be a manifold. Then there is a R{vector space isomorphism � : X(M)!Der(E(M)) such that in all charts (V; ') of M � is given as in the preceding proposition.Proof. Since a vector �eld as well as a derivation of E(M) are uniquely determined bytheir restrictions to the chart domains in an atlas of M , the map � is well{de�ned andinjective. Given now D in Der (E(M)) we construct X� on U� for an atlas f(U�; '�)j� 2 Agas in the proof of the preceding lemma. It remains only to show that the X� de�ne a globalvector �eld, i.e. a section of TM . This easily follows from the transformation properties of49



the partial derivatives de�ned on coordinate charts and the de�nition of the bundle chartsT'� of TM . (Details as exercise.) 2Remark. The last proposition explains why one speaks of a \vector �eld on M , locallygiven by Pnj=1w�j @@x�j ", where '� = (x�1 ; : : : ; x�m) are local coordinates and w�j : V� ='�(U�)! R are smooth functions.De�nition. Let K be a �eld and g be a K{vector space with a map [; ] : g � g! g. Wecall (g; [; ]) a \(K{)Lie algebra" if the following conditions are satis�ed:(1) [; ] is K{bilinear,(2) [; ] is anti{symmetric,(3) [; ] ful�lls the \Jacobi identity":[u; [v;w]] = [[u; v]; w] + [v; [u;w]]for all u; v; w in g.Example (and exercise). Let A be an associative K{algebra. Then [S; T ] := S �T�T �Sde�nes a K{Lie algebra structure on A. Thus for a K{vector space E the algebra A =EndK(E) is a K{Lie algebra.Remark. Originating in the above example, the name \commutator" for the map [; ] :g� g! g is frequently used, even if g ist not constructed from an associative algebra.De�nition. Let (g; [; ]) be a K{Lie algebra and h � g a subset. We call h a \Lie subalgebra(of g over K)" if h is a K{subspace of g such that [�; �] is in h for all �; � in h.Lemma. Let A be a K{algebra and Der (A) := fD 2 EndK(A)jD(a �b) = D(a) �b+a �D(b)8 a; b 2 Ag. Then Der (A) is a Lie subalgebra of (EndK(A); [; ]), the space of K{linear vectorspace endomorphisms of A with the commutator [; ] coming from the associative compositionof endomorphisms (as in the preceding example).Proof. Direct calculation (exercise). 2Corollary 1. LetM be a manifold. Then the space Der(E(M)) of the associative R{algebraE(M) is a Lie subalgebra of (EndR(E(M)); [; ]) .Proof. Follows directly from the preceding lemma. 2Corollary 2. Let M be a manifold. Then the R{vector space X(M) naturally carries thestructure of a Lie algebra induced from Der(E(M)).Proof. Let X;Y be in X(M) and D = [DX ;DY ] in Der(E(M)). Since � : X(M) !Der(E(M)) is an isomorphism there is a unique Z in X(M) such that DZ = �(Z) =[DX ;DY ]. The bilinear map [X;Y ] := ��1([�(X); �(Y )]):obviously de�nes a Lie bracket. 2De�nitions. Let M be a manifold and X in X(M).50



(1) Let I be a connected open neighborhood of 0 in R. A smooth curve 
 : I !M is calleda \(local) integral curve of X with initial condition p (in M)" if the following conditionsare satis�ed _
(t) = ddt
(t) = (Tt
)� ddt���t� = X(
(t)) 8t 2 I and 
(0) = p:(2) Let 
 be an open set in R�M containing f0g �M . A smooth map 'X : 
 ! M iscalled a \local 
ow of the vector �eld X" if for each p inM the curve t 7! 'X(t; p) =: 'Xt (p)is an integral curve of X with initial condition p.Theorem. Let M be a manifold and X a vector �eld on M . Then for each p in Mthere exist local integral curves of X with initial condition p. Furthermore these curves areunique, i.e. they coincide on the intersection of their intervals of de�nition, and there isa maximal connected open interval Ip in R containing 0 such that 'Xt (p) is de�ned on Ipand cannot be extended beyond Ip.The set 
 := f(t; p) 2 R�M jt 2 Ipg is open in R�M and the map 'X : 
!M;'X(t; p) ='Xt (p) is smooth, i.e. there is a unique maximal local 
ow of the vector �eld.Proof. Given any chart '� : U� ! V� � Rm the vector �eld X corresponds to a mapw� : V� ! Rm such that X(x) = (x;w�(x)) on V�. The equation _
 = X(
(t)) thentranslates to the ordinary di�erential equation:_
k(t) = w�k (
(t)) for k = 1; : : : ;m:Since the coe�cient functions w�k are smooth there is for any point of V� an open neighbor-hood and some � > 0 such that the solution of this di�erential equation exists, is smoothand unique and depends smoothly on the initial condition in this neighborhood. This local
ow can then be transported toM and by uniqueness of the solutions they patch smoothlywith solutions coming from other charts. Thus for each p in M there is a maximal con-nected open intervall Ip on which the curve t 7! 'Xt (p) is de�ned. Openness of the set 
follows again from local arguments in charts. 2Exercise. Fill out the details of the preceding proof (by using any textbook on ordinarydi�erential equations for example.)Corollary 1. (\Flow equations"). Let (M;X;
; 'X ) be as in the theorem. Then 'X0 =IdM , and if (s; p); (t+ s; p); (t; 'Xs (p)) are in 
 then 'Xt+s(p) = 'Xt ('Xs (p)), in short\'X0 = IdM and 'Xt+s = 'Xt � 'Xs :"Proof. The curves t 7! 'Xt+s(p) and t 7! 'Xt ('Xs (p)) are both de�ned for small t and areintegral curves of X with initial condition 'Xs (p). Uniqueness of this integral curve yieldsthe assertion. 2Corollary 2. Let (M;X;
; 'X ) be as in the theorem, t in R and U be open in M suchthat ftg � U is in 
. Then 'Xt : U !M is a di�eomorphism onto 'Xt (U).51



Proof. Obviously t 2 Ip for all p in U . By Corollary 1 we have for p in U and s in [0; t]the equality 'Xt�s(p) = 'X�s('Xt (p)), i.e. 'X�t is de�ned on 'Xt (U) and 'X�t = ('Xt jU )�1 :'Xt (U)! U . 2De�nition. Let M be a manifold and X in X(M). The \support of X" is the closedsubset of M de�ned by supp (X) = fp 2M jX(p) 6= 0g:Corollary 3. LetM be a manifold and X a vector �eld on M with compact support. Then
 = R�M , i.e. the \
ow of X is global". The map 'X : R�M ! R is then a smoothaction of the Lie group (R;+) on M .Proof. Let p be in Mnsupp (X) then 'Xt (p) = p, i.e. the unique maximal integral curveis de�ned for all t in R. Since 
 is open in M there is for each p in M some �p > 0 and anopen neighborhood Up of p in M such that (��p; �p) � Up is in 
. Covering the compactset K = supp (X) by fK \ Upjp 2 Kg we �nd �0 > 0 such that (��0; �0)�M is in 
. Letnow �max � �0 > 0 be the supremum of all � > 0 such that (��; �)�M � 
. Assumingthat � is not +1 there is a p in M such that Ip is at least unilaterally bounded. Withoutloss of generality we may assume that Ip � (�1; 3 � �max=2). Setting 
(t) = 'Xt=2('Xt=2(p))for t in [0; 2�max) we see that the assumption on Ip is wrong and therefore �max = +1, i.e.the 
ow is global.The two preceding corollaries now imply that 'X : R�M !M is a smooth action. 2Remarks. (1) The third corollary shows in particular that the 
ow of a vector �eld on acompact manifold is always globally de�ned.(2) The 
ow equations (see Corollary 1) are the appropriate formulation for a \local R{action".Lemma. LetM be a manifold and let A be an open subset in R�M such that A\(R�fpg)is a connected open interval containing 0 in R � fpg for all p in M . Let furthermore' : A ! M be a smooth map such that the 
ow equations of Corollary 3 are satis�ed.Then the vector�eld X de�ned by X(p) := ddt���0'X(t; p) is smooth on M and the maximal
ow 'X is de�ned on an open set 
 � R�M such that A � 
 and 'X jA = '.Proof. Exercise. 2Remarks. A vector �eld X on a manifold M together with its 
ow 'X is often called a\(continuous) dynamical system on M". Rigorously speaking this term should be reservedfor those vector �elds whose 
ow is globally (i.e. on R�M) de�ned. A \discrete dynamicalsystem" is a Z{action # :Z�M !M . Since #0 = IdM ; #�1 = (#1)�1 and #n = (#1)n theaction is in fact determined by the di�eomorphism #1 : M ! M . Allowing any smoothmap f : M ! M to replace #1 we arrive at the notion of a \semi{group action of N0 onM": # : N0 �M !M;#(n; p) = (' � � � � � '| {z }n factors )(p) = 'n(p)(and we set of course #(0; p) = p, i.e. '0 := #0 := IdM).52



In closing this section let us make contact to the Hamilton equation in R2n.Proposition. Let M be open in R2n with coordinates (q1; : : : ; qn; p1; : : : ; pn). Then theHamilton equation associated to a smooth function H :M ! R, given as_qj = @H@pj ; _pj = �@H@qj with initial condition (q0; p0) in Mare equivalent to _
(t) = XH(
(t)) and 
(0) = (q0; p0)for the vector �eld XH(q; p) =Pnj=1 � @H@pj @@qj � @H@qj @@pj�.Proof. Exercise. 2Remark. The vector �eld XH in the last proposition is called the \Hamiltonian vector�eld" associated to the Hamilton function H.Bibliographical remarks. As at the end of the previous section, plus a solid referenceon ordinary di�erential equations as [Ar2].2.6 Di�erential forms and the Lie derivativeDe�nitions. Let M be a manifold and TM its tangent bundle.(1) The vector bundle (TM)� =: T �M pT�M�! M is called the \cotangent bundle of M" andthe vector space (pT �M)�1(x) = (TxM)� =: T �xM the \cotangent space in x" (x 2M).(2) A section of T �M is called a \(di�erential) one{form on M" and the vector space ofall its sections is denoted by E1(M) = �C1 (M;T �M).(3) Analogously we de�ne for k � 1 the bundles �kT �M := �k(TM)� and call theirsections \(di�erential) k{forms on M". The section spaces are denoted by Ek(M) :=�C1 (M;�kT �M).(4) The space of smooth functions E(M) = C1(M;R) is also called the space of \0{forms",E0(M) := E(M).Remark. If m = dimRM , then �kT �xM = f0g for all x in M and all k > m and thusthere are no (non{trivial) k{forms with k > dimRM .De�nition. Let V be open in Rm with coordinates (x1; : : : ; xm) and let a vector �eldX beidenti�ed with the associated derivation �(X) =Pmj=1 aj @@xj (aj 2 E(V )). The di�erentialone{form dxj 2 E1(V ) is de�ned by (dxj)p( @@xk jp) = �j;k for all p in V and thus dxj(X) = aj.Lemma. Let V be open in Rm and p in V . Then(i) T �pV = ((fdx1)p; : : : ; (dxm)pg))R, and 53



(ii) �kT �p V = ((fdxi1 ^ : : : ^ dxik)pj1 � i1 � � � � � ik � ng))R.Furthermore the section space X(V); E�(V) and Ek(V ) for k � 1 are free E(V ){moduleswith module basis as follows(iii) X(V ) = ((f @@x1 ; : : : ; @@xmg))E(V ),(iv) E�(V ) = ((f1g))E(V ), and(v) Ek(V ) = ((fdxi1 ^ � � � ^ dxik j1 � i1 � � � � � ik � ng))E(V ).Proof. Exercise. 2De�nition. Let M be a manifold, p in M , v in TpM and � in �kT �pM (k � 1). Then the\contraction of v and �" is the (k � 1){form vy� = iv� 2 �k�1T �pM de�ned as follows:(iv�)(v1; : : : ; vk�1) := �(v; v1; : : : ; vk�1) for all v1; : : : ; vk�1 in TpM:Exercise. Check that iv� is multilinear and alternating, i.e. in �k�1T �pM .Lemma. Let M be a manifold, X in X(M) and � in Ek(M), then the contractionXy� = iX� de�ned by (iX�)p := iXp�p for all p in Mis a smooth di�erential (k � 1){form, i.e. iX� is in Ek�1(M).Proof. Exercise. 2Remark. On the space ��(T �pM) = Lk�0�k(T �pM) one has the multiplication \^" ofexterior algebras. This is easily globalized as follows.Lemma. Let M be a manifold and � 2 Ek(M); � 2 E l(M). Then the formula(� ^ �)p := �p ^ �p for all p in Mde�nes a smooth (k + l){form � ^ � on M .Furthermore the space of sections of the vector bundle ��T �M := Lk�0�kT �M is canoni-cally isomorphic to Lk�0 Ek(M) and this space together with the wedge{product is a super{commutative, associative, unital algebra over the ring E(M).Proof. Exercise. 2Remark. Given a smooth map f :M ! N between two manifoldsM and N , and a pointp in M we have the tangent of f in p, which we will denote also by (f�)p, i.e.(f�)p := Tpf : TpM ! Tf(p)N:Since Tpf is linear we have induced maps 
kT �f(p)N ! 
kT �pM and �kT �f(p)N ! �kT �pM .De�nition. Let f :M ! N be smooth and � in Ek(N). Then the k{form f�� is de�nedby (f��)p(v1; : : : ; vk) := �f(p)((f�)p(v1); : : : ; (f�)p(vk)) 8 p 2M; 8 v1; : : : ; vk 2 TpM54



