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Abstract:

Assuming only undergraduate level knowledge of linear algebra, analysis including ordi-
nary differential equations and rudimentary topology, we develop the basics of the theory
of symplectic manifolds and Hamiltonian dynamical systems, that is pivotal in geometric
considerations in theoretical physics. The material on multilinear and symplectic algebra
as well as on differentiable manifolds (vector fields, differential forms and de Rham co-
homology) necessary to bridge the gap from the prerequisites to symplectic geometry is
thoroughly covered in the first chapters of the text.
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Introduction

These lecture notes are based on courses I gave in Villa de Leyva in Colombia and in
Hamburg in Germany, mainly for students of mathematics and/or theoretical physics,
during the second half of the year 1999. Since most of the more advanced material of the
course in Villa de Leyva is available as part of the text [Wu], I concentrated here on the
foundations of the theory of differentiable manifolds (and of symplectic geometry), being
at the base of most considerations in the field of geometry related to theoretical physics.

After a short motivation of the Hamiltonian approach to mechanics, the main body of the
text proceeds as follows:

In Chapter 1, we complement standard knowledge in linear algebra by a thorough de-
velopment of multilinear algebra, indispensable for the calculus of differential forms on
manifolds, as well as of “symplectic algebra”, i.e., the basic results on symplectic vector
spaces as, e.g., normal forms and the existence of compatible complex structures.

The second chapter develops the theory of finite dimensional manifolds from scratch. We
give complete proofs of all crucial points of the text, with the only exceptions of the con-
struction of partitions of unity, the proof of Stokes’ theorem and of “Moser’s formula”. We
include de Rham cohomology in our presentation since it plays a prominent role in theo-
retical physics (and of course in geometry), though admittedly physicists tend to describe
it in a different language. We strongly believe that learning the general mathematical
formulation at an early stage is well worth the effort since it unifies several important
notions.

Chapter 3 is an introduction to symplectic geometry and Hamiltonian dynamical systems.
The concise formulation and easy proofs of the foundational results of analytical mechanics
as, e.g., the theorems of Darboux and Noether, the existence of symplectic structures on
the total space of the cotangent bundle of a manifold and the properties of the Poisson
structure on a symplectic manifolds here show the usefulness of the preceding chapter.
We also give some basic material of contemporary symplectic differential geometry as the
notion of a Kahlerian manifold and rudiments of the theory of non-linear symplectic maps.



Though there are a few references scattered throughout the text, we conclude each section
with some “Bibliographical remarks”, where hints on related literature are given, as an
incitation for further reading and self-study.

Let me take the opportunity to thank all participants of the courses in Villa de Leyva
and Hamburg for their interest and “feedback”. Last but not least I would like to thank
Sergio Adarve, Dorothea Glasenapp, Sylvie Paycha, Peter Slodowy, Andrés Reyes, Rolando
Roldan and Monica Vargas without whose efforts these courses and lecture notes would
not have been possible and with whom working together was always a pleasure for me.

Tilmann Wurzbacher

Strasbourg, June 26, 2000.

0. Motivation

0.1 An example from mechanics: from Newton to Lagrange to Hamilton

Let us consider a particle of mass m (m > 0, small compared to the mass of the earth),
“close” to the earth, subject to the gravitational field of the earth. We can assume the
surface of the earth to be the plane ¢35 = 0 and describe the trajectory of the particle by
q(t) = (q1(1), q2(t), q3(1)) with g3 > 0. The exterior force acting on the particle is given
by F'= —mg e3 with ¢g denoting the (strictly positive) “gravitational constant” and es
standing for the third unit vector in R®.

Newtonian description:

The Newtonian equation of motion is
F=mg
with initial conditions
q(0) = ¢° with ¢§ >0 and ¢(0) = v°.
Here we have —mge; = mg so that the trajectory is given by

t2
q(t) = ¢° + tv° — g7 cs-

Observation. The above force field [ is “conservative”, i.e. there is a function

U:{qeR? g >0} - R such that F'= -V .
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This function, here we can take e.g. U(q) = mggs, is called the “potential energy”, whereas
the function 7' = 2(4)* = Z((¢1)* + (¢2)* + (g3)?) is considered as the “kinetic energy”. In
the case of a conservative force field we can go to the

Lagrangian description:

Let L = L(q,¢,t) := T—U be the “Lagrange function” (that might depend explicitly on
t!), then the Lagrangian equation of motion is

d 0L oL

——— — — =0 for £=1,2.3

dt 6qk 8qk o T
with initial condition as above

q(0) = ¢° with ¢§ >0 and ¢(0) = »°.

In our example these equations are obviously the same as in the Newtonian approach.

Observation. We have — at least in our example —

oL .

— =m e

din 9k = Pk »
the “(linear) momentum” of the particle. We can thus write the “total energy” H =
H(q,p) =T+ U as a function of ¢ and p! (This transition from L to H is called “Legendre
transformation” and is not always possible! Since later on we will not be concerned with
Lagrangian mechanics we do not go into this question more deeply.)

For such a “Hamilton function” or “Hamiltonian” H we have the following Hamiltonian
equations of motion

H H
a—:q'k and a—:—pk fork=1,2.3
apk an

with initial condition
q(0) = ¢° and p(0) = p°.

In the example we have H = ;=p* + mgqs (setting of course p* = (p1)? + (p2)* + (p3)?)
and p(0) = mv®. The equation of motion then reads as follow

oH 1 . OH
= — = —Pk and P =—F7F—= —mg5k,3 .
Opr m gk

@
Differentiating the first equation with respect to time ¢ and inserting the result into the
second we find the Newtonian equation of motion for ¢ = ¢(¢) and we get p = p(¢) then in

the case of the example trivially from ¢(¢) and the first equation.

Remark. The choice between the Lagrangian and the Hamiltonian approach (in a situation
where both can be applied) depends on further details: the advantages of the Hamiltonian
approach lie in the equal treatment of the variables ¢ and p, the first order of the equations,
and a simple transition to quantum mechanics. On the other hand, in relativistic mechanics



or in the transition from classical field theory to quantum field theory the Lagrangian might
often be more useful, at least for theoretical physicists.

0.2 An infinite dimensional example: the wave equation

Without going into the (functional-analytic) problems of domains crucial in infinite di-
mensional situations we will give here a simple class of a Hamiltonian equations, which are
“equivalent” to certain non-linear wave equations.

Let forn > 1
: d
S(R") = {f tR™ = R limyjp 00 P(2)Q (6_:1;) f(x)=0VP,Q e R[T, "'7Tn]}
(with Q(aa_x) = Q(a%, - 887”) viewed as a scalar partial differential operator with constant

coefficients). Given a function U in, e.g., S(R) we define the vector space F = S(R*)BS(R?)
and a function H : £ — R by

H(p,7) = /R (12 + Vol + U(qb)) .

2 2

By analogy we can consider the following Hamiltonian equation

a—H: 5 and aH—

or 8—¢_

—T.

We interpret the partial derivatives as “L*-gradients” in the following sense

oH R i d )
<<a—ﬂ_> (¢077T0)77T>L2(R3) = (DzH)((bOJrO) (7'[') —_= % 0H(¢077T0—|— 67‘[‘)
and analogously for ¢.

A direct calculation yields:

8[—[)
— (qb,w),fr> = (o, T) p2(pey and
<<a7T 05 0 ) 0> ) 12(R2)

OH ~ .
N 077T07 = _A 0 ! 0/ 9
<(a¢> (60, o) ¢>L2(R3) (~200+ (00 0)

where U’ denotes the derivative of U.

In the case at hand the Hamiltonian equation thus reads as follows:

. OH . oH /
qb:@—W:W and W:—a—qb:Aﬁbo—U(ﬁbO)'

(We suppress here the discussion of the initial condition as well as the existence and
uniqueness questions for the solutions of this equation.)
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Thus a curve t — (¢, qb) € F satisfies the Hamilton equation if and only if the function
(t,2) — ¢(t)(z) fulfills the following nonlinear wave equation on R?:

b=A0p—U'(¢).

This example indicates that techniques from Hamiltonian systems might be useful in the
study of partial differential equations. Other applications of infinite dimensional symplectic
geometry and Hamiltonian systems might come from the extension of geometric quantiza-
tion (or any other quantization procedure starting from Hamiltonian mechanics) to infinite
dimensional situations.

0.3 Solving the Hamilton equation for one degree of freedom

Example. In the theory of small oscillations the basic Newtonian equation is as follows:
G =F(q) = —mw?q with m >0 and w > 0.