is called the \pull{back of � by f".Exercise. Check that f�� is a smooth k{form on M .Remark. It is important to note that the anologous construction on a vector �eld doesnot always work, i.e. (f�X)p = (f�)pXp 2 Tf(p)N for p in M and X in X(M), but this is ingeneral only a section of the bundle f�(TN)!M and does not necessarily de�ne a vector�eld on N .Example. Let M = N = R and f(x) = x2. Then (Tpf)(a(x) @@xjp) 2 Tf(p)R de�nes avector �eld on R if and only if a(x) = 0 for all x in R, i.e. if and only if the vector �eldX = a(x) @@x is everywhere zero.Lemma. Let L;M;N be manifolds and g : L! M and f :M ! N be smooth. Further-more let � 2 Ek(N) and � in E l(N). Then(i) f�(� ^ �) = (f��) ^ (f��),(ii) f� =  � f for  in E0(N),(iii) f� : E�(N) ! E�(M) is an R{linear even homomorphism of superalgebras (over R)ful�lling f�( � �) = (f� ) � (f��) for all  in E0(N) ;(iv) (f � g)� = g� � f� : E�(N)! E�(L).Proof. Exercise. 2De�nition. Let M be a manifold, X a vector �eld on M and 'Xt the 
ow of X.For a k{form � on M we de�ne the \Lie derivative of � with respect to X" by(LX�)p := ddt���0�(('Xt )��)p� for all p in M:Proposition. Let M;X;'Xt be as in the preceding de�nition and let �; �0 be in Ek(M) and� in E l(M) with k; l � 1. Then(i) LX� is in Ek(M),(ii) LX(� � �) = � � LX� for � in R,(iii) LX(� + �0) = LX� + LX�0,(iv) LX(� ^ �) = (LX�) ^ � + � ^ (LX�).Proof.Ad(i). Since the local 
ow 'X is a smooth map from its domain of de�nition 
 � R�Mto M it easy to deduce that LX� exists in every point p of M and that (LX�)p is in�k(TpM)�, i.e. LX� is a section of �kT �M . Since di�erentiability of a section is a localcondition we may assume that M = V is an open subset of Rm. The fact that Ek(V ) =((fdxi1 ^ � � � ^ xikji1 < � � � < ikg))E(V ) implies that LX� is a smooth section if and only55



if (LX�)(X1; : : : ;Xk) is a smooth function for all X1; : : : ;Xk in X(V ). For p near a �xedpoint p0 in V we have((LX�)(X1; : : : ;Xk))(p) = ddt���0(('Xt )��)p(X1(p); : : : ;Xk(p))= ddt���0��'Xt (p)((('Xt )�)p(X1(p)); : : : (('Xt )�)p(Xk(p)))� =: ddt���0F (t; p);and for �xed X;X1; : : : ;Xk; � the function F (t; p) is de�ned for small t and p near p0 andis smooth in both variables. Thus (LX�)(X1; : : : ;Xk) is a smooth function in p near p0 forall p0 in V , and the �rst assertion is proven.Assertions (ii) and (iii) follow directly from the R{linearity of the maps ('Xt )�.The last assertion can be derived from the formula ('Xt )�(� ^ �) = ('Xt )�� ^ ('Xt )�� bywriting ddt j0(('Xt )��)p = limt!0 1t ((('Xt )��)p � �p) (for all � in E�(M)) and mimicking theproof of the Leibniz rule for functions of one real variable. 2Lemma. Let M be a manifold, X in X(M) and f in E0(M) = E(M). ThenLXf = X(f); i.e. LXf = DX(f);where DX is the derivation of E(M) canonically associated to X.If furthermore � is in Ek(M) with k � 1 we have LX(f � �) = (LXf) � � + f � (LX�):Proof. Let p be in M , then(LXf)(p) = ddt���0(('Xt )�f)p = ddt���0(f � 'Xt )(p) = ddt���0f('Xt (p));i.e. (LXf)(p) is the derivative of f in the direction ddt j0'Xt (p) = X(p). Since this is the veryde�nition of (DX (f))(p) the �rst part is proven.The second part follows as sketched in the proof of Assertion (iv) of the preceding propo-sition. 2De�nition. Let M be a manifold and X and Y in X(M). The \Lie derivative of Y withrespect to X" is de�ned as follows(LXY )(p) := ddt���0f(('X�t)�)'Xt (p)(('Xt (p)))g for all p in M:Remark. Since the 
ow 'X is smooth LXY is a well{de�ned section of TM . Its smooth-ness will follow a fortiori from the next proposition.De�nition. Let M 0 and M 00 be manifolds and F : M 0 ! M 00 a di�eomorphism. For avector �eld Z on M 0 we de�ne its \push{forward" as follows(F�Z)q := (TF�1(q)F )(ZF�1(q)) = (F�)F�1(q)(ZF�1(q)) for all q in M 00:Remark. Considering a �xed point q = F (p) the above formula is just the tangent of themap F . In the case here considered when F is a di�eomorphism, F�Z is easily seen to bea smooth section of TM 00, i.e. F�Z is a vector �eld on M 00.56



Lemma. Let M 0;M 00; F and Z be as in the preceding de�nition, and let 'Zt be the 
ow ofZ on M 0. Then the 
ow of F�Z on M 00 is given by 'F�Zt = F � 'Zt � F�1.Furthermore, if f is in E(M 00) then ((F�Z)(f))(q) = (Z(f � F ))(F�1(q)) for all q in M 00.((F�Z)(f) denotes of course again DF�Z(f)).Proof. Obviously we have F � 'Z0 � F�1 = IdM 00. Furthermoreddt���0(F � 'Zt � F�1)(q) = (TF�1(q)F )(ZF�1(q)) = (F�Z)qso that the �rst assertion is proven.Let now f be in E(M 00) then((F�Z)(f))(q) = ddt���0(f � 'F�Zt )(q) = ddt���0(f � F � 'Zt � F�1)(q)= ddt���0(f � F )('Zt (F�1(q))) = ZF�1(q)(f � F ) = (Z(f � F ))(F�1(q)): 2Proposition. Let M be a manifold and X and Y in X(M). ThenLXY = [X;Y ]:Proof. Since X(M) is canonically isomorphic to the derivations of E(M) it is enough toshow that (LXY )(f) = ([X;Y ])(f) for all f in E(M).Let f be in E(M) and p a point in M . There is a � = �(p) > 0 and an open neighborhoodU of p in M such that 'Xt jU : U ! Wt = 'Xt (U) is a di�eomorphism for all t with jtj < �.(The sets Wt are of course open in M .)We compute(LXY )p( f�p ) = ddt���0f(('X�t)��'Xt (p)(Y ('Xt (p)))g( f�p ) = ddt���0f(('X�t)�Y )p( f�p )g;where we consider for every t the di�eomorphism F = 'X�t : Wt =M 0 ! U = M 00 and weuse the pushforward notation.By the previous lemma we have(LXY )p( f�p ) = ddt���0f(Y (f � 'X�t))('Xt (p))g:In order to calculate this derivative with respect to t we introduce the smooth maps� : I� := (��; �)! I� � I�;�(t) = (�1(t);�2(t)) := (t; t) and : I� � I� ! R;  (r; s) = (Y (f � 'X�s))('Xr (p)):57



(If necessary we choose a smaller � > 0 here.)It follows that(LXY )p = ddt���0( ��)(t) = �@ @r (0; 0)� � �d�1dt (0)�+ �@ @s (0; 0)� � �d�2dt (0)�= (X(Y (f))(p)) � 1� (Y (X(f))(p)) � 1 = ([X;Y ](f))(p): 2Proposition. Let M be a manifold, X a vector �eld on M and � a k{form on M (withk � 1). Then(LX�)(X1; : : : ;Xk) = LX(�(X1; : : : ;Xk))� kXj=1 �(X1; : : : ;Xj�1;LXXj ;Xj+1; : : : ;Xk)for all vector �elds X1; : : : ;Xk on M .Proof. For all (t; p) in 
, the domain of the local 
ow of X, we have(('Xt )�(�(X1; : : : ;X2)))(p) = f(('X�t)�(('Xt )��))(X1; : : : ;Xk)g('Xt (p))= (('X�t)�(('Xt )��))'Xt (p)�X1('Xt (p)); : : : ;Xk('Xt (p))�= (('Xt )��)p�(('X�t)�)'Xt (p)(X1('Xt (p))); : : : ; (('X�t)�)'Xt (p)(Xk('Xt (p)))�:Thus, using the Leibniz rule repeatedly in the variable t as in the preceding proof one has(LX(�(X1; : : : ;Xk)))(p) = ddt���0(('Xt )�(�(X1; : : : ;Xk)))(p)= ((LX�)(X1; : : : ;Xk))(p) + kXj=1 �(X1; : : : ;Xj�1;LXXj ;Xj+1; : : : ;Xk)(p): 2Bibliographical remarks. Books on manifolds as quoted at the end of 2.1 plus [GHL].2.7 The exterior derivative of di�erential forms and de Rham cohomologyExample. Let 
 be an open subset of R3. A vector �eld, given as K = P3j=1Kj @@xjwith Kj in E(
), is { especially in physics { often described by the smooth vector{valuedfunction ~K = t(K1;K2;K3) : 
! R3. The canonical Riemannian structure and orientation58



allow the de�nition of the usual operations of vector calculus (for  in E(
) the expression@j denotes here the partial derivative @ @xj with j in f1; 2; 3g):* the \gradient" of a smooth real{valued function f on 
 is de�ned asgrad f = rf = 3Xj=1 @jf @@xjor by ~rf = t(@1f; @2f; @3f),* the \curl" of a vector �eld K is given ascurlK = r�K = (@2K3 � @3K2) @@x1 + (@3K1 � @1K3) @@x2 + (@1K2 � @2K1) @@x3or as ~r� ~K, where ~r = t( @@x1 ; @@x2 ; @@x3 ) and \�" is the vector product,* the \divergence" of a vector �eld L isdivL = 3Xj=1 @jLjor as ~r � ~L, where \�" is the scalar product.It is easily checked that div (curlK) = 0 and curl (grad f) = 0. Thus in order to decidee.g. if a given force �eld ~K is conservative, i.e., a gradient �eld, we immediately �nd thenecessary condition curl(K) = 0.In order to translate the \exact sequence" (i.e., div � curl = 0 and curl � grad = 0)E0(
) grad�! X(
) curl�! X(
) div�! E0(
)into the language of di�erential forms we de�ne the following E(
){module isomorphisms�1 : X(
)! E1(
); �1( 3Xj=1 Kj @@xj ) = 3Xj=1 Kj dxj;�2 : X(
)! E2(
); �2( 3Xj=1 Lj @@xj )= L1dx2 ^ dx3 � L2dx1 ^ dx3 + L3dx1 ^ dx2;�3 : E0(
)! E3(
); f 7! f dx1 ^ dx2 ^ dx3:Setting ~d0 := �1 � grad, ~d1 := �2 � curl � (�1)�1; ~d3 := �3 � div � (�2)�1 we get an exactsequence ( ~dj+1 � ~dj = 0) as follows:E0(
) ~d0�! E1(
) ~d1�! E2(
) ~d2�! E3(
):Over �rst objective is to generalize this sequence to an arbitrary manifold.59



De�nition. LetM be a manifold and � a di�erential k{form onM (k � 0). The \exteriorderivative d(�) of �" is de�ned by the following formula:(d(�))(X1; : : : ;Xk+1) := k+1Xj=1 (�1)j+1Xj(�(X1; : : : ; X̂j ; : : : ;Xk+1))+Xi<j (�1)i+j�([Xi;Xj ];X1; : : : ; X̂i; : : : ; X̂j; : : : ;Xk+1)for all X1; : : : ;Xk+1 in X(M). (A hat \^" on a vector �eld means that the correspondingvector �eld is omitted.)Remarks. (1) The expression d(�) de�nes a smooth (k + 1){form on M . (Proof as anexercise.)(2) For f in E(M) = E0(M) and X in X(M) we have (d(f))(X) = X(f) = DX (f), andfor � in E1(M) and X1;X2 in X(M) we have(d(�))(X1;X2) = X1(�(X2))�X2(�(X1))� �([X1;X2]):Let us recall that a k{form � on an open set V � Rm can be described as a �nite sumPjJ j=k fJdxJ , where J = (j1; : : : ; jk) is a multi{index of \length k" (jJ j = k), j1 < � � � < jk,and dxJ = dxj1 ^ : : : ^ dxjk and fJ in E0(V ).Lemma. Let f; fJ be in E0(V ) for V an open set in Rm and � = PjJ j=k fJdxJ a di�erentialk{form with k � 1. Then(i) d(f) = mPj=1 @f@xj dxj, and(ii) d(�) = PjJ j=k(d(fJ )) ^ dxJ .Proof. Ad (i). Since df is a 1{form there are function gj on V such that d(f) =Pmj=1 gjdxj.We calculate gl = � mXj=1 gjdxj�( @@xl ) = (d(f))( @@xl ) = ( @@xl )(f) = @f@xl :Ad(ii). Since the operator d : Ek(M) ! Ek+1(M) is obviously R{linear we may assumethat � = f dx1 ^ : : : ^ dxk. Since d(�) is a (k + 1){form we know thatd(�) = mXl=k+1 gldx1 ^ : : : ^ dxk ^ dxl + XjJ 0j=k+1 gJ 0 ; dxJ 0 ;where J 0 = (j01; : : : ; j0k+1) with j 01 < � � � < j0k+1 and f1; : : : ; kg 6� fj01; : : : ; j 0k+1g. We havegJ 0 = (d(�))( @@xj01 ; : : : ; @@xj0k+1 ) = k+1Xr=1(�1)r+1 @@xj0r ��( @@xj01 ; : : : ; b@@xj0r ; : : : ; @@j0k+1 )�60