The corresponding Hamilton function is

1 2
H:R%Rv H(va) = —p2+ e q27
2m 2
and the Hamiltonian equation is given by
oH 1 ) OH 9
Gg=—=—p and p=—— = —mwq
dp m Jdq

with initial condition

q(0) = ¢” and p(0) = p".
This equation is equivalent to the Newtonian equation ¢ = —w?q and its solution is easily
calculated:

0

q(t) = ¢° cos(wt) + r sin(wt), p(t) = p° cos(wt) — ¢"mwsin(wt).
mw

Remarks. Let V be open in R** and H = H(q, p) a real-valued smooth function on V.
(1) “Conservation of energy”

For each (local) solution t — ~v(¢) = (¢q(¢), p(t)) of the Hamiltonian equation one has:

d

SHG(0) =0,

i.e. for a connected open intervall [ and any ¢g in [ one has

H(y(t)) = H(vy(to)) = H° forall tel.

7



(Proof as an exercise.)

(2) A constant solution of the Hamilton equation is called a “stationary solution” or an
“equilibrium point”.

(3) For a Hamilton function of the type

H(g,p) =T+ U(q) = ﬁpz‘l'U(Q)

(with p* = ||p||* as usual) a (local) solution of the Hamilton equation with initial condition
q(to) = ¢° and p(to) = p° is constant if and only if the following holds:

(r° =0 and (VU)(¢°) =0) .

(Proof again as an exercise.)

Solution of the Hamilton equation: one degree of freedom.

Let us consider here only Hamiltonians of the type H = ﬁpz + U(q) with ¢,p in an open
set in R% (We denote here the dimension of the “configuration space”, i.e. “the space of

q’s”, as the number of “degrees of freedom” of a mechanical system; see below in Section

3.1.)
Case 1. Equilibrium points

From Remark (3) above we know that equilibrium points are caracterized by (p° = 0 and
(VU)(q°) = 0). Obviously the solutions are then given by ~(¢) = v(to) = (¢°, p°) for all ¢
in R.

Case 2. p* # 0

Since in this case T'(p°) > 0 we know by the conservation of energy that Eo — U(q(t)) > 0
for ¢ near g on a solution. (We denote H (¢, p°) by Fy here.)

It follows that p(t) = 4+/2m(Ey — U(q(t))) and for ¢ — ¢, small the sign is given by the
sign of p°.

Let us assume without loss of generality that p® > 0. The Hamilton equation implies now

m

2 - Ut
Since the right hand side is nonvanishing we can write
dq(t)
VA (B = Ulq(1)))

and we thus arrive, at least for {; — ¢y small, at the following equation:

o t _ i dq(t)
t — to /todt /to \/%(EO—U(q(t)))‘

8

dt =




For ¢ in [to, t1] the function ¢ — ¢(t) is invertible and hence

W 1 a(tr)
g —ty = dg = dg = F(q(t1)) — F(q(t)),
Jow \ o ) 0 [, e = Pt = Pt

where F' = f. This is equivalent to

F(q(t)) =t+ (F(q(to)) —to) for [t —1o| small.

Furthermore we observe that F'(¢°) = = # 0 and thus F is locally invertible near ¢(to) =

¢°, ie., 7! = @G. This allows the following formula, obtained only by “quadratures”
(i.e. integration of functions in one variable) and “algebraic operations” (i.e. the usual
operations on numbers and the calculation of inverses of functions in one variable):

g(t) = G(t + F(¢°) — to), p(t) = mq(t)
for t sufficiently close to tg.

Case 3. p* = 0 and %(qo) # 0

Since we are not allowed to divide by \/2/m(Ey — U(q)) as in the preceding case, we have
to use the condition %(qo) # 0 that implies that there exists a function @ = Q(u) locally

defined near u® = U(¢") such that Q o U(q) = q.
Using conservation of energy we have

p(t)?
2m

Ulq(t)) = Eo -

=: f1(p(t))
on solutions and thus we have (near p)

q(t) = (Q o f1)(p(1))

for solutions of the Hamilton equation.

This equation implies furthermore
p==g,= U@ =((=0)2Q0 fi)(p) = flp)

and fo(pY) = (=U')(¢°) # 0 and thus we have, for p close to p® that fa(p) # 0.

Using f(p) = m we rewrite this for p near p® as follows:

_dp(t)
dt = Ao fp(1))dp(t) .

We deduce for |t; — to] sufficiently small that

u—m:ﬂhﬁijwmmzézﬁ@@,
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since p(ty) = %(qo) # 0 implies that ¢ — p(t) is a variable transformation for ¢ close to

to. Thus, with F' a primitive of f, we have t; —tqg = F(p(t1)) — F(p(t1)) and therefore
F(p(t)) =t + F(p’) = to

for ¢ close to to. Since F'(p) = f(p) = m # 0 for p close to p® and thus — a fortiori — for

p(t) with ¢ close to tg, there exists a local inverse ¢ = F~* with G o F(p) = p for p close
to p°.

We arrive at the “explicit” solution formula

p(t) =Gt + F(p°) = to)

and with ¢ = £ we reach the following conclusion

ty t1 0y
q(l) = / }%ds +q¢° = / Cls+ Fp) to)ds +4°.
to t

m

0

Back to the example of the harmonic oscillator.

Since % = mw?q we find that

aa—(q]:() if and only if ¢g=0.
Case 1. Equilibrium points
The only equilibrium point is given by p® = 0,¢° = 0.
Case 2. p° # 0
Let us without loss of generality assume that p® > 0.

2Fq

mw?

The condition Fq — U(q) > 0 is equivalent to |¢q| < and for these ¢ we have

with a primitive given by

1 2
F(q) = " arcsin ( ?;0 . q) .

For |r| < 5= we have the following explicit inverse of I:

G(r) = 2Eo sin(wr) .

mow?
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Thus the local solution of the Hamilton equation is

E
02 sin(wt + wF(qO)) )

mw

q(t) = G(t + F(¢")) =

A direct calculation shows that

0

P
) =" t - t
alt) = ¢ cos(wt) + L sin(et)

for |q| < 1/35;%7 i.e. as long as p(t) > 0.

Observation. The above solution is a priori only locally defined, i.e. for ¢ close to ¢g. In
the case at hand we can immediately extend it to a solution for all real ¢.

Case 3. p* = 0 and %(qo) # 0
We leave the analysis of this case as an exercise.

Remark. The aim to find explicit formulas for the solutions of Hamiltonian systems led
to the discovery of many important special functions in the 19th century. Notably the
theory of analytic functions in one complex variable and of “Riemann surfaces” was highly
stimulated by this search.

Bibliographical remarks. Our - highly subjective - choice of physics texts on classical
mechanics include [Arl], [Gol] and [Sch]. For the mathematical approach to infinite di-
mensional Hamiltonian mechanics see, e.g., [AMR] and [CM]. A good german reference is
[Law] which we followed in Section 0.2.

1. Multilinear and symplectic algebra

In Chapter 1 all vector spaces will be finite dimensional over a field K which is R or C if
not explicitely stated otherwise.

1.1 Multilinear forms

Definition. A “bilinear form” on a K-vector space V is a map B : V x V — K such that
(1) Blv + v, w) = B(v,w) + B(v',w)

B(X-v,w)=X- B(v,w) and

(ii) B(v,w+ w') = B(v,w) + B(v,w’)

B(v,p-w) = p- B(v,w) for all v,v",w,w" in V and for all A, in K.

11



Remark. Using the canonical basis {ey,...,e,} of K" a bilinear form B on K" can be
represented in a unique way by a square matrix = Qg in Mat(n x n, K) as follows:

n

B(z,y) = B<ijej,2ykek> = w;Bleje)yr = Y Qunyr = "v- Qp - y.
k=1

7=1 7,k=1 7,k=1
Lemma. The map B(V):={B:V xV — K| B is bilinear} - Mat(n x n,K), B — @z
is a K-vector space isomorphism.
Proof. Exercise. O

Remark. Let T': U — V be a K-linear map and B a bilinear form on V', then we define
the “pullback of B unter 77 by

(T*B)(u1,uz) := B(T(u1), T(uz))

for all uy,uy in U. We observe that T*B is a bilinear form von U.

Special Case. Let U = V = K" and T = T4, the linear map x — A-x associated to a
(n x n)-matrix A. Then Qr+p ='A-Qp - A.

Proof. Exercise. O
Definition. (1) A bilinear form B on V is called “symmetric”if

B(v,v") = B(v',v) for all v,v"in V.
(2) A bilinear form B on V is called “skew—symmetric” (or “anti-symmetric” or “alternat-
ing”) if

B(v,v') = —=B(v',v) for all v,v"in V.
Remark. If B is skew—symmetric, then B(v,v) =0 for all v in V.

Lemma. (i) Fach bilinear form B on 'V is uniquely decomposed into the sum of a symmetric
and an alternating bilinear form.

(ii) If B is a bilinear form on K" and Qp the associated matriz, then one has

(B is symmetric if and only if (Qp) = Qp)

and
(B is skew-symmetric if and only if (Qp) = —Qp).