+Xr<s (�1)r+s��� @@xj0r ; @@xj0s � ; @@xj01 ; : : : ; b@@xj0r ; : : : ; b@@xj0s ; : : : ; @@xj0k+1 � = 0since by [ @@xi ; @@xj ] = 0 the second sum vanishes and since the �rst sum is zero by J 0nfj0rg 6=f1; : : : ; kg for all r.Furthermoregl = (d(�))( @@x1 ; : : : ; @@xk ; @@xl ) = kXi=1 (�1)i+1 @@xi��( @@x1 ; : : : ; b@@xi ; : : : @@xk ; @@xl )�+(�1)k+1+1 @@xl��( @@x1 ; : : : ; @@xk )�+X(�1)��� @@xr ; @@xs� ; @@xt ; : : :�:The third sum vanishes termwise as above since the \coordinate vector �elds commute",i.e. h @@xr ; @@xsi = 0 for all r and s. The �rst sum also vanishes termwise since (dx1 ^ : : : ^dxk)( @@x1 ; : : : ; b@@xi ; : : : ; @@xk ; @@xl ) is zero for all l > k. Thus we �ndgl = (�1)k+2 @@xl (f)and henced(�) = mXl=k+1(�1)k+2 @f@xldx1 ^ : : : ^ dxk ^ dxl = mXl=k+1 @f@xldxl ^ dx1 ^ : : : ^ dxk= mXl=1 @f@xldxl ^ dx1 ^ : : : ^ dxk = (d(f)) ^ dx1 ^ : : : ^ dxk: 2Lemma. Let V be open in Rm and j in f1; : : : ;mg. Thend(xj) = dxj:Proof. The right hand side is the 1{form uniquely determined by (dxj)( @@xl ) = �j;l forl = 1; : : : ;m. Let us compare this to the exterior derivative of the j{th coordinate function(d(xj))( @@xl ) = @@xl (xj) = �j;l: 2Remark and de�nition. Since the preceding lemma shows that there is no di�erencebetween d(xj) and dxj from now we will simplify the notation and will not distinguishbetween them, i.e. d� := d(�) for all � in E�(M):61



Proposition. Let M be a manifold of dimension m, � a k{form and � a l{form on M .Then(i) d(� � �) = � � d� for � in R,(ii) d(� + �) = d� + d� if k = l,(iii) d(� ^ �) = (d�) ^ � + (�1)k� ^ d�,(iv) d� = 0 if k � m,(v) d(d�) = 0.Proof. The �rst two assertions follow directly from the de�nition and the fourth one fromthe fact that there are no non{zero n{forms for n > m on a m{dimensional manifold.In order to show the remaining assertions we observe �rst that d is a \local operator",i.e. to calculate (d�)p it is enough to consider � on an open neighborhood of p. We cantherefore assume for the rest of the proof that M = V is an open subset of Rm.Furthermore we may assume that � = f dxi1 ^ : : : ^ dxik and � = g dxj1 ^ : : : ^ dxjl .It follows d(� ^ �) = d(fg dxi1 ^ : : : ^ dxik ^ dxj1 ^ : : : ^ dxjl)= d(fg) ^ dxi1 ^ : : : ^ dxjl = (g(df) + f(dg)) ^ dxi1 ^ : : : ^ dxjl = (df ^ dxi1 ^ : : : ^ dxik)^(g dxj1^: : :^dxjl)+(�1)k(f dxi1^: : :^dxik )^(dg^dxj1^: : :^dxjl) = (d�)^�+(�1)k�^(d�):Ad(iv). Let f be in E0(M) and X1;X2 in X(M). Then(d(df))(X1;X2) = X1((df)(X2))�X2((df)(X1))� (df)([X1;X2])= X1(X2(f))�X2(X1(f))� [X1;X2](f) = 0:By localizing near a point p inM we can again assume thatM = V , open in Rm, and that� = f dxi1 ^ : : : ^ dxik . It follows thatd(d�)) = d((df) ^ dxi1 ^ : : : ^ dxik)= (d(df)) ^ dxi1 ^ : : : ^ dxik + (df) ^ d(dxi1 ^ : : : ^ dxik ) = 0since d2(f) = 0 and d(dxi) = 0. 2Example (and exercise). Check that in the example at the beginning of this sectionthe operators ~dj are the operator d in the di�erent degrees (of di�erential forms.) Translatethe assertions of the preceding proposition to formulas in vector analysis.Remark. Since E�(M) = �k�0Ek(M) the operators d : Ek(M) ! Ek+1(M) can be puttogether to build an operator d : E�(M) ! E�(M). The assertions (i) { (iii) can then berephrased by saying that d is an odd super{derivation of the real super{algebra E�(M).Proposition. Let M and N be manifolds, and dM and dN the respective exterior deriva-tives. Let furthermore F :M ! N be a smooth map thendM � F � = F � � dN :62



Proof. Going to local coordinates we may assume that M = V is open in Rm, N = W isopen in Rn, and that the map F :M ! N is given by n scalar functions F = t(F1; : : : ; Fn).Given a k{form � on W we can assume that � = g dy1^ : : :^ dyk, where g is in E0(W ) andy1; : : : ; yk are the �rst k coordinate functions on W � Rn.We calculate (setting intermediately dM = dN = d for convenience):(dM � F �)(�) = dM (F �(g dy1 ^ : : : ^ dyk)) = dM ((g � F )dF1 ^ : : : ^ dFk)= d(g � F ) ^ dF1 ^ : : : ^ dFk = nXj=1 mXi=1 ( @g@yj � F )@Fj@xi dxi ^ dF1 ^ : : : ^ dFk= � nXj=1 F �( @g@yj )dFj� ^ dF1 ^ : : : ^ dFk = F �(dg) ^ dF1 ^ : : : ^ dFk = (F � � dN )(�): 2Corollary. Let M be a manifold and X a vector �eld on M . Then the following identityof operators holds on E�(M). LX � d = d � LX :Proof. Since (LX�) = ddt���0(('Xt )��) the assertion follows easily from the preceding propo-sition. 2Proposition (\Cartan's magic formula"). Let M be a manifold and X a vector �eldon M . Then the following identity of operators holds on E�(M):LX = d � iX + iX � d:Proof. The formula holds trivially for 0{forms, i.e. functions on M . Let now k � 1 and� a k{form on M . Let furthermore X1; : : : ;Xk be in X(M) and set X0 = X. Then((d� iX + iX �d)(�))(X1; : : :Xk) = (d(�(X; : : :)))(X1; : : : ;Xk)+((d�)(X0; : : :))(X1; : : : ;Xk)= kXi=1 (�1)i+1Xi(�(X0;X1; : : : ; bXi; : : : ;Xk))+ X1�i<j(�1)i+j�(X0; [Xi;Xj ];X1; : : : ; bXi; : : : ; bXj; : : : ;Xk) + (�1)0+1+1X0(�(X1; : : : ;Xk))+ kXi=1 (�1)i+2Xi(�(X0; : : : ; bXi; : : : ;Xk)) +X0<j (�1)j�([X0;Xj];X1; : : : ; bXj ; : : : ;Xk)+ X0<i<j(�1)i+j�([Xi;Xj ];X0; : : : ; bXi; : : : ; bXj; : : : ;Xk)63



= X0(�(X1; : : : ;Xk))�X0<j �(X1; : : : ;Xj�1; [X0;Xj];Xj+1; : : : ;Xk)= (LX�)(X1; : : : ;Xk): 2Remark. Beside this \algebraic" proof of Cartan's formula there is also an \analytic"proof using the 
ow of the vector �eld X. We will not present it here but we will use thelatter approach to get a stronger result for \time{dependent vector �elds" as a preparationfor Moser's method to prove Darboux's theorem.Corollary. Let M be a manifold, X;Y in X(M) and f in E0(M). Then for � in Ek(M)one has(i) LfX� = f � LX� + (df) ^ (i(X)�).Furthermore the following identies hold on E�(M)(ii) [LX ; iY ] = i[X;Y ],(iii) [LX ;LY ] = L[X;Y ].Proof. Ad(i).LfX� = d(�(fX; : : :)) + (d�)(f �X; : : :) = d(f � �(X; : : :)) + f � (d�)(X; : : :)= df ^ (�(X; : : :)) + f � d(�(X; : : :)) + f � (d�)(X; : : :)= (df) ^ (i(X)�) + f � (d � iX + iX � d)(�) = f � LX� + (df) ^ (i(X)�):The second assertion follows from the explicit formula for LZ�;Z 2 X(M); � a di�erentialform shown at the end of Section 2.6.The third formula is then derived from the second and Cartan's magic formula. 2Remark. If M is a manifold of dimension m then we have the sequenceE0(M) d! E1(M) d! � � � d! Ek(M) d! Ek+1(M) d! � � � d! Em(M) d! 0;which is \exact" in the sense that d � d = 0.De�nition. Let M be a manifold, then for k � 1 the \k{th de Rham{cohomology groupof M" is de�ned as followsHkdR(M) := HkdR(M;R) := ker(d : Ek(M)! Ek+1(M))im(d : Ek�1(M) ! Ek(M)) ;where ker and im denote the kernel and the image of the corresponding R{linear maps.For k = 0 one de�nesH0dR(M) := H0dR(M;R) := ker(d : E0(M)! E1(M)):Remarks. (1) A di�erential form � such that d� = 0 is called \closed", and if there is aform � ful�lling d� = � we call � \exact". The Rham cohomology groups measure therefore\how many closed forms on M are not exact."64



(2) Though traditionally called \cohomology groups" the spaces HkdR(M) are in fact R{vector spaces.(3) If the dimension of M is less or equal than m, then HkdR(M) = f0g for all k � m+ 1.(4) A function f in E0(M) is in the kernel of d if only if f is locally constant. (Proof as anexercise.) Thus for a connected manifold M we have that H0dR(M) �= R.(5) Tensorizing the bundles �kT �M with the trivial complex bundle M �C ! C we getsmooth complex vector bundles �kT �MNRC �!M . Its sections �C1(M;�kT �MNRC)are denoted by EkC (M) and called \complex({valued) di�erential k{forms on M". Theexterior derivative d can be extended to the spaces EkC (M) by complex{linearity and wecan, in complete analogy to the preceding de�nition, de�ne HkdR(M;C). It is not di�cultto see that HkdR(M;C) �= HkdR(M;R)NRC.Remark. Though easy to de�ne the de Rham cohomology groups of a given manifoldMmight be di�cult to calculate.Example (and exercise). Let again 
 be open in R3 and ~K : 
 ! R3 a smooth force�eld on 
. Recall that ~K is called conservative if and only if there exists a smooth functionV : 
! R, a potential, such that ~K = ~rV . Since curl � grad = 0 (i.e. d2 = 0), we arriveat the necessary condition ~r� ~K = 0, which is equivalent to d(P3j=1Kjdxj) = 0. Thusfor 
 open in R3 we haveH1dR(
) �= fcurl-free force �elds on 
gfconservative force �elds on 
g :Let now 
 := R3nft(x1; x2; x3) 2 R3jx1 = 0 and x2 = 0g and ~K = t� �x2x21+x22 ; x1x21+x22 ; 0�.A direct calculation shows that ~r� ~K = 0, i.e. ~K is curl-free.Assuming now that ~K = ~rV for a function V : 
! R, then the work along a path shoulddepend only on the endpoints, i.e. in physicists' languageZC ~K� ~ds = V (b)� V (a)if C is a path from a to b.De�ning now paths C� for � = �1 by maps 
� : [0; 1]! 
 as follows
�(t) :=0@ cos(�t)� � sin(�t)0 1Awe �nd 
�(0) = 0@ 100 1A ; 
�(1) = 0@ �100 1A and RC� ~K � ~ds = ��, i.e. ~K cannot be a conser-vative �eld.Otherwise stated, the di�erential 1{form �K = P3j=1Kjdxj de�nes a non{zero class inH1dR(
). In fact, one has H1dR(
) = (([�K]))R.65



In order to prove the aforementioned fact as well as the \Poincar�e lemma" below we will�rst investigate the relation between homotopies and cohomology in general.De�nitions. Let M and N be manifolds and A a closed submanifold of M .(1) For a smooth map F : [0; 1]�M ! N we set Ft(p) := F (t; p). We call F a \(smooth)homotopy between the maps F0 and F1 (from M to N)."(2) Let f :M ! N and g : N !M be smooth maps such that g � f is homotopic to IdMand f � g homotopic to IdN . We then say that \M and N have the same homotopy type(in the C1{sense)".(3) If M has the same homotopy type as a point we call M \contractible".(4) If i : A ! M is the inclusion map and r : M ! A is a smooth map that restrictsto the identity on A, i.e. r � i = IdA, we call r a \retraction of M to A". If furthermorei � r :M !M is homotopic to the identity of M we call r a \deformation retraction of Monto A."Remark. A map F : [0; 1]�M ! N is smooth if Ft is smooth for all t and if t 7! F (t; p)is smooth for all p in M , where smoothness in the boundary points is de�ned by takingappropriate (one{sided) di�erential quotients.Proposition. Let F : [0; 1] �M ! N be a smooth map. Then there exists a R{linearoperatorH : E�(N)! E�(M), lowering the degree of di�erential forms by one, that satis�esd �H +H � d = F �1 � F �0 :Remark. Such an operator H is called a \homotopy operator".Proof of the proposition.Let � be in E l(N), p in M and v1; : : : ; vl�1 in TpM . We set for t in [0; 1] : it : M ![0; 1]�M; it(p) = (t; p) and de�ne(H�)p(v1; : : : ; vl�1) := Z 10 h(F ��)(t;p)( @@t���(t;p); (it)�pv1; : : : ; (it)�pvl�1)i dt:(Since [0; 1]�M is a product the injections it are obvious and we will omit the maps (it)�in the rest of the proof.)In order to show the asserted formula it is enough to consider an open neighborhood of agiven point p inM , i.e. we can assume thatM = V is open in Rm. Thus H� is determinedby its values on the \coordinate �elds":(H�)x( @@xi1 ���x; : : : ; @@xil�1 ���x) = Z 10 h(F ��)(t;x)( @@t���(t;x) @@xi1 ���(t;x); : : : ; @@xil�1 ���(t;x))i dt;where x is in V and i1 < � � � < il�1. This local description of H� immediately shows thatH� is smooth in x as a \parameter{depending" integral.66



Let us now calculate the terms in the left hand side of the assertion, applied to a �xedk{form � on N (and for i1 < � � � < ik):(d(H�))x( @@xi1 ; : : : ; @@xik ) = kXj=1(�1)j+1( @@xij ���x�(H�)( @@xi1 ; : : : ; b@@xij ; : : : ; @@xik )�+Xr<s (�1)r+s(H�)x�� @@xir ; @@xis � ; : : :�= kXj=1 (�1)j+1 Z 10 " @@xij ���x((F ��)( @@t; @@xi1 ; : : : ; b@@xij ; : : : ; @@xik ))# dt;since the coordinate �elds commute. On the other hand(H(d�))x( @@xi1 ; : : : ; @@xik ) = Z 10 h(F �d�)x( @@t; @@xi1 ; : : : ; @@xik )i dt= Z 10 h(d(F ��))x( @@t; @@xi1 ; : : : ; @@xik )idt = Z 10 h @@tn(F ��)x( @@xi1 ; : : : ; @@xik )oidt+ kXj=1(�1)j+2 Z 10 h @@xij ���xn(F ��)( @@t; @@xi1 ; : : : ; b@@xij ; : : : ; b@@xik )oi dt;since all commutator terms involue either [ @@t; @@xr ] or [ @@xr ; @@xs ] and thus vanish.We therefore arrive at(d(H�) +H(d�))x( @@xi1 ; : : : ; @@xik ) = Z 10 h @@tn(F ��)x( @@xi1 ; : : : ; @@xik )oi dt= (F �1 � � F �0 �)x( @@xi1 ; : : : ; @@xik ) : 2De�nition. Let M and N be manifolds and f :M ! N be a smooth map. The \inducedmap on de Rham cohomology" is de�ned as followsf�([�]) := [f��] for all classes [�] in H�dR(N):Remark. Given a class c in H�dR(N), one easily veri�es that the class f�c in H�dR(M) isindependent of its representative � in E�(N).Lemma. Let M and N be manifolds and f :M ! N a smooth map. Then(i) f� : H�dR(N)! H�dR(M) is R{linear,(ii) H�dR(M) is a super{commutative, associative real super{algebra with multiplicationgiven by [�] ^ [�] := [� ^ �];67



(iii) f� is a algebra{homomorphism, i.e. [f��] ^ [f��] = f�[� ^ �] .(iv) If L is a further manifold and g : L ! M is smooth then (f � g)� = g� � f� on deRham cohomology.(v) If M = N and f = IdM then f� = (IdM)� = IdH�dR(M).Proof. Exercise. 2We collect now several important applications of the last proposition (and the last lemma.)Corollary 1. Let M and N be manifolds and f; g :M ! N be two smooth maps that arehomotopic. Then f� = g� : H�dR(N) ! H�dR(M):Proof. Let F : [0; 1] �M ! N be a smooth map such that F0 = f and F1 = g. For aclass c in HkdR(N) represented by a closed form � in Ek(N) we �ndg�c = g�[�] = [g��] = [F �1�] = [F �0 � + dH� +Hd�]= [F �0 �] + [dH�] = [F �0�] = [f��] = f�[�] = f�c: 2Corollary 2. Let M and N be manifolds having the same homotopy type. Then H�dR(M)and H�dR(N) are isomorphic as R{algebras.Proof. Let f :M ! N and g : N !M smooth maps such that g � f is homotopic to IdMand f � g homotopic to IdN . Then, by Corollary 1f� � g� = (g � f)� = (IdM)� = IdH�dR(M) andg� � f� = (f � g)� = (IdN)� = IdH�dR(N)and thus f� and g� are mutually inverse isomorphism between H�dR(M) and H�dR(N). 2Corollary 3. Let M be a contractible manifold. Then H0dR(M) �= R and HkdR(M) = f0gfor k > 0.Proof. Since the cohomology of the zero{dimensional connected manifold consisting ofone point is isomorphic to R in degree zero and trivial in all other degrees the assertionfollows from Corollary 2. 2Corollary 4. Let M be a ball IBR(0) with radius 0 < R � 1 in Rm, then H0dR(M) �= Rand HkdR(M) = f0g for k > 0.Proof. The map F : [0; 1]� IBR(0)! IBR(0); F (t; x) = (1 � t) � xis a smooth homotopy from M to the origin 0 in IBR(0) such that Ft(0) = 0 for all t. Itfollows easily that IBR(0) is contractible and thus by Corollary 3 the de Rham cohomologyof M = IBR(0) is as asserted. 268



Corollary 5. Let M be a manifold and A a closed submanifold such there exists a de-formation retraction r : M ! A from M onto A. Then r� : H�dR(A) ! H�dR(M) is aR{algebra isomorphism.Proof. Follows directly from Corollary 2. 2Corollary 6. Let M and N be manifolds and ' : M ! N a di�eomorphism. Then'� : H�dR(N)! H�dR(M) is an isomorphism.Proof. Let  = '�1 : N ! M , then the assertions (iv) and (v) of the last lemma implyimmediately that '� and  � are mutually inverse isomorphisms in de Rham cohomology.Examples (details as an exercise).(1) Let M be Rm. Then H0dR(M) �= R and HkdR(M) = f0g for k > 0.(2) Let E p�!M be a vector bundle. Then H�dR(M) p��! H�dR(E) is an isomorphism.(3) Let 
 be R3nfx1 = 0; x2 = 0g. Then A = fx3 = 0; x21 + x22 = 1g is a deformationretraction of 
 and thus i : A ,! 
 induces an isomorphism i� : H�dR(
) �! H�dR(A).Bibliographical remarks. As at the end of the last section plus the parts on de Rhamcohomology in [BT], [J] and [KL].2.8 Integration of di�erential forms on manifoldsDe�nitions. Let M be a connected manifold of dimension m.(1) An \orientation form on M" is an element 
 in Em(M) such that 
p 6= 0 for all p inM , i.e. ((
p))R= �m(TpM)� for all p in M .(2) Let 
0 and 
00 be two orientation forms on M . Then \
0 and 
00 are equivalent (asorientation forms)" if there is a smooth function f : M ! R such that f(p) > 0 for all pin M and 
00 = f � 
0. We write then [
0]orientation = [
00]orientation.(3) An \orientation on M" is the class [
]orientation of an orientation form 
 on M .(4) The manifold M is called \orientable" if there exists an orientation form on M .(5) An atlas A = f(U�; '�) j� 2 Ag of an oriented manifold (M; [
]orientation) is called\positively oriented (with respect to the orientation [
]orientation)" if for all � in A('�1� )�
 = g� dx�1 ^ : : : ^ dx�mwith a smooth strictly positive function g� : V� = '�(U�) ! R. (The coordinates onV� � Rm are denoted by (x�1 ; : : : ; x�m).)Remarks. 69



(1) An orientation form (respectively an orientation) on a m{dimensional manifold shouldbe intuitively seen as a \smoothy varying orientation form (respectively an orientation) onTpM for all p in M".(2) A m{dimensional connected manifold M is orientable if and only if the smooth realline bundle �mT �M !M is trivializable.(3) An orientable connected manifold has exactly two orientations.(4) The notion of a positively oriented atlas is well{de�ned.(5) A manifoldM is called orientable if each connected component of M is orientable.(6) Let M and N be manifolds and 
M and 
N orientation forms on M respectively N .A smooth map F : M ! N is called \orientation{preserving" if [F �
N ]orientation =[
M ]orientation.Examples.(1) The form dx1 ^ : : : ^ dxm on Rm is called the \canonical orientation form on Rm".(2) Let m � 2 and let f : Rm ! R; f(x) = 12(kxk2 � 1) then fx 2 Rm j f(x) = 0g = Smand TpSm = fv 2 TpRm j (df)p(v) = 0g for all p in Sm�1. Furthermore U := B 1(0) = fx 2Rm j f(x) < 0g and @U = fx 2 Rm j f(x) = 0g = Sm�1. The \(outward pointing) normal�eld on Sm�1" is de�ned asN(p) =  mXj=1 � @f@xj�2!�1=2 � mXj=1 @f@xj @@xj! (p):Note that N is not a vector �eld on Sm�1 but the restriction of a vector �eld de�ned onan open neighborhood of Sm�1 in Rm to Sm�1, i.e. a section of (TRm)jSm�1 .More concretely we have the formula N(p) = Pmj=1 pj @@xj jp. Let furthermore � := dx1 ^: : :^ dxm be the canonical orientation on Rm and let us set 
p := iN(p)�p = (iN�)pjTpSm�1 .Then 
 is a non{vanishing (m�1){form on Sm�1, in explicit terms
p = ( mXj=1 (�1)jxjdx1 ^ : : : ^ cdxj ^ : : : ^ dxm)p:The orientation [
]orientation on Sm�1 is called the \canonical induced boundary orien-tation (with respect to Sm�1 = @U and the orientation [�]orientation)".(3) Let again m � 2 and Pm�1(R) = P(Rm). Denoting the canonical projection Rmnf0g !P(Rm); x 7! [x] by ~�, we have a smooth surjective map of constant rank m� 1 de�ned by� : Sm�1 ! Pm�1(R); �(x) := ~�(x) = [x]:For any (m � 1){form � on Pm�1(R) we have the pullback ��� in Em�1(Sm�1). SincePm�1(R)�= Sm=�, where x � y if and only if either y = x or y = �x =: � (x), a di�erentialform � on Sm�1 is the pullback of a form on Pm�1(R) if and only if � �� = �. Obviously70



� �
 = (�1)m
 for 
 the orientation form on Sm�1 constructed in Example (2). It followsthat Pm�1(R) is orientable for m an even integer with m � 2.Let now be m � 2 and odd. Assuming that Pm�1(R) is orientable, the pull{back of anorientation form � is a multiple of 
 : ��� = g � 
 with g a smooth function on Sm�1.Since � has constant rank equal to m� 1, ��� is an orientation form on Sm�1 and, afterpossibly changing � to (��), we can assume that g > 0 on Sm�1 since 
 is an orientationform. The identity g � 
 = � �(g �
) = � �(g) � � �(
) = (g � � )(�
)implies that g is a strictly positive smooth function on Sm�1 ful�lling g(�x) = �g(x) forall x in Sm�1. Since there are no such functions g it follows that P2n(R) is not orientablefor n � 1.De�nitions. Let M be a manifold and A = f(U�; '�) j� 2 Ag an atlas of M .(1) The atlas A is called \locally �nite" if for all p in M the number of � in A such thatp is in U� is �nite.(2) Let A be now a locally �nite atlas. A collection of smooth functions f�� j� 2 Ag onMis called a \partion of unity (subordinate to A)" if the following conditions are satis�ed:(I) the values of �� are in [0; 1] for all � in A,(II) The closed set supp�� = fx 2M j��(x) 6= 0g is contained in U�,(III) For all p in M one has P�2A ��(p) = 1.(Note that the sum in (III) is �nite since A is locally �nite.)Proposition. Let M be a manifold. Then there exists a locally �nite atlas and for eachlocally �nite atlas there exists a partition of unity.Remark. We will not give a proof of the preceding proposition, but we stress at this pointthat we included the conditions of Hausdor� and second{countability in our de�nition ofa manifold. These conditions assure the existence of partitions of unity. (See textbooks onmanifolds as [AMR] for details.)As a �rst application we note the followingProposition. Let M be a m{dimensional manifold. Then the following are equivalent:(i) M is orientable.(ii) M has a locally �nite atlas that is positively oriented with respect to an orientationform 
 on M .(iii) M has a locally �nite atlas f(U�; '�) j� 2 Ag such that the Jacobi determinantsdet (('��)�) are everywhere positive for all �; � in A.Proof. Let M be oriented by the orientation form 
 and let ~A = f(U�; ~'�) j� 2 Ag beany locally �nite atlas. We de�ne '� : U� ! Rm as follows: if (e'�1� )�
 = ~g� dx�1 ^ : : :^dx�mand ~g� is everywhere positive, we set ~'� := '�. If ~g� is everywhere negative then we71



de�ne '� := 	 � ~'�, where 	(x�1 ; x�2 ; : : : ; x�m) := (�x�1 ; x�2 ; : : : ; x�m). It follows that A =f(U�; '�) j� 2 Ag is a positively oriented atlas (with respect to 
).Given any atlas A = f(U�; '�) j� 2 Ag and ('�1� )�
 = g�dx�1 ^ : : : ^ dx�m, we calculate(det(('��)�))�dx�1^: : :^ dx�m = '���(dx�1^: : :^ dx�m) = ('�1� )��('�)�( 1g� �g� dx�1^: : :^ dx�m)= ('�1� )�( 1g� � '�
) = ( 1g� � '� � '�1� )('�1� )�
 = g�g�('��) dx�1 ^ : : : dx�m:Thus for a positively oriented atlas we have (det('��)�) > 0.It remains only to prove that (iii) implies (i). Given a locally �nite atlas A = f(U�; '�) j� 2Ag such that (det(('��)�)) > 0 and a partition of unity f�� j� 2 Ag subordinate to A wede�ne di�erential forms 
� := �� � '��(dx�1 ^ : : : ^ dx�m) on M . Since 
�(p) = 0 for all buta �nite number of � for each p in M , the di�erential m{form
 :=X�2A
�is well{de�ned on M . Given p in U� we have (with Ap = f� 2 A j p 2 U�g)(('�1� )�
)'�(p) = X�2Ap(('�1� )�
�)'�(p) = X�2Ap [(���'�1� )�(('�1� )��'��(dx�1 ^: : :^ dx�m))]'�(p)= X�2Ap ��(p) � ('���(dx�1 ^ : : : ^ dx�m))'�(p) = h X�2Ap ��(p) � (det(('��)�p))i � dx�1 ^ : : : ^ dx�mand thus 
 is a nowhere{vanishing m{form on M , i.e. an orientation form (and A apositively oriented atlas with respect to 
). 2Corollary. LetM be a connected manifold with m = dimRM � 2 and U an open subset ofM such that @U is a closed (m�1){dimensional submanifold of M and such that @U\ �U( �U denotes the interior of the closure of U) is empty. If M is oriented then @U has a\canonical induced boundary orientation".Proof. Let A = f(U�; '�) j� 2 Ag be a locally �nite oriented atlas of M such that forN := @U we have '�(U�\N) = f(x�1 ; : : : ; x�m) 2 V� = '�(U�) jx�1 = 0g and '�(U�\U) =f(x�1 ; : : : ; x�m) 2 V� jx�1 < 0g. Let B = f� 2 A jU� \ N 6= ;g and 	� : U� \ N ! Rm�1be de�ned by 	�(p) := (y�1 (p); : : : ; y�m�1(p)) := (x�2 (p); : : : ; x�m(p)). Then B = f(U� \N;	�) j� 2 Bg is a locally �nite atlas for N and it is easy to check that det((	��)�) > 0for all �; � in B. By the preceding proposition there exists an orientation form on N = @Usuch that B is positively oriented with respect to this \canonical boundary orientation".2Exercise. Show that the boundary orientation we constructed on Sm�1 is a special caseof the preceding corollary.De�nition. Let V be open in Rm and let � = g � dx1 ^ : : : ^ dxm be in Em(V ) such thatsupp g is compact. Then ZV � := ZV g dx1 : : : dxm;72