Proof. Exercise. O

Let us recall the “tensor algebra” language: we denote by ®k V* the set of multilinear
maps from V¥ =V x ... x V — K, and by T(V*) the “tensor algebra (over V*)":
e —

k times

k
@ ® V* = {(mg,my,...)|ms € @V and my = 0 for almost all k.

k>0
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If {€1,...,¢€,} is an ordered basis of V and {¢},..., ¢} the dual basis of V* then
{¢ 0. oqli,...,ixe{l,....n}}

is a basis of ®k V* and thus its dimension equals n*. The multiplication on T (V*) is
given as follows: let + € @*V*,s € @'V* and vy,...,ve4; € V. Then the element ¢ X) s of
®k+l V* is defined by

(t @ 8) (U1, .oy Uy Oty v e s Okpt) =101y« + oy UF)S(Vkgty + o vy Vkgl)-

Lemma. The K-vector space T (V™) together with the multiplication given by () is a non—
commutative, associative, unital K-algebra.

Proof. Exercise. O

The “symmetric group” Sy of all permutations of the set {1,... &k} acts on ®k V* as
follows:

o(t)(vi, ... k) == HVo(1)s -5 Vo(hy)  YU1,..., 05 € V.
Lemma. Let o and 7 be in Sy and 1 in ®k V*. Then
(coT)(t)=0o(7(1)).
Proof. Setting wy := v, ) we have

a(T(1) (v, vk) = T()(Vo(rys - - - Vo)) = T(E) (W, ..o wk) = Hwe(rys - -5 We())-

By definition we have v,((;) = w;(;) and thus

t(w7(1)7 . ,wT(k)) = t(UU(T(l)) . 7Ucr(7'(k))) = t(U(UOT)(1)7 . 7Ucro7'(k)) =(ocoT)(t)(vr,...,vk).

Lemma. Let y : S, — K\{0} be a homomorphism. Then either x(c) =1 for all o in Sy
or x(o) = sign(o), defined by (—1)" on a product o = oy 0---0 0, of transpositions o; for
g=1,....r.

Idea of the proof. The group Sj is generated by transpositions and K\{0} is abelian.O

Definition. (1) The space of “symmetric k—forms” is given by

SV ={tc@"V0|o(t)=t Vo< S}
(2) The space of “skew—symmetric (or alternating) k—forms” is given by
AV ={t € @"V*|o(t) =sign(o) -t Vo € Si}.
Remarks. (1) We have a natural “symmetrizer” map

1
Symm : @"V* — @FV*, Symm(t) = o Z o(t)
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such that Symm o Symm = Symm and the image of Symm is S¥V*. Obviously Symm
extends to a map 7 (V*) — T (V™) with analogous properties. Combining Symm with the
tensor product @ we obtain a multiplication on

SV = @Skv* : 1V s:=Symm(t ®s) fort,sin S(V").

k>0

It follows that S(V*) is a commutative, associative, unital K-algebra. Let us also remark

that the dimension of S*V* equals ( n+ Z —1

S(V*) is isomorphic to the space of polynomials on V as a K-algebra. (See [Gre] for proofs
of this and more details on symmetric tensors.)

if n is the dimension of V', and that

(2) Analogously, we have a natural “alternator” or “anti-symmetrizer” map
Alt : @FV* — ®kV*, Alt(¢ T Z sign (
CTESk

such that Alt o Alt = Alt and Alt(@kv*) = A*V*. Again Alt extends to a map

Al T(VF) = A(V*) = @ AV,

k>0

Definiton. Let a be in @*V* and 3 in @'V*, then the “wedge product of a with 37 is
defined as follows:
(k+1)!

alf:= 5H

Alt(a @ B).

Remark. The factor in the above definition of the wedge product is chosen such that it
relates in the easiest possible way to volumes: let {¢, €2} be a basis of a vector space V
and {€}, €5} the dual basis, then with the above definition

€1 N e5(er,€2) = 1.

Proposition. Let a be in @*V*, 8 in @'V* and v in @"V*. Then
(i) a NG =Altla) N3 =a N Al(B) = Alt(a) N AlL(3).
(ii) “N” is K-bilinear.
(i) a A B = (=13 A a.
(iv) a A(BAY)=(aAB)Ny.
Proof. Ad (i).
Alt(Alt(a) @ ) = Alt< 5> sign(@)o(a) @ 5)

CTESk

= g 2 sl X (o) 0 9)).

HESK 41 o€ESy,
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We define o’ in Siy; by setting o'(j) = o(y) for 7 = 1,...,k and o'(j) = j for j =
k+1,....k+1 It follows

Alt(Alt(a kﬂgj(k+l,§: (sign(1 0 0))(pr 0 0')( ®ﬂ0

TESK HESk41

- % D Alt(a @ 8) = Alt(a @ ).

: CTESk
Analogously one has Alt(a @ Alt(3)) = Alt(a @ ) and (i) follows easily.

Ad (ii). Since Alt is linear and “®” is bilinear, the second assertion follows directly from
the definition of “A”.

Ad (iii). Let vy, ..., v;4) be vectors in V.
Then
B (Vg UV, ey Olgk) = @@ BV« oy Vlgky U1y v oy )
- Oé@ﬁ( Oy n( 7vm,k(1+k))7

where the permutation gy in Siy is uniquely defined by the last equality sign and
sign(p ) = (—1)"*. Thus 3@ a = /,LLk(Oé @ [3) and one finds

Alt(B @ ) k+l' > sig @ a)

TESk+1

mgﬂ(mk)(kil), > sign(7) - sign(u) (@ © 8))

TESk+1

= sign(u) gy 3 (Senlr o ) o (o ©8) = (<1 Ala 6 5),

TESk+1
Thus BAa = (=1 aAB.
Ad (iv). Using (i) we have

AWAv%zaA(U; )AMﬂ®vD

() (kA L+ m))!
T k(I m)!
_ (kL4 m)l(k+ D)

m!k!!

- <(ka’[) Alt(a ®ﬁ)> Ay =(anB)AT. =

Corollary 1. If {c1,...,¢,} is a basis of V with dual basis {¢, ..., e} then

(I +m)!
[!m!

AN(B @)

Alt(a @ (8 @7))

Alt((a @ 3) @ 7) = (k];!r“l)! (@@ B) Ny

{e N heg 1< < <ip <n}

1
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is a basis of A*V™.
Proof. Exercise. O
Corollary 2. If k > n = dimgV then A*V* = {0}, and for 0 < k < n we have

dimy AFV* = ( Z ) For the whole “exterior algebra” we have

AV =P AV = éAkv*
k=0

k>0
and its dimension equals 2.
Proof. Obvious from Corollary 1. O

Let us make a slight digression with the following

Definition. A K-algebra A is called a “K-super algebra” or “Z,-graded K-algebra” if
A = Ag & A; as a K-vector space and the multiplication on A fulfils (o, 8 € {0,1} = Zy):

(o bg € Auss Vao € An, by € Ag

We call Ag resp. Aj the “even” respectively the “odd” part of A.

We call A “super—commutative” or “Zy—graded—commutative” if

Ao b = (=1)"Pbs -y Ya, € A,, Vg€ Ag, Va,3€{0,1} = Zy.

Lemma. Let A:= A(V*), Ay := P, A¥V* and A; 1= @AY TV Then A = Ay & Ay,

and (A, +,\) is a super—commutative, associative, unital super algebra over K.
Proof. Exercise. O

Definition. Let U and V be K-vector spaces and let T': U — V be a K-linear map. For
all k& € N we define the “pullback operator” T™ : ®k Vs — ®k U* by

(T m)(uy, ..., ug) = m(T(uy),...,T(ug)) Ym € @"V* VYuy,...,ux € U.
Lemma. Let U and V' be K-vector spaces, T : U — V K-linear and k in N. Then
(i) T~ : ®k V— ®k U~ is K-linear.
(i) T T(V*) = @kzo ®k V= TWU") = @kzo ®k U* is a K-algebra homomorphism.
(iii) T=(A*V=) C A*U~
(v) T*(a AN B) = (T"a) N(T*3) Y a,8 €AV
(v) Let W be a further K-vector space and S :V — W a K-linear map. Then we have

(SoT) =T"0S5™.
Proof. Exercise. O
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Bibliographical remarks. A standard reference for multilinear algebra is of course [Gre].
Good books on manifolds as [AMR] also give a thorough account of the material needed here.

1.2 Volume and orientation
Definition. Let V be a m-dimensional K-vector space and T : V — V a K-linear map.
The “determinant of the map 77 is the number det(7') in K defined by

T*Q = det(T) - Q ¥ Qe A"V,

Lemma. Let V' be a m—dimensional K—vector space and T',S K-linear endomorphisms of

V. Then

(i) det(T 0 S) = det(T) - det(S),

(ii) (T is invertible if and only if det(T') # 0),

(iii) if V=K" and T =Ty for A in Mat(m x m,K) then

det(T4) = det(A).