where the right{hand side is de�ned by iterated integration (in the sense of the Lebesgueor the Riemann integral).Lemma. Let V 0 and V 00 be open sets in Rm, oriented by the standard orientation formof Rm. Let furthermore � be in Em(V 00) with compact support, and ' : V 0 ! V 00 anorientation{preserving di�eomorphism. ThenZV 0 '�(�) = ZV 00 �:Proof. Using the transformation formula for multiple integrals we �ndZ'(V 0)=V 00 � = Z'(V 0) g(y)dy1 : : : ; dym = ZV 0((det'�)(x)) � g('(x)) � dx1 : : : dxm= ZV 0((det'�)(x)) � g('(x)) dx1 ^ : : : ^ dxm = ZV 0 g('(x))d'1 ^ : : : ^ d'm = ZV 0 '��: 2De�nition. LetM be an orientedm{dimensional manifold and � am{form with compactsupport. Then ZM � :=X�2A Z'�(U�)('�1� )�(�� � �);where A = f(U�; '�) j� 2 Ag is a locally �nite, positively oriented atlas for M andf�� j� 2 Ag is a partition of unity subordinate to A.Exercise. Show that RM � is well{de�ned, i.e. independent of the chosen locally �nite,positively oriented atlas and the chosen subordinate partition of unity. (Hint: Use thepreceding lemma.)Theorem (\Stokes' theorem"). Let M be a connected, oriented, m{dimensional man-ifold with m � 2, and � in Em�1(M). Let furthermore U be an open subset of M such thatits closure �U is compact and its boundary @U is a smooth closed submanifold of M . ThenZU d� = Z@U �:Proof. The detailed derivation of this theorem can be found in many textbooks onmanifolds. For a short proof see, e.g., [BT], pp. 31. 2Remarks.(0) A purist whould introduce the injection j : @U ! M; j(p) = p and write Stokes'formula as follows: ZU d� = Z@U j�(�):It obviously follows that the integral of j�(�) over boundary components of dimensionstrictly smaller than m� 1 vanishes since they have no non{zero (m� 1){forms.73



(1) Given our preparations the proof of Stokes' theorem is reduced to an ingenious re-duction to the \Fundamental theorem of calculus": if F : R! R smooth and a < b thenF (b)� F (a) = R ba F 0(x) dx.Though formally not included in the above formulation of Stokes' theorem it �ts in thefollowing sense:Let M = R, U = (a; b) and � = F in E0(M) = Em�1(M). The outward pointing normalvectors in @U = fa; bg are thenN(a) = � ddx���a and N(b) = ddx���b;i.e. parallel to the positively oriented basis ddx in b and anti{parallel in a. Thus \the integralof the zero{form F over @U with respect to the boundary orientation" should be (�F (a))+F (b), i.e. F (b)� F (a) = Z@U F = ZU dF = ZU F 0(x) dx = Z ba F 0(x) dx:(2) The usual integral theorems known from vector calculus in R2 and R3 are special casesof Stokes' theorem. As an example we will give the following.Corollary (Gauss' theorem). Let V be open in R3 and ~K = t(K1;K2;K3) : V ! R3be a smooth force �eld. Let furthermore be U open in V such that its closure �U is compactand contained in V and such that @U is a smooth closed submanifold of V . Then we havefor � = iK� (with K =P3j=1Kj @@xj and � = dx1 ^ dx2 ^ dx3):ZU d(iK�) = Z@U iK�:Proof. Obviously the assertion of the corollary is a special case of Stokes' theorem. 2Remark. The interesting part of the corollary is given by a further translation into vectorcalculus. First, a direct calculation shows that d(iK�) = �P3j=1 @Kj@xj � � � = (div (K)) �� = (~r � ~K) � �. Secondly, in a point p of @U the two{form iK� restricted to Tp@U isnecessarily proportional to the canonical orientation (iN�)p = iN(p)�p, where N(p) in TpVis uniquely �xed as the outward pointing normal vector such that kN(p)k = 1, N(p) isorthogonal to Tp@U � TpV = TpR3 and p + � ~N(p) is outside U for small � > 0. (HereN(p) =P3j=1Nj(p) @@xj jp and ~N = t(N1; N2; N3) of course.)Let us remark that N(p) = �P3j=1 j @g@xj (p)j2�� 12 ��P3j=1 @g@xj (p)� @@xj jp� if g is a local functionnear p such that fg < 0g = U and fg = 0g = @U and dgj@U 6= 0 as considered before inthis section.We �x an ordered orthonormal basis fv1; v2g of Tp@U such that (iN�)p(v1; v2) > 0 (andthen equal to one in fact) and calculate:(iK(p)�p)(v1; v2) = �p(K(p); v1; v2) = �p(( ~K(p) � ~N(p)) ~N (p); v1; v2);74



since fN(p); v1; v2g is an orthonormal basis of TpV = TpR3 and thus (iK
)p(v1; v2) =(( ~K � ~N )(p))(iN
)p(v1; v2); i.e. iK
 = ( ~K � ~N )iN
. Interpreting ~N(iN
) as the \vectorialsurface element d~S" we arrive at a formulation of Gauss' theorem which is frequently foundin the physics literature: ZU (~r � ~K)dx1 dx2 dx3 = Z@U ~K � d~S:Proposition. Let M be a manifold and N a compact submanifold with an orientation.Then the integral over N de�nes a linear functional on H�dR(M).Proof. For � in Ek(M) let RN � denote the value of RN i�N(�) de�ned by the orientationof N . (The inclusion map N ,!M is denoted by iN here.)Let us assume that � = d� for � in Ek�1(M). Then i�N(�) = d(i�N(�)) and with Stokes'theorem we will show that RN i�N(�) = 0.Let p be any point in N and ' : W ! V be a chart of N such that '(p) = 0 and such thatB �0 (0) � V for a �0 > 0. Let U� := N n'�1(B �(0)) for 0 < � < �0 then by Stokes' theoremwe have ZN d(i�N�) = lim�!0 ZU� d(i�N�) = lim�!0 Z@U� i�N�:On the other hand Z@U� i�N� = Zkxk=�('�1)�(i�N�)and thus converges for �& 0 to zero.It follows that RN d� = 0 and thus the mapHkdR(M)! R; [�] 7! ZN �is a well{de�ned linear functional. 2Corollary. Let M be a compact connected orientable m{dimensional manifold. Then[
] 6= 0 in HmdR(M) for all nowhere{vanishing m{forms 
 on M .Proof. Let 
0 be a m{form de�ning an orientation of M . Then 
 = f �
0 for a nowhere{vanishing smooth function f on M . We may assume without loss of generality that f > 0.Let A = f(U�; '�) j� 2 Ag be any locally �nite, positively oriented atlas of M andf�� j� 2 Ag any partition of unity subordinate to A. ThenZM 
 = ZM f � 
0 =X� Z'�(U�)('�1� )�(��f
0) =X� h Z'�(U�)((��f) � '�1� ) � ('�1� )�(
0)iand all summands on the last right hand side are non{negative, and at least one is strictlypositive. Thus RM 
 > 0. 75



Since the functional HmdR(M)! R; [�] 7! ZM �is well{de�ned by the preceding proposition it follows that 
 cannot be exact, i.e. [
] 6= 0in HmdR(M). 2Remark. With the hitherto developped theory it is possible to sharpen the assertion ofthe last proposition to the statement that integration over M is, in the compact case, anisomorphism from HmdR(M) to R. (See [AMR], pp. 552.)Bibliographical remarks. As for Section 2.7.3. Symplectic geometry3.1 Symplectic manifoldsDe�nitions. Let M be a (real) manifold.(1) A di�erential 2{form ! on M is called an \almost{symplectic form" if and only ifker!p = f0g for all p in M;i.e. \! is everywhere non{degenerate". A pair (M;!) consisting of a manifold M and analmost{symplectic form ! is called an \almost{symplectic manifold".(2) An almost{symplectic form ! on M is called a \symplectic form" if and only if ! isclosed, i.e. d! = 0. A pair (M;!) consisting of a manifold M and a symplectic form ! iscalled a \symplectic manifold".Lemma. Let M be a manifold and ! in E2(M). Then the following are equivalent:(i) ! is an almost{symplectic form(ii) ![p : TpM ! (TpM)� = (T �M)p is an isomorphism for all p in M .If M is furthermore of pure dimension m then (i) and (ii) are equivalent to(iii) ![m=2] is an orientation form on M .Proof. The assertions follow directly from Section 1.3 and the de�nition of an orientationform. 2Corollary. Let (M;!) be an almost{symplectic manifold of dimension m. Then M isorientable and m is even.Proof. The corollary follows immediately from the preceding lemma. 276



De�nition. Let (M;!) be a symplectic manifold of dimension m = 2n. The orientationform 
 := �(�1) (n�1)n2 � 1n!�!nis called the \canonical orientation form (or Liouville form) on (M;!)". The associatedorientation [
]orientation is called the \canonical orientation on (M;!)".Proposition. Let M be a connected compact manifold of dimension m. Let furthermore! be a symplectic form on M and c = [!] in H2dR(M) be the de Rham cohomology class of!. Then the de Rham cohomology classes ck are non{zero in H�dR(M) for k = 1; 2; : : : ; m2 .Proof. Since ! is closed it de�nes a de Rham cohomology class c = [!].Assume that there is a k in f1; 2; : : : ; m2 g such that ck = 0, i.e. there exists � in E2k�1(M)such that d� = !k. Closedness of ! implies that !m2 = d� with � := � ^ !(m2 �k). Since !m2is nowhere vanishing RM !m2 6= 0, where the integral is de�ned by one of the two possibleorientations ofM , e.g. by the canonical orientation of (M;!). Since it was shown in Section2.8 that RM d� = 0 for all � in Em�1(M) we arrive at a contradiction. Thus there is no kin f1; : : : ; m2 g such that !k is exact. 2Remark. The preceding results of this section show that not all manifolds can carry asymplectic form.Examples.(1) M = R2n and ! :=Pnj=1 dxj ^ dxn+j . Then (M;!) is symplectic and
 = �(�1) (n�1)n2 � 1n!�!n = dx1 ^ dx2 ^ : : : ^ dx2n�1 ^ dxn:The form ! is sometimes called the \standard symplectic form on R2n."(2) Let � be a two{dimensional orientable manifold and 
 an orientation form on �. Then! := 
 is a symplectic form on � (and 
 = ! is the canonical orientation form on (�; !)).(2.1) Let � = S2. In the notations of Section 2.8 there is a natural orientation form
 = (iN�)jTS2 (with � = dx1 ^ dx2 ^ dx3 and N = P3j=1 xj @@xj ). Then (S2;
) is asymplectic manifold.(2.2) Let M = S1 � S1 and 
 = d#1 ^ d#2, where d#j( @@#k ) = �j;k. Then (S1 � S1;
) is asymplectic manifold.(3) Let (M1; !1) and (M2; !2) be symplectic manifolds and �1; �2 in Rnf0g. Then the form�1 � (pr�1!1) + �2 � (pr�2!2) is a symplectic form on M1 �M2.(4) Let (M;!) be a symplecticmanifold and U be open inM . Then (U;!jU ) is a symplecticmanifold.Proposition. Let Q be a manifold,M := T �Q its cotangent bundle and � = �T �Q : T �Q!Q the canonical projection. ThenM has a canonical di�erential one{form � := �T �Q de�nedby��q(v�q) := �q((��)�q(v�q)) for all q in Q;�q in (T �Q)q = (TqQ)� and v�q in T�q(T �Q):77