Remarks. We recall that 74(x) = A-x and that det(A) = ) sign(o)aisa) - - - Gmo(m)
TESm

for A in Mat(m x m, K).
Proof of the lemma. Exercise. O

Definition. Let V be a m-dimensional K-vector space. A non-zero element  in A™V*
is called a “volume form” or a “volume element (on V')”

If K =R then such a () is also called an “orientation form”.
Remark. If dimg V' = m, then dimg A™V* = 1. Thus two volume forms are proportional.

Definition. Let V be a m—dimensional R-vector space.
(1) Two orientation forms Q' and Q" on V are called “equivalent” if Q" = X - Q' for a A
in R>°% We write Q' ~ Q" or [(V] = [Q"].

(2) An equivalence class [Q] of orientation forms on V is called an “orientation (on V')

(3) If [Q] is an orientation on V/, then the pair (V,[Q]) is called an “oriented (R—)vector
space”.
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(4) An ordered basis {v1,...,v,,} of an oriented vector space (V,[€2]) is called “positively
(respectively negatively) oriented” if

Qvy,...,0,) >0 (respectively < 0).

Remark. The notions in (4) of the preceding definition are well-defined.

Lemma. Let V be a finite dimensional R—vector space. Then

(i) V has exactly two orientations and

(ii) the choice of an ordered basis of V uniquely determines an orientation on V.

Proof. Exercise. O

Definition. Let V and W be finite dimensional K-vector spaces with volume forms Qy
and Qu, and let T : V — W be a K-linear map.

(1) T is called “volume preserving” if T*(Qw) = Qy.

(2) If K= R and T is a vector space isomorphism we define the “pullback orientation” on
V by
T [Qw] = [T"Qw].

In this situation, the map T is called “orientation preserving” respectively “orientation
reversing” if

T [Qw] = [Qv] respectively T [Quw] = —[Qv].
Remark. The pullback orientation in (2) is well-defined.

Lemma. Let V and W be finite dimensional K—vector spaces with volumes forms Qy and
Qw, and let T : V. — W be K-linear. Then

(i) T is volume preserving implies that T is a K—vector space isomorphism,

(ii) f K =R, then a volume preserving map also preserves the induced orientations, i.e.,

=[Qw] =[],
(iil) fK=R and T*Qw = X-Qy with A\ € R\{0} then T' is a R—vector space isomorphism.
Proof. Ad(i). The equality T*(Qw) = Qv implies immediately that dimg W = dimg V' =:
m. Assuming that 7' is not an isomorphism we find a non—zero vector vy in the kernel of

T'. We thus find — by the theorem on the completion to a basis — vectors vy, ..., v, in V
such that {vy,va,...,v,} is an ordered basis of V. Thus we have

0# Quv(vy,...,om) = (T"Ow)(v1, ..., vm) = Qw(T(v1),...,T(vy)) = 0.

This contradicts our assumption and hence 7' is a K-vector space isomorphism.

Ad(ii). We have T*[Qw] = [T*Qw] by definition and thus T*[Qw] = [Qv] for a volume

preserving map T

Ad(iii). This assertion follows from the same arguments as the first assertion. O
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Exercise. Let V = R? with volume form = e} A e} and associated orientation [Q]. Find
(2 x 2)—matrices A, B such that

(a) the map T4 : V — Vix — A-x is orientation preserving, but not volume preserving,
and

(b) the map T is a vector space isomorphism, but not orientation preserving.

Digression on the elementary geometric volume

Let x = ( il ) and y = ( zl ) be two linearly independent vectors in R? and let
2 2
Plr,y)={ e +py e R* |0 <A\ < 1}

be the oriented parallelogram generated by x and y.
The volume Vol(P(x,y)) of P(x,y) is given by +(h - ||z||), where h is the length of the

projection of y orthogonal to = and the sign is determined by the elementary geometric
definition of orientation (see below).

Let J be the anti-clockwise rotation by 7 /2, then it follows that J ( o1 ) = ( G )

L2 L1
and
h—H r ||_<J$,y>Jx_|$1y2—$2y1|
= |IPTrz Yl = HJ:L'HQ - m 9
and thus

[Vol(P(z,y))| = h - ||| = |21ys — waun .

An ordered pair (z,y) of two linearly independant vectors x,y in R? is called “positively
oriented in the elementary geometric sense” if and only if the anti-clockwise oriented angle
from x to y is smaller than 7. This is equivalent to saying that the (unoriented!) angle

between Jx and y is at most /2, i.e., (cos 4(Jx,y)) = % > 0.

Thus, the “oriented elementary geometric volume” Vol(P(x,y)) of P(x,y) is given by
T1Y2 — L2Y1.

Exercise. Show that
Vol(P(,)) = ¢} A e5(, ).

Z1 Y1 21
Let nowz = | 22 |,y=1| v2 |,2= 1 22 | be three linearly independent vectors in
3 Y3 Z3

R?and P(x,y, z) the parallelotope generated by them. The unoriented volume of P(z,y, )
is given by the following formula:

|[Vol(P(x,y,z))| = h-a,

where a = [Vol(z,y)| and h = ||pr,,,(2)| is the height, i.e. the length of the projection of
z perpendicular to the plane generated by x and y.
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The signs of the “cross—product” = x y as well as of the oriented volume of P(z,y,z) are

fixed by the “the right hand rule” and we find
VO1(P($7 Y, Z)) = 21(51?2y3 - 51?3y2) + 22(51?3y1 - 51?1y3) + 23(51?1y2 - $2y1)-

Exercise. Show that

Vol(P(x,y,z)) = €] N ey A es(x,y, z).

Exercise. Let A be in Mat(3 x 3,R), T' = T4 the associated endomorphism of R?, and
x,y, 2 three linearly independent vectors in R?. Show that
Vol(T(P
) = VoI (Pl 2))
Vol(P(z,y, )

Bibliographical remarks. See the remarks at the end of the preceding section.

1.3 Symplectic vector spaces

Definition (1) A symmetric or anti-symmetric bilinear form B on a vector space V is
called “degenerate” if there exists a v in V\{0} such that B(v,v’) = 0 for all " in V.
Otherwise B is called “non—degenerate”.

(2) A non—degenerate anti-symmetric bilinear form on a vector space V' is called a “sym-
plectic form (on V).

(3) A pair (V,w) consisting of a vector space V' and a symplectic form w on V is called a
“symplectic vector space”.

Examples.

(1) Let W be a finite dimensional vector space and V = W* ¢ W. Then the two—form w
defined by

/

w(v,v) = w((p,w), (¢, w') = p(w') =" (w) Vv=(pw)v = w)eV
is symplectic.

(2) Let V = K** with canonical basis {ey,...,€2,} and v,v’ in V be described by v =

n

Zl(l'jej + yient;),v" = D (2e; + yieny;). Then
]:

J=1

n

w(v, ') = (Y} — y;a))

J=1
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defines a symplectic form on V.

Denoting the identity matrix in Mat(n x n,K) by E, and the matrix ( —?E [E(:)n ) in

(l

Mat(2n x 2n,K) by J,, we can rewrite the above form as follows:
wlv, oy ="v-J, v

Yet another description is given by

n

_ * *
w= g e; Neyi

J=1

(3) An infinite dimensional example
Let V =8(R) and
dg(t
st = [ 108 a v igey
R
It is easy to check that w is an anti-symmetric bilinear form on V' that is non—degenerate
in the above defined sense.

Lemma. Letw be an antisymmetric bilinear form on a finite dimenstonal vector space V.
Then the following are equivalent:

(i) w is symplectic, i.e. w is non—degenerate, and
(ii) the map " : V — V= &’ (0)(v') := w(v,v') is a vector space isomorphism.

Remark. If V is infinite dimensional, w should be continuous in an appropriate sense.
Furthermore the above lemma is wrong in infinite dimensions, and fulfilling the assertion
(i) respectively (ii) is referred to as “weak” respectively “strong” non—degeneracy of a
(continuous) anti—-symmetric bilinear form.

Proof of the lemma. Let us first observe that " is a linear map for any bilinear form
w.

If w” is an isomorphism then
{0} =kerw’ := {v € Vlw(v,0) =0 Yo' €V}

and w is non—degenerate. Thus (ii) implies (i).

On the other hand (i) implies that &’ is injective and in finite dimensions this assures us
that w’ : V — V* is an isomorphism. O

Definition. Let w be an anti-symmetric bilinear form on a vector space V and M C V
a subset. Then the “w-annihilator of M” is defined as follows

M ={veV|wuv)=0 Yuec M}

Notably in the case that M = U is a linear subspace of V', we call U the “skew—complement
of U(in V)" or the “w—complement of U(in V)”.
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Lemma. Letw be an anti—symmetric bilinear form on a K—vector space V., and let M and

M’ be subsets of V.. Then

(i) M C M’ implies (M")* C M*,

(i1) M* is a linear subspace of V,

fii) M = (M)},

(iv) M4“ = ((M))g if w is symplectic,

(o) (MU MY = M2 0 (M),

(vi) (M N M4 = M+ (M")~*.

(vii) Let now M = U be a linear subspace of V, then UN U4 = {u € Ulw(u,u’) = 0
Vu' € U} and on U/(U N U#) one has the following canonical symplectic form

wred([ul], [ug]) = w(ug,uz) forall wy,uy € U.

(viii) Let V' be of finite dimension, w be non—degenerate and U a linear subspace of V', then
dimg U + dimg U = dimg V

and (U‘)é =U.

Remarks. (1) For a subset M in a vector space V the expression ((M))x denotes the
linear subspace generated by M.

(2) For two linear subspaces U; and U, of V' the sum Uy + U, denotes the linear subspace
generated by Uy U Us.

(3) The symplectic vector space (U/(U N U%),wyeq) is called the “symplectic reduction
of U”. In the case that U/ = V one has V N V4 = V4 and this space is also called the
“degeneration space of w”, kerw.

Proof of the lemma.
Ad(i) — (vi). Exercise.

Ad(vii). Since w|yxr vanishes if one of the arguments is in U/ N U# the function Wped 18
well-defined on U/« X U/ynu<. A direct verification shows that w4 inherits bilinearity
and anti-symmetry from w.

Let [u] be in Ker w4, then w(u,u’) = 0 for all ' in U, i.e. v is in U N U4 and therefore
[u] = 0. Thus w,, is non—degenerate on U/(U N U*).

Ad (vi). The equality U4 = ﬂU w’(u) shows that the codimension of U4 in V equals the
ue

dimension of the subspace &' (U) of V*. Since w’

is injective we find
dimV — dimU* = dim U.

Obviously we have U C (U4)“ and since dim U = dim(U4)4 we have equality. O
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Lemma. Let w be an anti-symmetric bilinear form on a finite dimensional vector space
V and V a vector space complement of V< =kerw in'V (i.e. VE@V = V). Then wly, ¢
is non—degenerate.

Proof. Let © be in V such that w(v,w) = 0 for ELHNIT) in V. Since V = V< @ V it follows
that o is skew-orthogonal to V and thus © € V4 NV = {0}, showing the assertion. O

Definition. Let w be an anti-symmetric bilinear form on V and U a subspace of V.
Then U is called a “symplectic subspace of V' (or of (V,w))” if and only if w|;,,,, is non-
degenerate.

Remark. The preceding lemma can now be restated as follows: any vector space comple-
ment of the degeneracy space V4 = kerw is a symplectic subspace of V.

Lemma. Let (V,w) be a finite dimensional symplectic vector space and U C 'V a subspace.
Then the following are equivalent:

(i) U is a symplectic subspace of (V,w)

(is) UNU4 = {0}

(i) V=U@aU*

(iv) U4 is a symplectic subspace of (V,w).

Proof. Exercise. O

Remark. Let us observe that if U is symplectic in (V,w) then the direct sum decompo-

sition V = U @ U4 is a “symplectic direct sum”, i.e. / and U4 are symplectic subspaces
and w(u,v) =0 for win U and v in U*.

Theorem (“Normal form of linear symplectic forms”).

Let (V,w) be a symplectic K—vector space of finite dimension. Then there exists an ordered

basis {e1,...,€2,} of V such that

n

_ * *
W = g ej/\en_l_j.

J=1
Proof. The dimension m of V is bigger then 0 since a zero—dimensional space does not
carry a non-null two form.

Let e; be in V\{0}, then there is a vector f] such that 0 # A\ = w(ey, f). Setting
f1 = (1/A1) f] we have w(ey, f1) = 1.

We set Vi = (((e1, fl))K)é and observe that V; is a symplectic w-orthogonal complement
to ((er, f1))x in V.

[teration of the above process yields a linear independant family B = {e1, f1...,¢e,, fu}
such that

w(ejvfk) = 04,k and w(ejvek) =0= w(fjvfk) for all .]7k = 17 <o N

and V,4; = B“ is zero or one-dimensional. Since V,,; is the w-complement of the
symplectic subspace generated by B it is a symplectic subspace of V. Thus V,,4; = {0} and
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B is a basis of V. Obviously we have w = ) ef A f7 and renaming f; as e, ; the assertion
=1
of the theorem follows. O

Corollary 1. A finite dimensional symplectic vector space is of even dimension.
Proof. Obvious from the above theorem. O
Definition. An ordered basis {e1,...,es,} of a symplectic vector space (V,w) such that

w= Y ¢ ANey, . is called a “symplectic basis of (V,w)”.
=1

Remark. The word “symplectic basis” is also used for a basis {e1,...,¢e,, f1,..., fu} as
in the proof of the last theorem.

Corollary 2. Let (V,w) and (V' ,0") be two symplectic vector spaces having the same finite
dimension. Then there exists a vector space isomorphismT : V. — V' such that T*(w') = w.

Proof. Let 2n = dimg V' = dimg V' and {ey,..., e, } respectively {e],... €}, } be sym-
plectic basis of V respectively of V. Defining

2n 2n

T:V =V, T<Z:1;jej> = ije;

i=1 i=1

we find T*(w') = w. O

Remark. Corollary 2 shows that all finite dimensional symplectic vector spaces “look
like” the Example (2) given at the beginning of the section.

Corallary 3. Let V' be a finite dimensional vector space and w an anti—symmetric bilinear

*

P
form on V. Then there exists a basis {e1, ..., €z, €apt1,-- ., €n} such thatw = Y e Ne, ..

=1
Proof. Exercise. O

Lemma. Let V be a K-vector space having finite dimension m and w in A*V*. Then w is
%

symplectic if an only sz[ I'is a volume form on V.

m

2] =n. Using a

Proof. Assuming that w is symplectic we know that m = 2n and thus [

symplectic basis we have w = Zn: er A ey, ; and thus
j=1
W'=wA L ANw=Ch- (T e Ao Ne, Neyy)
n factors
with C,, = (n!). Thus w™ # 0.
Assuming now that w is not symplectic there exists v; # 0 in V4 = kerw.
By induction we find that w*(vy,v},...,v},) =0 for all £ > 1 and for all v},... v}, in V.

Taking vy, ... ) Ug[m] such that {vy,..., Uz[ﬂ]} is a linearly independent family it follows

m m
2 2

that wl ](vl, cees Uz[ﬂ]) — 0 and thus wl3] can not be a volume form on V. O
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Corollary. Let (V,w) be a symplectic vector space of finite dimension 2n and let

(n=1)n
0= (L—>
n!

Then for all symplectic basis {e1,..., e} of V we have Q =ef Nes AN...Nes,_| Neb,.
Proof. Exercise. O

Remark. The above defined €2 is called the “canonical volume form on (V,w)” and [(]
the “canonical orientation on (V,w)”.

Bibliographical remarks. Any of our preferred standard references on symplectic geom-
etry as [Arl], [Bry] and [GS] does some linear symplectic geometry.

1.4 Linear symplectic geometry

Definition. Let (V,w) be a symplectic vector space of finite dimension and W a linear

subspace of V. We call W

(1) “symplectic” if w|w is symplectic.

(2) “isotropic” if w|w is zero.

(3) “coisotropic” if W4 is isotropic.

(4) “Lagrangian” (or a “Lagrange subspace”) if W is isotropic and coisotropic.

Lemma. For a linear subspace W in a finite dimensional symplectic vector space one has:
(i) W is symplectic if and only if W4 N W = {0}.

(i1) W is isotropic if and only if W C W4,

(i) W is coisotropic if and only if W C W.

(iv) W is Lagrangian if and only if W4 = W.

Proof. Exercise. O
Theorem (“Normal form of subspaces of symplectic vector spaces”).

Let W be a linear subspace of a symplectic vector space (V,w) of dimension 2n.
Let d = dW) = dimgW and v = v(W) = dimgW N W% and 20’ = d —
v. Then there exists a symplectic basis {e1,...,en, f1,.... fu} of (V,w) such that
{1, eveny gty oy f1y- oy fur} s a basis of W.

Proof. Step 1: isotropic case.

We first show the assertion by induction over v in this case:
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if v = 0 the result is trivial and for v = 1 the result easily follows from the existence of a
vector f such that w’(f)|w # 0 and the fact that thus W & ((f))x is a symplectic subspace
of V.