Furthermore, the two{form ! := !T �Q := �d� is a symplectic form on M = T �Q.Remark. The form � (respectively !) on T �Q is often called the \canonical one{form(respectively two{form) on the cotangent bundle T �Q".Proof of the proposition. Let ' : U ! V � Rn be a coordinate chart with domainU , an open set in Q. Then there is an induced vector bundle isomorphism � = (T')� :T �V ! T �U over '�1 : V ! U de�ned as follows:�jT �xV = (T'�1(x)')� : T �xV = (TxV )� ! (T'�1(x)U)� = T �'�1(x)U for all x in V:Furthermore we trivialize T �V as usual: let x = t(x1; : : : ; xn) in V � Rn and y =t(y1; : : : ; yn) in Rn, then we set	 : V �Rn! T �V;  (x; y) := nXj=1 yj dxjjx:Clearly 	 is a vector bundle isomorphism over IdV .We describe elements of T(x;y)(V � Rn) by pairs (�; �) = �Pnj=1 �j @@xj jx; Pnj=1 �j @@yj jy�with �1; : : : ; �n; �1; : : : ; �n in R and calculate:((� �	)��)(x;y)(�; �) = ��(	(x;y))((�� �	�)(�; �)) = �(	(x; y))(((�T �Q)� � �� �	�)(�; �)):Since (�T �M � � �	)(x; y) = '�1(x) it follows((� �	)��)(x;y)(�; �) = ((T')�(	(x; y)))((T'�1)(�)) = (	(x; y))(�)= � nXj=1 yj dxjjx�� nXj=1 �j @@xj jx� = nXj=1 yj�j = � nXj=1 yj dxj�(x;y)(�; �);i.e. (� �	)�� =Pnj=1 yj dxj in E1(V �Rn).It follows from this local computation that � and ! = �d� are (smooth) di�erential formson M = T �Q. Furthermore we have(� �	)�! = (� �	)�(�d�) = �d((� �	)��) = nXj=1 dxj ^ dyjand hence ! is non{degenerate in all points of the open set T �U in T �Q. Since the abovelocal calculations are valid for all charts of Q and since the cotangent bundles over chart do-mains of Q form an admissible atlas of T �Q it follows that ! is everywhere non{degenerateon M = T �Q. Closedness of ! is trivial since d � d = 0 and thus ! is a symplectic form onT �Q. 2Remark. If we describe elements of V � Rn (V open in Rn) by (q; p) = (t(q1; : : : ; qn),t(p1; : : : ; pn)) the preceding proof yields the traditional formulas:(� �	)�� = nXj=1 pjdqj and (� �	)�! = nXj=1 dqj ^ dpj78



for the cotangent bundle forms � and !.Exercise. Show that the canonical cotangent bundle two{form !T �Rn on T �Rn is pulled{back by � � 	 = 	 to the standard symplectic two{form on R2n (up to renaming of thevariables yj =: xn+j for j = 1; : : : ; n).Remark. Given a manifold Q, a \con�guration space", the symplectic manifold (T �Q;!)with the cotangent bundle two{form ! is often called the \phase space (associated to Q)".Furthermore the dimension of Q is often referred to as the \number of degrees of freedom".Bibliographical remarks. The classics for the mathematical treatment of mechanics inthe symplectic language are of course [AM] and [Ar1]. We would like to add [Be], [Bry]and [GS].3.2 Maps and submanifolds of symplectic manifoldsDe�nitions. Let (M;!M ) and (N;!N ) be symplecticmanifolds and F :M ! N a smoothmap.(1) The map F is called \symplectic" if F �(!N ) = !M .(2) If F is a di�eomorphism such that F �(!N ) = !M , F is called a \symplectic di�eomor-phism" (or sometimes also a \symplectomorphism").Proposition. Let (M;!M ) and (N;!N ) be pure{dimensional symplectic manifolds andF :M ! N a symplectic map. Then(i) TpF = (F�)p : (TpM; (!M )p)! (TF (p)N; (!N )F (p))is a symplectic linear map, i.e. (TpF )�((!N )F (p)) = (!M)p for all p in M .Thus TpF is injective for all p in M , so that in particular dimRM � dimRN and the rankof F in p equals the dimension of M (for all p in M).If furthermore dimRM = dimRN =: 2n then(ii) F is a local di�eomorphism, the local inverses are also symplectic, and(iii) F �(
N ) = 
M , i.e. F preserves the canonical orientation forms and hence, a fortiori,the canonical orientations. If furthermore F is a di�eomorphism then its inverse is alsosymplectic.Proof. Exercise using Section 1.4. 2Examples.(1) Let f : Q! Q be a di�eomorphism of a manifold Q and F := (Tf�1)� : T �Q! T �Q,de�ned by F (�q) = (Tf(q)f�1)�(�q) for all q in Q. Then F is a vector bundle isomorphism79



over f and F �(�T �Q) = �T �Q. Thus we have of course F �(!T �Q) = !T �Q, i.e., F is a symplec-tic di�eomorphism of T �Q. Since F is induced from a di�eomorphism of the con�gurationspace Q, it is traditionally called a \point transformation (of T �Q)".(2) Let � be an orientable two{dimensional manifold and 
 an orientation form on �.Then a di�eomorphism of � (with the symplectic form ! := 
) is obviously symplectic ifand only if it is volume{preserving.(3) Let g be in GL(m;R) � Mat(m � m;R). Then Tg : Rm ! Rm, Tg(x) = g � x is adi�eomorphism of Rm with((Tg)�)x� mXk=1 vk @@xk ���x� = mXj;k=1(gjkvk) @@xj ���g(x);i.e., ((Tg)�)x can be identi�ed with the (linear!) map Tg. Furthermore we de�ne for A inMat(m�m;R) a vector �eld XA by XA(x) :=Pmj;k=1 ajkxk @@xj jx. Then the 
ow 'A := 'XAof such a \linear vector �eld on Rm" is easily seen to be given by'A(t; x) = (etA) � x = TetA(x):Taking m = 2n and !0 := Pnj=1 dxj ^ dxn+j it follows that the di�eomorphism Tg issymplectic if and only if g is in Sp (2n;R),In particular for n = 1 we �nd that 'At is symplectic if and only if trace (A) = 0.Exercise. Fill in the details in Examples (1) and (3).De�nition. Let G be a Lie group and (M;!) a symplectic manifold. Then a (smoothleft{)action # : G�M !M is called a \symplectic action" if #�g(!) = ! for all g in M .Examples.(1) If Q is a manifold, G a Lie group and # : G � Q ! Q an action, then for all g in Gthe map b#g := (#g�1)� : T �Q ! T �Q is a vector bundle isomorphism over #g such that(b#g)�(�T �Q) = �T �Q. Thus each b#g is a symplectic di�eomorphism and one easily sees thatb# : G � T �Q! T �Q, b#(g; �) := b#g(�) is a symplectic action.(2) The map # : Sp (2n;R)�R2n! R2n; #(g; x) := g �x is a symplectic action if we supplyR2n with the canonical symplectic form !0.(3) Let (R2n;+) act on itself by vector addition, i.e., G := R2n;M := R2n; # : G �M !M;#(a; x) := x+ a. Then # is symplectic, again with respect to the canonical symplecticform on R2n.(4) Let 
 = iN� be the usual orientation form on the two{sphere S2 � R3 and let# : SO(3;R)� S2 ! S2, be de�ned by #(g; x) = g � x. Then # is a symplectic action withrespect to the symplectic form ! := 
 on S2.De�nition. Let M be a (2n){dimensional manifold with symplectic form ! and N aclosed k{dimensional submanifold of M . Then(TN)\ := fvp 2 TpM j p 2 N and !p(vp; wp) = 0 8 wp 2 TpN � TpMg80



is called the \skew{complement (or !{complement) of TN in TM jN".Lemma. Let M be a manifold and N a closed submanifold of M . Then(i) TM jN := _Sp2NTnM carries a natural vector bundle structure and TN is a subbundleof TM jN .If furthermore M carries a symplectic form ! then(ii) (TN)\ is a subbundle of TM jN and dimRTpN +dimR((TN)\)p = dimRTpM for all pin N .Proof. Ad(i). Given a point p in N there is a chart ' = (x1; : : : ; xm) : U ! V = '(U) �Rm with U open in M and such that '(U \ N) = V \ fx1 = � � � = xk = 0g. Working inthis chart TM is trivialized by the sections @@x1 ; : : : ; @@xm (over V ) and hence so is TM jNover '(U \N). The bundle TN is, again over '(U \N) trivialized by @@xk+1 ; : : : ; @@xm andthus the �rst assertion is proven.Ad(ii). Still working in a chart as above we have now m = 2n for n in N and we set~! = ('�1)�!. Clearly n @@xk+1 ���x; : : : ; @@x2n ���xo is a basis for Tx'(U \N) for all x in '(U \N)and thus ('�)'�1(x)((T'�1(x)N)\) = (Tx'(U \N))\ = 2n\j=k+1 ker�~![x� @@xj ���x��:Since ~! is symplectic, the functionals ~![x� @@xj ���x� are linearly independent so that (TN)\is a subbundle of TM jN and the asserted dimensional formula holds true. 2Remark. Given M and N as in the �rst part of the preceding proposition, the bundleTM jN is often called the \tangent bundle of M restricted to N" and with the canonicalinclusion jN : N ,! M; jN (p) = p we can describe it (isomorphically) by the pull{backbundle (jN )�TM .De�nition. A closed submanifold N of a symplectic manifold (M;!) is called(1) \symplectic" if (TN)\\TN = Im(�0), the image of the zero{section �0 : N ! TM jN ,(2) \isotropic" if TN � (TN)\,(3) \coisotropic" if (TN)\ � TN ,(4) \Lagrangian" or a \Lagrange submanifold" if (TN)\ = TN .Remark. The �rst condition is often written (TN)\ \ TN = f0g.Lemma. Let N be a closed submanifold of a symplectic manifold (M;!) and jN : N ,!Mthe canonical inclusion of N in M . Then(i) N is symplectic if and only if !pjTpN is non{degenerate for all p in N , i.e. if (jN )�! isa non{degenerate two{form on N ,(ii) N is isotropic if and only if !pjTpN is the zero{form for all p in N , i.e. (jN)�! = 0,81



(iii) N is Lagrangian if and only if N is isotropic and N has half the dimension of M , i.e.dimRTpM = 2 � (dimRTpN) for all p in N .Proof. Exercise. 2Examples.(1) Let N be a closed one{dimensional submanifold of a symplectic manifold (M;!). ThenN is isotropic.(2) Let N be a closed hypersurface of a symplectic manifold (M;!). Then N is coisotropic.Proposition. Let Q be a manifold and � a one{form on Q. Then the image of �, �(Q) =f�(q) 2 T �qQ j q 2 Qg is a closed submanifold of T �Q and the map � : Q ! T �Q adi�eomorphism of Q onto �(Q).Furthermore �(Q) is Lagrangian in the symplectic manifold (T �Q;!T �Q) if and only if �is closed.Proof. The �rst part follows from the general fact that the image of a section � of avector bundle E ��!M is always a closed submanifold such that � :M ! �(M) � E is adi�eomorphism with inverse �j�(M). (This fact is easily proven by using a local trivializationof E ��!M:)Denoting �(Q) by N and the canonical inclusion N ,! T �Q by jN , the equation jN =� � �j�(Q) implies that it is enough to show that ��(!T �Q) = 0 if and only if � is closed,since �j�(Q) = N ! Q is a di�eomorphism and clearly �(Q) has half the dimension of T �Q.Let thus q be in Q and u in TqQ, then(��(�T �Q))q(u) = (�T �Q)�(q)(��(u)) = �(q)((�� � ��)(u)) = �q(u);i.e. ��(�T �Q) = �. It follows that ��(!T �Q) = �d� and thus the second part of the proposi-tion is proven. 2Corollary. Let Q be a manifold and f be a smooth function on Q. Then (df)(Q) � T �Qis Lagrangian with respect to the canonical symplectic form !T �Q.Proof. Obvious, since d(df) = 0. 2Proposition. Let (M;!M ) and (N;!N ) be symplectic manifolds and F : M ! N adi�eomorphism. Then the graph �F := f(x; y) 2 M � N j y = F (x)g is a Lagrangiansubmanifold of the symplectic manifold (M �N; (prM)�!M � (prN )�!N ) if and only if F issymplectic.Proof. Let us �rst observe that for any smooth map F :M ! N between two manifoldsthe graph �F is a closed submanifold of M � N and bF : M ! �F , x 7! (x; F (x)) is adi�eomorphism with inverse �j�F .Thus we calculate( bF )�((prM )�!M � (prN )�!N ) = (prM � bF )�!M � (prN � bF )�!N = !M � F �!N ;and thus �F is Lagrangian if and only if !M = F �!N on M , i.e. if and only if F issymplectic. 82



2In order to prove that all symplectic manifolds of a �xed dimension 2n are locally di�eo-morphic to the \symplectic model space" (R2n; !0 = P2nj=1 dxj ^ dxn+j ) we introduce theuseful tool of \time{dependent vector �elds" and the crucial computational formula whichis at the base of \Moser's method".Lemma. Let M be a manifold and X a vector �eld on M . Then Cartan's homotopyformula LX� = d(iX�) + iXd� for all � in E�(M)is equivalent to the formuladdt(('Xt )��) = ('Xt )�(d(iX�) + iXd�) for all � in E�(M):(Here 'X denotes of course the 
ow of X.)Proof. Evaluating the second formula in t = 0 immediately gives Cartan's formula.By the 
ow equation 'Xs+t = 'Xs � 'Xt we �ndddt(('Xt )��) = ddt jt(('Xt )��) = dds js=0(('Xs+t)��) = ('Xt )�(LX�):Inserting the right hand side of Cartan's formula for LX� yields the second formula, i.e.the two formulas are equivalent. 2De�nition. Let I be a connected interval in R that contains 0, M a manifold and� : I �M ! �kT �M a smooth map. We de�ne �t(p) := �(t; p) for all (t; p) in I �M andwe call � a \time{dependent k{form on M" if �t is a k{form on M for each t in I.Lemma. LetM be a manifold, X a vector �eld with 
ow 'X onM and � a time{dependentk{form on M . Then ddt(('Xt )��t) = ('Xt )��d(iX�) + iXd� + @�t@t �in all points p in M; t in I, where 'X is de�ned. (Here @�t@t is of course again a time{dependent k{form on M and thus for �xed t a k{form.)Proof. The formula follows immediately from the preceding lemma and the Leibniz rulein one variable. 2De�nition. Let I be a connected interval in R and X : I �M ! TM a smooth map,and let Xt(p) := X(t; p) for all (t; p) in I �M .(1) We call X a \time{dependent vector �eld (onM)" if Xt is a vector �eld on M for eacht in M .(2) Let X be a time{dependent vector �eld on M . A smooth curve 
 : J ! M with Jopen and connected in I is called an \integral curve of the time{dependent vector �eld X(with initial condition 
(t0) = p)" if p is in M , t0 in J and_
(t) = (
�)t� ddt���t� = Xt(
(t)) for all t in J and 
(t0) = p:83