Assuming now that the assertion is true for a v > 1 we consider an isotropic subspace W
of dimension v + 1. Let ¢ be a non—zero element of W and f’ a vector in V' such that
w(e', f1) = 1. The space W' = ker(W'(f")|w) C W is an isotropic subspace of (V,w) of
dimension v and is contained in the symplectic vector space V' = (((¢’, f’))K)é. Applying
the induction hypothesis to W’ in V’ and setting e,41 = ¢’ yields the assertion.

Step 2: general case.

Given any linear subspace W in (V,w) there is a symplectic subspace W of V such that
W =Wea (W 0 W#4). Since W is symplectic, V. = W & (W)é is a symplectic direct
sum (i.e. W and (W)é are symplectic and they are w—perpendicular) and by construction
Wnwec (W)é Applying the result of the theorem on the normal form of a symplectic
form to W and the result of Step 1 to W N W< C (W)é and numbering the union of the
two basis appropriately we get the result. a

Corollary. Let (V,w) be a finite dimensional symplectic vector space. Then
(i) each isotropic subspace of V is contained in a Lagrangian subspace of V.
(ii) each coisotropic subspace of V' contains a Lagrangian subspace.

(iii) for each Lagrangian subspace L there is vector space isomorphism Ay -V — L & L*
such that Ap|, = Idr, and (Ap)*wrer = w,

where wrgrx s the canonical symplectic form defined in Fxample (1) in the beginning of
Section 1.3.

Proof. Exercise. O
Definition. Let (Vi,w;) and (V2,ws) be symplectic vector spaces. The “symplectic sum

of (Vi,wy) and (V2,ws)” is the vector space Vi @& V;, together with the following 2-tensor

(wl @(‘U?)((Uhq)?)v (Uivvé)) = wl(vlvvi) —I_CUQ(UQ?U;) v Ulvvi S% VU27U; € V.

Remark. It is easily checked that w; & ws is anti-symmetric and non—degenerate, i.e.
symplectic.

Definition. Let (Vi,w;) and (V2,ws2) be symplectic K—vector spaces and T : V; — V4
K-linear. We call T' “symplectic” if T*wy = wy.

Remarks. (1) A symplectic linear map is always injective.

(2) f Vi =V =V and wy = wy = w then the canonical volume ) is preserved by all
symplectic maps.

If furthermore K = R then the induced orientation [€2] is preserved as well.

Lemma. An endomorphism T of a finite dimensional symplectic vector space (V,w) is
symplectic if and only if I'r, the graph of the map T, is Lagrangian in (V & V,w & (—w)).

Proof. Exercise. O
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Definitions. (1) Let (V,w) be a finite dimensional symplectic K-vector space. Then the
“symplectic group of (V,w)” is defined as follows:

Sp(Viw) ={T € GL(V) | T"w = w}.

(2) If V =K and wo := ) €} A€, then we set Sp(n,K) := Sp(K*", wo).
7=1

Remarks. (1) Obviously we have Sp(V,w) C SL(V) := {T' € GL(V)|detT = 1} and

thus Sp(n,K) C SL(2n,K) := SL(K*").

(2) We have the identity Sp(1,K) = SL(2,K).
Proposition. Let W and W’ be linear subspaces of a finite dimensional symplectic vector

space (V,w). Then there exists an element T of Sp(V,w) such that T(W) = W' if and only
if (dimg W = dimg W’ and dimg W N W4 = dimg W 0 (W)4).
Proof. We leave it as an exercise that T(W) = W’ for a T in Sp(V,w) implies that the

“numerical invariants” d and v (defined in the above theorem) are the same.

Let now W and W’ be subspaces of (V,w) and let {eq,..., f,} and {e],..., f/} be symplec-
tic basis of (V,w) as given by the theorem on the normal form of subspaces of a symplectic
vector space.

If d(W) = dimg W = dimg W’ = d(W’) and v(W) = dimg W N W4 = dimg W' N (W')4
v(W') then the symplectic map T' defined by T'(e;) = ¢, T(f;) = fi (for j = 1,...,n
fulfills T(W) = W’ (and is of course in Sp(V,w)).

~—

O

Bibliographical remarks. See the remarks at the end of Section 1.3.

1.5 Complex structures on real symplectic vector spaces
Definition Let V be a real vector space and g a symmetric bilinear form on V.

(1) We call g “non—degenerate” or a “pseudo—Riemannian metric (on V) if for all v # 0
in V there is a w in V such that g(v,w) # 0.

(2) We call g “positive definite” or a “Riemannian metric (on V)" if g(v,v) > 0 for all
v#0in V.

(3) A pair (V,g) of a real vector space V and a pseudo—Riemannian respectively a Rie-
mannian metric g on V' is called a “pseudo—Riemannian” respectively “Riemannian vector
space”.

Examples. (1) Let V = R™ and g(z,y) = *z-y. This is called the “standard Riemannian
metric on R™”.
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d—1
(2) Let V = R? = RERY ! and an element of V' be described as follows: © = x¢eq+ > Tje;.
7=1
Then the “standard Lorentz metric on R?" is the following pseudo-Riemannian metric:
gr(z,y) = xo-yo — (') - (v'), where ' = “(21,...,24-1), ¥ = (Y1, -+, Ya-1)-

3) Let e the space of real (m X n)-matrices (m,n > 1) an e defined as follows:
()L V be the sp i 1( ) i ( , ) d ¢ be defined as foll
g(A, B) = trace ("A-B) VA, BeV = Mat (m xn,R).

The bilinear form ¢ is symmetric and positive definite.

Definitions. (1) Let (V, g) be a pseudo—Riemannian vector space and U a linear subspace.
The “orthocomplement of U (in (V,g))” is the subspace

Ut={veV]|glu,v)=0 YuecU}.

(2) For a pseudo—Riemannian vector space (V, g) weset O(V,g) ={T € GL(V) | T*g = g},
the “orthogonal group of (V,¢)” and SO(V,g) = O(V,¢g)NSL(V), the “special orthogonal
group of (V,g)”.

Remark. If (V,g) is a Riemannian vector space and U a linear subspace of V, then
V = U @ U*t. This does not necessarily hold true for pseudo-Riemannian vector spaces.

Definition. Let V be a real vector space and J a real endomorphism of V. Then J is
called a “complex structure (on the real vector space V)" if J* = —Idy.

Remarks. (1) Let W be a complex vector space and Wg the “underlying real vector space”
obtained by restriction to the real scalars (R C C). The multiplication by 7 = v/—1 on the
set Wg is a real linear endomorphism. Denoting it by .J we obviously have J? = —Idyz, so
that J is a complex structure on Wg.

(2) If J is a complex structure on a real vector space V' then the following map defines a
multiplication of elements of V' with complex scalars:

CxV =V, (a+ibv)—av+bJv for a,beR and veV.

(3) If a real finite dimensional vector space V' carries a complex structure then its dimension
is even.

(4) If J is a complex structure on V then —.J is a complex structure as well.

0 -E,
E, 0

Then +J, are complex structures on V.
(6) If J is a complex structure on V we set GL(V,J) ={T € GLg(V) | T oJ =JoT}.
Exercise. Let W = C" and ¥ : W — R* be defined by W('(z1,...,2,)) =

"(Re(z1)y ..., Re(zn), Im(z1),...,Im(2,)). Then W is a linear isomorphism (over the reals!)
between Wy and R?”. Furthermore the complex structure J on Wg induced by multipli-
cation by ¢ on W fulfills: W o J =J, o ¥ (compare Remark (5) above for the definition of

Jn).

(5) Let V=R*"and J, = ( ) (where E,, is the identity matrix of size (n x n)).
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Finally we have ¥ o C = Cg o ¥, where for C = M +¢B in Mat (n x n,C) and A, B in
g _AB in Mat (2n x 2n,R). Thus C' — Cg
defines a group isomorphism G'L(n,C) = GLc(W) — GL(R*,J,,).

Mat (n x n,R) the matrix Cg is given by

Definitions. Let J be a complex structure on a real vector space V and W a linear

subspace of V. Then W is called

(1) “complex” if J(W) =W, and

(2) “totally real” if J(W)N W = {0}.

Definitions. (1) Let (V,J) be a real vector space with a complex structure J. A

“(pseudo—)Hermitian metric (on (V,J))” is a (pseudo—)Riemannian metric g on V' such

that g(J(v), J(w)) = g(v,w) for all v,w in V.

(2) A “(pseudo—)Hermitian vector space” is a triple (V,.J,g) consisting of a real vector
space V| a complex structure J on V and a (pseudo—)Hermitian metric g on (V,.J).

(3) The “unitary group” of a pseudo—Hermitian vector space (V,.J,g) is given by
UV, J,g) ={T € GL(V,J) | T"g = g} = GL(V,J) N O(V, g).

Proposition. Let (V,.J, g) be a pseudo—Hermitian vector space and let
wv,w) :=g(J(v),w) Yv,weV.

Then w is a symplectic form on V. fulfilling w(J(v), J(w)) = w(v,w) for all v and w in V.

Proof. Since ¢ is bilinear and J is linear w is a bilinear form on V. Since ¢ is pseudo—
Hermitian w is anti-symmetric and w(J(v), J(w)) = w(v,w) ¥ v,w € V.

Given v # 0 there is a w in V such that g(v,u) # 0 since g is nondegenerate. Setting
w = J(u) we have w(v,w) # 0 and thus w is nondegenerate. 0

Remarks. (1) The symplectic structure w associated by the above proposition to a

”

(pseudo—)Hermitian vector space is called the “(pseudo—)Kahler form on (V,.J, g)

(2) For V. =R*", J = J, and g the standard Riemannian structure on V', we observe that
¢ is Hermitian on (V,.J) and that the associated Kahler form is the standard symplectic
form on R*".

Lemma. Let (V,J,g) be a pseudo—Hermitian vector space with associated pseudo—Kdhler
form w. Then

(i) U4 = J(U*) for all linear subspaces U of V.

If g ts Riemannian, i.e. positive definit, we have furthermore
(ii) all complex subspaces of V' are symplectic, and

(ti1) all isotropic subspaces of V' are totally real.

Proof. Exercise. O
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Remark. The last two assertions of the preceding lemma do not hold true if ¢g is only
non—degenerate.

Reversing the order of the data we have
Definitions. Let (V,w) be a symplectic real vector space.

(1) A complex structure J on V is called “compatible with w” if
gs(v,w) =w(v, J(w)) Yo,w inV

defines a Hermitian metric on (V,.J).

(2) The set of all complex structures on V that are compatible with w will be denoted by
J.(V).

Remarks. If a complex structure J on a symplectic vector space (V,w) preserves w then
gs, defined as above in (1), is pseudo—Hermitian, but not necessarily positive definite.

In this situation the pseudo—Ka&hler form of (V,.J; gs) is of course the original w.
Denoting the set of Riemannian metrics on a vector space V' by R(V') we have

Theorem. Let (V,w) be a real finite dimensional symplectic vector space. Then there is
a real-analytic map

ROV)-Tu(V), g J(g)

such that for each J in J, (V) we have U(gy) = J, where gy is defined in (1) of the last
definition.

Corollary 1. The set J,(V) is not empty for a finite dimensional real symplectic vector
space (V,w).

Corollary 2. The topological space J,(V) C Endg(V') is smoothly contractible to a point,
i.e. given a Jy in J,(V) there is a smooth map H : [0,1] x T,(V) = T,(V) such that Hy =
Id, Hi(J) = Jy for all J in J,(V), and Hi(J1) = Jy for all t in [0,1] (H(J):= H(t,J)).

Proof of the theorem. Given a non—degenerate symmetric bilinear form ¢g on V' one
has an isomorphism ¢’ : V — V*, ¢°(v)(w) := g(v,w). Thus for each g in R(V) we have an
isomorphism A = A(g) = (¢°)~"' 0w’ such that

w(v,w) = g(A(v),w) Yv,weV.

Since R(V') is open in the finite dimensional vector space S*(V*) it follows by the von
Neumann series that A depends real-analytically on g.

Furthermore, it is easy to see that g(v, A(w)) = —g(A(v),w), i.e. A is anti-selfadjoint with
respect to g (A* = —A). Thus B = B(g) = A" o A = —A? is self-adjoint and positive
with respect to ¢ (i.e. g(B(v),v) > 0 for v # 0).

It follows that B has a “square root” v/B : a selfadjoint and positive operator such that

(\/E) o (\/E) = B. Since the square root is given by the series of the square root func-
tion on RT applied to a positive endomorphism we conclude that B — /B is a real—

analytic map. We define J = J(g) = ¥(g) by \/jl—A2 = Ao (\/—A?)_1 = (\/—A?)_1 oA
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(A commutes with /—A?). It follows that J* = —Idy, Jo A = Ao J, J* = —J and
w(J(v), J(w)) = wv,w) Vov,w e V. A direct calculation then shows that the pseudo—
Hermitian metric gy (v,w) = w(v, J(w)) is positive definite, i.e. J = ¥(g) is in T, (V). If
now g = gy for a J in J,(V) then g;(A(v),w) = w(v,w) = ¢g;(J(v),w) and thus A = J. It
obviously follows that \/% = .J and thus ¥(gy) = J for all J in J,(V). O

Proof of the corollaries. Since R(V) is open and non-empty in S*(V*), the first
corollary is obviously true.

Let now ¢g; be an arbitrary element of R(V') then the map
K:[0,1]xR(V)—=R(V),K(t,g)=(1—=t)g+tn

is smooth if we give S*(V*) C @*V* any vector space topology, for example by identify-
ing S*(V*) with symmetric matrices of the appropriate size. Furthermore, with K;(g) :=
K(t,g) we have

Ko(g9)=¢g and Ki(9)=g1 YgeR(V), and Kig1)=¢ Vtel0,1].

Thus K is a “smooth retraction from R(V') to ¢; in R(V)”.

Using the map ¥ : R(V) — J,(V) fulfilling ¥(gy) = J for all J in J,(V) we construct
a retraction of J,(V) as follows: Let J; be in J,(V) and g1 = gy, and K the above re-
traction from R(V') to ¢g1. We set H(t,J) = V(K (t,9s)), then H : [0,1] x T, (V) = J.(V)
is smooth and fulfills the assertion of Corollary 2. O

Exercises. (1) Fill in the details concerning the real-analytic dependence of J(g) in the
variable g.

(2) Show that W is not injective.
Bibliographical remarks. Compare, e.g., [Bry], [McDS] and [Wei2] for complex struc-

tures on real symplectic vector spaces.

2. Elementary differential topology

The notion of differentiable manifolds and bundles over them allows to give a rigorous and
useful framework for e.g. the following questions in mathematical physics:

* what is a force field on a set given by constraints in a configuration space?

* what does the reduction of the number of degrees of freedom mean and how can one use
it to solve Hamilton’s equation?

* what is curved space-time and what is a tensor on it?
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* what is a Lie group and how does the representation theory of Lie groups relate to the
representation theory of Lie algebras?

Of course, we can not go into all these subjects, but we need the basics of the calculus on
manifolds in order to define and study “symplectic manifolds”.

2.1 Differentiable manifolds

Definition. Let (M, 7)) be a topological space and m in Nyg. We call (M, 7T) a “topological
manifold of dimension m” if for each p in M there is an open set U containing p, an open
set V in R™ and a homeomorphism ¢ : U — V. An open covering U = {U,|a € A}
of M (A an index set) together with homeomorphisms ¢, : U, — @o(U,) = V,, with
V. open in R™ is called an “atlas of the topological manifold M” and is often denoted
by A = {(Us,pa)|la € A}. Each U, is called a “chart domain” and ¢, : U, — V, a

O

“coordinate chart on M”. Furthermore we call the m-tuple of functions *(z¢,...,z%)

defined by x% = prjop, : Uy, — R a “local coordinate system on M” (pr; is the projection
on the j—th coordinate from R™ to R).

Remark. If U,3 = U, N Up is not empty the map

Psa = (ppo ") D 9a(Uss) = ¢5(Uap)
@a(Ua,B)

is a homeomorphism and is called a “change of coordinates (map)”.

Examples. (1) Let U be an open, non-empty subset of R”, Uy = U, Vo = U and ¢ = Id :
Uo — ‘/0

Then 2A = {(Uy, ¢0)} is an atlas of the m—dimensional topological manifold U.
(2) Let S™ = {y € R™™ |||y|| = 1} € R™ (||y]|* = T%l ly;|* here ) with the subspace
topology induced from the metric topology on the norr;:eld vector space (R™*1 || ||). We
set UF ={y € 5™ +y; >0} and

e UF = R™ 05 (y) =" (Y15 Yjm1s Yitts - - Y1) -

Then c,ojc is a homeomorphism onto its image Vji ={x € R”| ||z|| < 1} and its inverse is
given as follows

(S‘Q;t)_l : ‘/j:t — U];twf = t(xlv' . '7xj—17:i: 1 - Htzvxjv' . '7$m) :

The set {(Uji, 99;&)|] =1,...,m+1} is a topological atlas and S™ is a topological manifold

of dimension m.

Definition. A “topological manifold of finite dimension” is a disjoint union of topological
manifolds M; of dimension m; such that the set of the m; is bounded. A topological
manifold of dimension m is also called a “ pure-dimensional topological manifold”.
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Example. The set {z € R?|||z]|* € Z} is a topological manifold of finite dimension, that
is not pure dimensional.