(3) LetX be a time{dependent vector �eld onM , cM := I�M and bX(t; p) := @@tj(t;p)+Xt(p)in T(t;p)cM �= TtI � TpM: The vector �eld bX on cM is called the \suspension of (the time{dependent vector �eld) X".Remarks. (1) Typically the interval I is either R or [0; 1], or the latter \with periodicboundary conditions", i.e. X : S1 �M ! TM such that Xt is a vector �eld on M .(2) Using the suspension bX of a time{dependent vector �eld X it is not di�cult to deduceexistence and uniqueness of integral curves of X and of maximally de�ned 
ow maps 'Xt;ssuch that 'Xs;s(p) = p and ddt'Xt;s(p) = Xt('Xt;s(p)) (where they are de�ned). The local 
owequations are then replaced by 'Xs;s = IdM and 'Xr;t � 'Xt;s = 'Xr;s and in the case that Xis time{independent one has 'Xt;s = 'Xt�s. (See, e.g., [AMR] or [Ar2] for more details ontime{dependent vector �elds and their 
ows.)For our purposes the following will be enough:Proposition. Let X : R�M !M be a time{dependent vector �eld such that the closureof fp 2 M j 9 t 2 R such that Xt(p) 6= 0g is compact in M . Then the 
ow maps 'Xt;s arede�ned on all of M for all t; s in R. In particular �Xt := 'Xt;0 is a smooth family (in theparameter t in R) of di�eomorphisms of M with �X0 = 'X0;0 = IdM .If furthermore �t (t 2 R) is a smooth time{dependent di�erential k{form on M thenddt((�Xt )��t) = (�Xt )��d(iXt�t) + iXtd�t + @�t@t � for all t in R:Proof. Exercise (possibly supported by a textbook as [AMR], [Be] or [GS]). 2Theorem (\Local normal form of symplectic forms on a manifold" or \Theoremof Darboux{Moser{Weinstein"). Let (M;!) be a symplectic manifold of dimension2n. Then for each point p in M there is an open neighborhood U = U(p) in M and adi�eomorphism  : U !  (U) = V , V an open set in R2n, such that  �(Pnj=1 dxj ^dxn+j) = !jU .Proof. Let  1 : U1 !  1(U1) = V1 � R2n be any chart such that  1(p) = 0. We mayassume without loss of generality that V1 is R2n. Let !0 = ( �11 )�(!jU1) and !jk in Rbe de�ned by !0(0) = Pj<k !jk(dxj ^ dxk)j0. Then !0 and !1 := Pj<k !jkdxj ^ dxk aresymplectic forms on R2n ful�lling !0(0) = !1(0).Since R2n is contractible there is a 1{form � on R2n such that d� = !0 � !1. Replacing �if necessary by �+ df with an appropriate function f on R2n we may furthermore assumethat �(0) = 0.Let us de�ne !t by (1 � t)!0 + t!1. Clearly !t(0) = !0(0) and d!t = 0. It follows that for�0 > 0 there is an open neighborhood V2 of 0 in R2n such that !t is a symplectic form onV2 for all t in [��0; 1 + �0]. Furthermore there is a �0 > 0 such that B 2�0 (0) � V2.Denoting the inverse of the ismorphism ![ : V ! V � on a symplectic vector space (V; !)by !] we de�ne a smooth time dependent vector �eld X for x in V2 (and t in [��0; 1 + �0])as follows Xt(x) := (!t(x))](�(x)):84



Using a smooth non{negative function � on R�R2n such that � � 1 on [0; 1]� B �0 (0) and� � 0 on R� (R2n n B 3�02 (0)) we can extend � �Xt to a time{dependent vector �eld Yt onR2n such that Yt = Xt on B �0 (0) for all t in [0; 1] and Yt = 0 for kxk > 3�02 and for all t inR.Thus we can apply the preceding proposition and we have a smooth family f�t := 'Yt;0 j t 2Rg of di�eomorphisms of R2n with �0 = IdR2n, �t(0) = 0 for all t in R and �t(B 2�0 (0)) =B 2�0 (0) for all t in R. Thus for t in [0; 1] the map �t = �Xt is a di�eomorphism from B �0 (0)to �Xt (B �0 (0)) such thatddt(��t!t) = ddt((�Xt )�!t) = (�Xt )�(d(iXt!t) + iXtd!t + @!t@t ) = (�Xt )�(d� + !1 � !0) = 0:It follows for t = 1 that � := �X1 : B �0 (0)! �X1 (B �0 (0)) ful�lls ��!1 = !0.Let furthermore g in GL(2n;R) be such that (Tg)�(Pnj=1 dxj ^ dxn+j) = !1.We set  := Tg � � �  1 : U ! V =  (U) � R2n, where U :=  �11 (B �0 (0)) � U1 is an openneighborhood of p in M . Then  is a chart ful�lling  (p) = 0 and �� nXj=1 dxj ^ dxn+j� =  �1 � �� � T �g� nXj=1 dxj ^ dxn+j� =  �1(!0) = !jU : 2Remarks. (1) The above proof relying on the construction of the time{dependent vector�eld Xt and the formula for ddt((�Xt )�!t) goes back to [M] and is therefore also referred toas \Moser's method". Though the local normal form of symplectic forms on a manifoldcan be reached in a simpler way we chose this approach since it easily yields proofs forseveral substantial generalizations. (See e.g. [GS] and [Wei1].)(2) Local coordinates (x1; : : : ; x2n) as in the preceding theorem, i.e. such that ! is givenas Pnj=1 dxj ^ dxn+j are often called \symplectic coordinates". Writing qj = xj; pj = xn+jfor j = 1; : : : ; n the form ! is given as Pnj=1 dqj ^ dpj and we will call such coordinates(q1; : : : ; qn; p1; : : : ; pn) symplectic as well. (The older term for the latter version is \canonicalcoordinates".)Bibliographical remarks. The references cited in the text of this section plus those men-tioned at the end of 3.1.3.3 K�ahlerian and almost K�ahlerian manifoldsDe�nitions. Let M be a manifold.(1) A smooth section g of the vector bundle
2T �M overM is called a \pseudo{Riemannianmetric (on M)" if the following two conditions are ful�lled for each p in M :85



(i) gp is symmetric, i.e. gp(v;w) = gp(w; v) 8v;w 2 TpM .(ii) gp is non{degenerate, i.e. for all 0 6= v in TpM there is a w in TpM such that gp(v;w) 6= 0.(2) A pseudo{Riemannian metric on M is called \Riemannian" if g(v; v) > 0 8v 2TpM n f0g for all p in M .(3) A pair (M;g) consisting of a manifold and a (pseudo-)Riemannian metric is called a\(pseudo-)Riemannian manifold".Remark. A (pseudo-)Riemannian metric on a manifold is nothing else than a smoothlyvarying assignement of a (pseudo-)Riemannian metric to each tangent space.Examples.(1) Let M be Rm and g = P1�i;j�m gije�i 
 e�j be a (pseudo-)Riemannian metric on thevector space V = Rm. Setting for each p in M gp = P1�i;j�m gij(dxi)p 
 (dxj)p (where(x1; : : : ; xm) are the canonical global coordinates on M), we get a (pseudo-)Riemannianmetric onM . Though slightly abusive, it is convenient to denote this (pseudo-)Riemannianmetric by the letter g as well.(2) Let (M;g) be a Riemannian manifold and N �M a closed submanifold. Then for eachp in N TpN is a subspace of TpM and thus gpjTpN is a Riemannian metric on the vectorspace TpN . It is easy to check that (N; gjTN) is a Riemannian manifold.De�nition. Let M be a (real!) manifold and J : TM ! TM be a smooth vector bundlehomomorphism over IdM such that J2 = J � J = �IdTM . Then J is called an \almost{complex structure on M" and the pair (M;J) is called an \almost{complex manifold".Proposition. LetM be a real manifold and A a holomorphic atlas on M . Then M carriesan almost{complex structure canonically associated to A. Furthermore, if ' : U ! V ='(U) � Cm is a chart on an open subset U of M that is (holomorphically!) compatible withA and if ' = t(z1; : : : ; zm) with zk = xk +p�1yk for k = 1; : : : ;m, thenJ� @@xk� = @@yk and J� @@yk� = � @@xk for k = 1; : : : ;min these coordinates.Proof. The complex{analytic atlas A provides the vector bundle TM ! M with thestructure of a holomorphic vector bundle and in particular each �ber is a complex vectorspace. For each p in M , one de�nes Jp as the real{linear endomorphism induced on thereal tangent space TpM of the underlying real manifold M by the multiplication with thecomplex number i = p�1 on the space TpM viewed as a complex vector space. It followsthat J is an almost{complex structure on the real manifold M , canonically associated tothe complex{analytic atlas A.Without loss of generality we may now assume that M = V is open in Cm and ' = IdV =t(z1; : : : ; zm) with zk = xk + iyk and xk; yk real. Considering @@xk and @@yk as elements of thecomplex vector space TpM (for p any point in M), we �nddzj( @@xk ) = (dxj + i dyj)( @@xk ) = �j;k and dzj( @@yk ) = i �j;k:86



Using the C {linearity of the functionals dzj on TpM we �nddzj(i� @@xk ) = (i dzj)( @@xk ) = i �j;k:It follows that, for k = 1; : : : ;m,J� @@xk� = @@yk and J� @@yk� = � @@xk : 2De�nition. An almost{complex structure J on a real manifold M that is canonicallyassociated to a complex{analytic atlas A (as in the preceding proposition) is called a\complex structure".Remarks.(1) Though the distinction between complex structures and almost{complex structures isimportant, some texts on symplectic geometry are not attentive to it.(2) An almost{complex structure that ful�lls a certain \integrability" condition is calledan \integrable almost{complex structure". In �nite dimensions every integrable smoothalmost{complex structure is already a complex structure by a deep theorem of Newlanderand Nirenberg (see the original work [NN] or [H] for a proof).De�nitions. Let (M;J) be an almost{complex manifold and g a (pseudo-)Riemannianmetric on M .(1) The metric g is called \almost (pseudo-)Hermitian" if, for all p in Mgp(Jpv; Jpw) = gp(v;w) for all v;w inTpM:(2) If J is a complex structure and g almost (pseudo-)Hermitian then g is called \(pseudo-)Hermitian".(3) If g is almost (pseudo-)Hermitian, the 2{form !, de�ned by!p(v;w) = gp(Jp(v); w) 8 p 2M; 8v;w 2 TpM;is called the \fundamental 2{form (on the almost (pseudo-)Hermitian manifold (M;J; g))".Lemma. Let (M;J; g) be an almost pseudo{Hermitian manifold. Then the fundamental2{form is almost{symplectic.Proof. We only need to check that !p is alternating and non{degenerate for all p in M .This is proven in Section 1.5 since (TpM;Jp; gp) is a pseudo{Hermitian vector space for allp in M . 2De�nitions. Let (M;J; g) be an almost (pseudo-)Hermitian manifold and ! its funda-mental 2{form.(1) The triple (M;J; g) is called an \almost (pseudo-)K�ahlerian manifold" if ! is closed.87



(2) An almost (pseudo-)K�ahlerian manifold is called \(pseudo-)K�ahlerian" if J is a complexstructure.Remarks.(1) The last lemma implies that each almost pseudo{K�ahlerian manifold is symplectic.(2) Obviously every K�ahlerian or pseudo{K�ahlerian manifold is almost pseudo{K�ahlerianand thus, a fortiori, symplectic.(3) It was conjectured that each symplectic manifold is K�ahlerian. This is wrong (seeexample (5) below) but a \partial converse" of (2) holds true:Proposition. Let (M;!) be a symplectic manifold and J!(M) be the set of almost{complexstructures J on M such that (M;J; gJ ) is almost K�ahlerian with fundamental 2{form equalto !. Then J!(M) is not empty, i.e. every symplectic manifold is almost K�ahlerian.Remark. Upon considering J!(M) as a subset of the \Fr�echet space" �C1(M;End(TM))one can use Section 1.5 to prove the following important sharpening of the precedingproposition: the topological space J!(M) is non{empty and continuously contractible toa point. (See, e.g., [McDS].)Proof of the proposition. The existence of a partition of unity subordinate to an ap-propriate covering of M easily shows that M carries a Riemannian metric g.Applying the theorem of Section 1.5 to V = TpM yields maps	p : R(TpM) ! J!p(TpM)such that 	p(gp) = Jp and (TpM;Jp; gp) is Hermitian for all p in M . Since 	 is real{analytic in the variable g 2 R(V ) one easily poves, by going to local charts, that J is asmooth section of End (TM). Thus J is an almost{complex structure on M . The theoremin Section 1.5 implies furthermore that the Riemannian metric gJ de�ned by(gJ )p(v;w) = !p(v; Jp(w)) 8 p 2M; 8v;w 2 TpMis almost Hermitian on (M;J) and the fundamental 2{form of (M;J; gJ ) is equal to !. 2Examples.(1) Let (M;A) be a 2{dimensional real manifold with a complex{analytic atlas and g aHermitian metric on M . Then (M;J; g) is K�ahlerian since every 2{form on M is closed.(2) Let M = C n �= R2n and g = Pnk=1(dxk 
 dxk + dyk 
 dyk) the standard Riemannianmetric on R2n. Since J( @@xk ) = � @@yk the metric g is Hermitian and the fundamental 2{formof (M;J; g) is given as follows ! = nXk=1 dxk ^ dyk:Obviously, ! is closed and thus (M;J; g) is K�ahlerian.(3) Given a discrete subgroup � of (C n ;+) one easily checks that the complex structure,the metric and thus the fundamental 2{forms \descend" to the quotient C n=� = �nC n ,88



since they are in fact invariant under the whole group (C n ;+) acting on M = C n . ThusC n=� is K�ahlerian.(4) Open subsets of K�ahlerian manifolds, products of K�ahlerian manifolds and complexsubmanifolds of K�ahlerian manifolds are naturally equipped with induced complex struc-tures and Hermitian metrics such that they are K�ahlerian.(5) Let fM = NR be as in Example (3.2) of Section (2.2), i.e.,fM = 8<:0@0@ 1 x y0 1 z0 0 1 1A ; w1A������x; y; z; w 2 R9=; �= R3�R:Let e! = dy ^ dz + dx ^ dw, then e! is a symplectic form on fM that is invariant under theaction of NR on fM given by left{multiplication. It follows that M = NZnNR is a compactmanifold with a unique 2{form such that under � : fM !M we have ��(!) = e!. It followseasily that (M;!) is symplectic since � has everywhere rank four.Standard arguments from algebraic topology show that the dimension of H1dR(M;R) isequal to three which shows thatM cannot carry a K�ahlerian metric. (See [BT] and [GriHa]for more details on the algebraic topology respectively Hodge theory needed to show theabove assertions.) The manifold M was considered by Thurston to exhibit a compactsymplectic manifold allowing no K�ahlerian metric. (See, e.g., [Wei2].)(6) The complex projective space Pn(C ) is a very important K�ahlerian manifold withrespect to the so-called \Fubini-Study metric" and its associated fundamental 2-form, the\Fubini-Study form" !FS. (See, e.g., [GriHa] or [J] for more details.)Bibliographical remarks. Beside the references cited in the text we would like to men-tion [MK] and [Wel] for the theory of K�ahlerian manifolds. The reader should be awarethat traditionally the class of K�ahlerian manifolds is viewed as a special case of complexmanifolds and not of symplectic manifolds and thus notations are rather \complex" than\real".3.4 Hamiltonian dynamical systems on symplectic manifoldsRemark. Given an almost{symplectic manifold (M;!) the map![ : TM ! T �M;![(vp) := ![p(vp) for all p in M and all vp in TpMis a vector bundle isomorphism over IdM , the inverse of which we denote by !].De�nitions. (1) Let (M;!) be a symplectic manifold and H a smooth function on M .Then we de�ne a vector �eld XH on M byXH = !](dH):89



The vector �eld XH is called the \Hamiltonian vector �eld associated to the Hamiltonfunction H" (or \symplectic gradient of H").(2) A triple (M;!;H) consisting of a symplectic manifold (M;!) and a smooth functionH on M is called a \Hamiltonian dynamical system".Remark. Since we associated to a function H on (M;!) a vector �eld XH , a Hamiltoniandynamical system comes equipped with the (local) 
ow 'XH , i.e. a local R{action on M .This explains the terminology.Remark. Since ![ � !] = IdT �M the vector �eld XH is often de�ned as the unique vector�eld on M ful�lling !(XH ; �) = dH:This formula is clearly equivalent to the above de�nition and is in fact very useful incomputations.Proposition. Let (M;!;H) be a Hamiltonian dynamical system and ' =(q1; : : : ; qn; p1; : : : ; pn) : U ! '(U) = V � R2n a symplectic chart de�ned on an opensubset U of M . Then the Hamiltonian vector �eld is given (on V ) by the following formulaXH = nXj=1 �@H@pj @@qj � @H@qj @@pj� :Remarks.(1) It is understood that the function H should be read as eH = H � '�1 in the formula ofthe proposition. We follow the usual practice to suppress this inconvenient notation.(2) From the last proposition in Section 2.5 we know that (on V ) the di�erential equation(\Hamilton's equations") for the 
ow of XH as in the formula of the proposition is thengiven by _qj = @H@pj ; _pj = �@H@pj for j = 1; : : : ; n:Proof of the proposition. Let �rst ' : U ! V � R2n be any chart on M and eH =H �'�1; e! = ('�1)�!. Then e! is a symplectic form on V and the vector �eldX eH = e!](d eH)ful�lls !(XH ; v) = e!(X eH ; '�v) 8 v 2 TmM 8 m 2 U:It follows by the non{degeneracy of ! and ~! that ('�)mXH(m) = X eH('(m)) for all m inU , i.e., XH is given by X eH in the chart '.Let us now assume that ' = (q1; : : : ; qn; p1; : : : ; pn) is a symplectic chart, i.e. e! = ('�1)�! =Pnj=1 dqj ^ dpj =: !0 on V � R2n. Let j 2 f1; : : : ; ng and X eH = Pnk=1 ��k @@qk + �k @@pk�with �k; �k in E(V ). Then�j = !0�X eH ; @@pj� = d eH� @@pj� = @ eH@pj and �j = �!0�X eH ; @@qj� = �d eH� @@qj� = �@ eH@qj :90



It follows that X eH = nXj=1 �@ eH@pj @@qj � @ eH@qj @@pj�;as claimed in the proposition. 2Let us observe that there is another way of expressing Hamilton's equations on R2n (in fact,more generally, on almost K�ahlerian manifolds) which brings into play the almost{complexstructure:Lemma. Let V be open in R2n;H a smooth function on V and Jn = � 0 �EnEn 0 � thestandard almost{complex structure on R2n (as in Section 1.5). Then Hamilton's equationsare equivalent to _x = �J(rH(x)):Proof. Let x = (q1; : : : ; qn; p1; : : : ; pn) =: (q; p).Then Hamilton's equations � _q_p � =  @H@p�@H@q !are obviously equivalent to_x = � _q_p � = �� 0 �11 0 � @H@q@H@p ! =  @H@p�@H@q ! : 2De�nition. Let (M;!) a symplectic manifold and X in X(M).(1) We call X a \symplectic vector �eld" if LX! = 0.(2) We call X a \Hamiltonian vector �eld" if there exists a smooth function H on M suchthat X = XH .Lemma. Let (M;!) be a symplectic manifold and X in X(M). Then LX! = 0 if andonly if ('Xt )�! = !;in all points where the last equation makes sense.Proof. Obviously the second formula implies the �rst. The equalityddt(('Xt )�!) = ('Xt )�(LX!)which follows from the 
ow equations (compare Section 3.2) shows that LX! = 0 implies('Xt )�! = !. Thus the two formulas are equivalent. 291



Lemma. Let (M;!) be a symplectic manifold and X a symplectic vector �eld. Then thepowers of ! are invariant under X, i.e.,LX(!k) = 0 for k = 0; 1; : : : ; (dimRM)=2:Proof. Obvious. 2Corollary. Let (M;!) be a symplectic manifold and X a symplectic manifold. Let fur-thermore t be in R and U open in M such that 'Xt is de�ned on U . Then for all (2k){dimensional orientable submanifolds of U one has thatZ�2k !k = �Z'Xt (�2k) !k(if one and then both sides of the equality is �nite).Proof. Let us without loss of generality assume that 'Xt : �2k ! 'Xt (�2k) is orientationpreserving. It follows that R'Xt (�2k) !k = R�2k ('Xt )�(!k) = R�2k !k by the invariance of theintegral under orientation preserving di�eomorphisms. 2Remark. Assuming that dimRM = 2n and taking �2k = U an open set with �nite \phasevolume"RU 
 = RU � (�1)n(n�1)2n! �!n yields the result that \the phase volume is invariantunder symplectic 
ows".Lemma. Let (M;!) be a symplectic manifold and X in X(M). Then(i) X is symplectic if and only if the one{form iX! is closed, and(ii) X is Hamiltonian if and only if iX! is exact.In particular, a Hamiltonian vector �eld is symplectic.Proof. Since ! is closed, Cartan's homotopy formula implies for all X in X(M) thatLX! = d(iX!). The assertions follow now immediately. 2Since a closed form on a manifold is always locally exact by Poincar�e's lemma the followingnotions are rather natural:De�nition. Let (M;!) be a symplectic manifold.(1) A symplectic vector �eld is also called a \locally Hamiltonian vector �eld."(2) The set of all Hamiltonian vector �elds (respectively all locally Hamiltonian vector�elds) is denoted by Ham(M;!) (respectively Hamloc(M;!)).Lemma. Let (M;!) be a symplectic manifold and let X and Y be locally Hamiltonianvector �elds. Then [X;Y ] is the Hamiltonian vector �eld associated to the smooth functionH = �!(X;Y ).Proof. It is enough to show thatdH(Z) = !([X;Y ]; Z) for all Z in X(M):92



Using the formula i[A;B] = [LA; iB] on E�(M) for A;B in X(M) we �nd:!([X;Y ]; Z) = X(!(Y;Z)) � !(Y; [Z;X]) = �Y (!(X;Z)) + !(X; [Z; Y ]):Closedness of ! implies0 = X(!(Y;Z))� Y (!(X;Z)) + Z(!(X;Y ))� !([X;Y ]; Z) + !([X;Z]; Y )� !([Y;Z];X):Combining these identities yields2!([X;Y ]; Z) = �Z(!(X;Y ))+!([X;Y ]; Z); i.e., !([X;Y ]; Z) = �Z(!(X;Y )) = dH(Z):2Corollary. Let (M;!) be a symplectic manifold. Then Hamloc(M;!) is a Lie subal-gebra of (X(M); [; ]) ful�lling [Hamloc(M;!);Hamloc(M;!)] � Ham(M;!). FurthermoreHam(M;!) is a Lie subalgebra of (X(M); [; ]) and an ideal in Hamloc(M;!).Remark. A subspace h of a Lie algebra (g; [; ]) is called an \ideal" if [X;H] is in h for allX in g and H in h.Proof of the corollary. Obvious from the preceding lemma. 2Exercise. Let (M;!) be a symplectic manifold. Then the quotient vector spaceHamloc(M;!)=Ham(M;!) is canonically isomorphic toH1dR(M). Supplying the latter withthe trivial commutator, i.e. all brackets are zero, the following sequence of Lie algebra mor-phisms is exact:f0g ! Ham(M;!) ��! Hamloc(M;!) ��! H1dR(M)! f0g;where � is the natural injection and � the projection on the above mentioned quotientfollowed by the canonical isomorphism.De�nition. Let (M;!) be an almost{symplectic manifold and let H;H1;H2 be in E0(M).(1) The \almost{symplectic gradient of H" is the vector �eld XH = !](dH).(2) The \Poisson bracket of H1 and H2" is the smooth function !(XH1 ;XH2) denoted byfH1;H2g.Lemma. Let (M;!) be an almost{symplectic manifold and H1;H2 2 E0(M). Then(i) fH1;H2g = �XH1(H2) = XH2(H1), and(ii) the map f; g : E0(M)� E0(M) ! E0(M); (H1;H2) 7! fH1;H2gis R{bilinear and anti{symmetric, and ful�llsfH1;H2 �H3g = fH1;H2g �H3 +H2 � fH1;H3g:93



Proof. We havefH1;H2g = !(XH1 ;XH2) = iXH2 (!(XH1 ; �)) = iXH2 (dH1) = XH2(H1):Since ! is anti{symmetric the �rst assertion is thus proven.Bilinearity over R and anti{symmetry of f; g follow directly from the properties of analmost{symplectic form.It remains to show that for each H1 in E0(M) the map fH1; g : E0(M) ! E0(M) is aderivation: fH1;H2 �H3g = �XH1(H2 �H3) = �XH1(H2) �H3 �H2 �XH1(H3)= fH1;H2g �H3 +H2 � fH1;H3g: 2One important motivation of the closedness condition on ! is the followingProposition. Let (M;!) be an almost{symplectic manifold. Then the Poisson bracketf; g ful�lls the Jacobi{identity on E0(M) if and only if ! is closed.Proof. For F;G and H functions on an almost{symplectic manifold one has by a simplecalculation !([XF ;XG];XH) = �fF; fG;Hgg+ fG; fF;Hgg:A lengthy but elementary calculation shows now that(d!)(XH1 ;XH2 ;XH3) = fH1; fH2;H3gg � ffH1;H2g;H3g � fH2; fH1;H3gg:Thus closedness of ! implies that the Jacobi{identity holds for f; g on E0(M).On the other hand given an element ' in T �pM for a p inM there exists a smooth functionH on M such that ' = (dH)(p). Thus by the non{degeneracy of an almost{symplecticform there exists, given a point p inM and v1; v2; v3 in TpM three functions H1;H2;H3 onM such that XHj(p) = vj for j = 1; 2; 3. Assuming now that f; g ful�lls the Jacobi{identitywe conclude that the three{form (d!) satis�es the following condition:(d!)p(v1; v2; v3) = 0 for all p in M and for all v1; v2; v3 in TpM;i.e., d! = 0. 2De�nition. Let (M;!) be a symplectic manifold and � : E(M) ! Ham(M;!) be de�nedby �(H) = �XH . The following sequence of R{vector spaces and R{linear maps is calledthe \fundamental sequence (on a symplectic manifold)":f0g ! ker� j�! E(M) ��! Ham(M;!) ! f0g:(The map j is the injection of ker� in E(M).)Lemma. The fundamental sequence on a symplectic manifold is an exact sequence of Liealgebras and ker� is the space of locally constant functions on M .94



Remark. A continuous function on a manifold is called locally constant if for each pointof the manifold there is a neighborhood of this point such that the function is constanton this neighborhood. Obviously a continuous function is locally constant if and only if itis constant on each connected component of the manifold. A C1{function is thus locallyconstant if and only if df = 0.Proof of the lemma. Since ! is non{degenerate �(H) = �XH is zero for H in E(M)if and only if dH = 0, i.e., ker� is the space of locally constant functions on M and thePoisson bracket of such two functions is the zero function. Thus ker� is a Lie subalgebraof (E(M); f; g). which is in fact easily seen to be an abelian ideal.Since � is R{linear and surjective it remains only to show that �(fH1;H2g) =[�(H1); �(H2)] for all H1;H2 in E(M). Since vector �elds on a (�nite dimensional) manifoldcan be identi�ed with derivations it is enough to prove that both act in the same way onfunctions. Let thus H3 be in E(M), then[�(H1); �(H2)](H3) = XH1(XH2(H3))�XH2(XH1(H3))= �(ffH3;H1g;H2g+ fH1; fH3;H2gg):By the Jacobi{identity the last right{hand side equals�fH3; fH1;H2gg = �XfH1;H2g(H3) = �(fH1;H2g)(H3);showing the assertion. 2De�nition. Let (M;!;H) be a Hamiltonian dynamical system and F a smooth functionon M . The function F is called a \�rst integral (of the motion)" or a \conserved quantity"if and only if F is constant on the integral curves of H.Lemma. Let (M;!;H) be a Hamiltonian dynamical system and F in E(M). Then F isa �rst integral if and only if fH;Fg = 0.Proof. Considering F as a 0{form on M we haveddt(F ('XHt )) = ddt(('XHt )�F ) = ('XHt )�(LXHF ) = �(('XHt )�fH;F )):Thus fH;Fg = 0 if and only if F � 'XHt = F � 'XH0 = F , i.e., if and only if F is constanton the integral curves of XH . 2Proposition (\Noether's theorem"). Let Q be a manifold, (M;!) = (T �Q;!T �Q),and H a smooth function on M . Let furthermore ' : 
! Q ( 
 open in R�Q) be a local
ow on Q such that the induced local 
ow b' on M ful�lls H(b't(m)) = H(m) whenever theleft{hand side is de�ned. Then there exists a smooth function F on M such thatfH;Fg = 0 and 'XF = b':95



Proof. Let X be the vector �eld on M that generates the local 
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