Lemma. Let (M, T) be a topological manifold of finite dimension and A = {(U,, pa)|a €
A} a topological atlas on M. Then a subset U of M is open if and only if (U NU,) is
open in V, = ¢, (U,) C R™) for all o in A. (Here o, : U, — R™@) yor a m(a) in Ny.)

Proof. If U is open, so are UNU,, and ¢, (UNU,), since ¢, : U, — V, is a homeomorphism.

If o (UNU,) is open in V, then U NU, is open in U, and therefore in M. It follows that
U=U,es(UNU,) is open in M. 0

Corollary. Let M be a set, {U,|a € A} a covering of M, ¢, : U, — V, bijective with
V., open in R™®) for all o in A (with m(a) in Ny and {m(a)|a € A} bounded). Assume
Jurthermore that ¢,(U.g) is open in V., and vgo = w50 @5+ 0a(Usg) — ©5(Usg) is a
homeomorphism for all o and 3 in A. Then T ={U C M| (UNU,) is open ¥ oo € A}
is a topology on M, A = {(Us,¢.)|a € A} a topological atlas on (M,T) and M a finite
dimensional topological manifold.

Proof. A direct inspection shows that 7 is a topology. Since . (U,g) is open for all o
and 3, U, is open in (M,T) and it follows easily that 2 is a topological atlas. Therefore
(M,T) is a topological manifold of finite dimension. a

Definition. A topological atlas 2 = {(U,, ¢, )|e € A} on a finite dimensional topological
manifold (M,7T) is called a “smooth atlas” or a “C*—atlas” if g, is a smooth map
whenever U,z is not empty.

Remarks.

1) Similarly one defines a “C*-atlas” (for k € N2!) and a “real-analytic atlas” (or “C“—
Yy Yy
atlas”). We will not need these notions in this text.

(2) If the charts take value in C*®) = R*™) and the coordinate changes g, are holomor-
phic maps, the atlas is called “holomorphic” or “complex—analytic”. Such an atlas always
has an “underlying smooth atlas” defined by identifying C* with R*" and considering the
©ga as smooth(!) real mappings.

(3) Replacing the “local model” R™ by an infinite dimensional vector space with an appro-
priate topology and notion of differentiability we would arrive at the notion of an “infinite
dimensional manifold”.

(4) If we require the @z, to be smooth in the last corollary the conclusion is that the atlas
20 is smooth.

Definitions. (1) Two smooth atlases on a topological space (M, T) are called “equivalent”
if their union is again a smooth atlas.

(2) A “differentiable or smooth structure” on a topological space (M, T ) is an equivalence
class of smooth atlases.

(3) The union of all atlases in a differentiable structure is called the “maximal atlas of the
differentiable structure”.
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(4) A “differentiable or smooth manifold (of finite dimension)” is a pair consisting of a
topological space (M, 7 ) and a differentiable structure on it.

(5) A coordinate chart in the maximal atlas of the differentiable structure of a differentiable
manifold is called an “admissible (coordinate) chart (on the differentiable manifold)”.

Remark. Practically one usually constructs a smooth atlas with as few as possible charts
and considers the differentiable structure and maximal atlas defined by it.

Examples.

(1) Open sets U C R™ with the atlas given in the preceding example (1) are smooth
manifolds.

(2) The spheres S™ with the atlas given in the preceding example (2) are smooth manifolds.

(3) Let (M, T) be a differentiable manifold with an atlas {(U,, ¢a)|a € A}, and let Q be
an open subset of M. Then {(U, N Q, .|y ~o)le € A and U, NQ # 0} is a smooth atlas
on ) with the subspace topology.

(4) Let M and N be smooth manifolds. Then the cartesian product M x N carries a
natural topology, the “product topology”, and a natural differentiable structure.

(5) Let M and N be smooth manifolds. Then the disjoint union MUN carries a natural
topology and a natural differentiable structure.

(6) Let K=R or C and P, (K) = IP(K™*!) the “projective m-space over K”, i.e. the set
of 1-dimensional linear subspaces of K”*!. Then there is a natural projection

7 KPP0} = P (K), 7( (205 215 - -, 2m)) = [205 215+« Zm] = (20, 215+ + > ) ) ) e

(We will write elements of K”*! here in this example as line-vectors.) In words 7(z) is the

line through z. We set U; = {z; # 0} C IP,,(K) and

w; U = Vi=K", [z0...,2;m] — <@,...,Zj—_1,zj—+1,...,z—m>
25 25 25 25
for j = 0,1,...,m. (Observe that U; and ¢; are well-defined, since [z] = [Z/] if
and only if 2/ = Az for a A in K\{0}.) The inverse is given by c,oj_l(wl,...,wm) =
[Wi, ... ws, 1w, ..oy Wy, the intersection Ujp = {z; # 0 and z; # 0} and the change of

coordinates on @;(Ujr) = {w € K" |wy # 0} as follows (here for j < k):

pro@; ! pi(Upk) = ex(Usk) C K™,

(B, 2 L Wi W1 Wi iy
o e o w o we )
It follows that the atlas {(U;,¢;)|7 = 0,1,...,m} is smooth for K = R and complex—
analytic for K = C.

(W1, W) —

(7) Let H be a N—dimensional real vector space with a Riemannian metric or a N-
dimensional complex vector space with a Hermitian metric (on the underlying real vector
space Hp with its natural complex structure). We call the set G\ (H) = {W C H | W is
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a K-linear subspace of dimension k} for kin {1,..., N — 1} the “Grassmann manifold of
k—planes in H”. Let us define U(W) :={T'r C H | T : W — W+ is K-linear} and observe
that {U(W) | W € Gr(H)} covers G (H). Furthermore we set

ow : UMW) = V(W) = Homg(W,W*), ow(l'r)=T.

Since Homy (W, W) has the natural norm ||| := sup{||T(w)| | w € W and |[w|| = 1}
(here || || is the norm induced by the Riemannian respectively Hermitian structure on
H) and since all norms are equivalent on a finite dimensional vector space, we can use
any basis of W and W+ to identify Homy (W, W) linearly and homeomorphically with
Mat (N —k) x k, K) = KN=5)*_ This way we can consider @ as a bijection taking values
in KN=%)'" i e. a chart.

Let now W = T'p, in U(W;) and W = T'g, in U(W3) for Wy # W,. Writing the identity of
H as a map W & I/VlL — Wy @ I/V2L we get a matrix of linear operators ( Z fl ) with

a: Wy — Wy, b: Wit — W, ete. Since W = Im ( I(;Wl ) = {wy + T (wy)] wy € W} =
1

Im ( ldw, ) there is a K-linear isomorphism ¢ : W; — W5 such that

T
a b IdW1 . IdW2 . . L
(c d)o( T, >_< T, >oq.W1—>H—W2@W2.
Thus Ty = (e+doTy)o(a+boTi)™ = (ew, o (ew,) ")(T1) and the coordinate
changes ¢w, o (c,owl)_l are “algebraic” maps defined on ow, (U(W1) N U(Ws)) = {11 €
Homy (W, Wit)|a + b o Ty is invertible }. Hence G(H) is a smooth manifold for K = R

and a complex—analytic manifold for K = C.

Exercises. Fill in the details in proving that the preceding examples (1) — (7) yield
smooth (respectively complex—analytic) manifolds.

Definition. Let M and N be differentiable manifolds and let ' : M — N be a continuous
map. Then F' is called “smooth” if for all p in M and for all admissible charts ¢ : U =
U(p) = V near pand ¢ : U' = U'(F(p)) — V' near F(p) the maps

;/)oFoc,o_l :c,o(UﬂF_l(U')) -V’

are smooth.
Remarks.

(1) Tt is of course enough to check that ¢5 0 F 0 ¢ ! is smooth for an admissible atlas

{(Uaspa)la € A} of M and an admissible atlas {(Uj,¥s)|3 € B} of N. (Of course 5 0
F o' must be restricted to the open set o (Us, N F~H(Uf)) and there is nothing to check
if this set is empty.)

(2) Let us observe that this definition does not make sense if the coordinate changes are
not smooth maps: this is the very reason why we consider smooth atlases. On the other
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hand with the above definition every chart ¢ : U — V and its inverse ¢! : V — U are
now smooth maps.

(3) Obviously the composition of two smooth maps is again smooth.

Examples.

(1) FF: R — SY F(t) = (cost,sint).

(2) F': S 5 1P (C), F((20, -+ 20)) = 7((205 -, 20)) = [205 - -+, 20)-

(3) Let ¢ : S*\{*(0,0,1)} — R? be given by the stereographic projection from the 2-
sphere to the plane {z3 = 0} C R and ¢q : {[20,21] € IP1(C)|z0 # 0} = Uy — C the usual
chart [zg, z1] — L. Then the map F : IP,(C) — S? defined by F([0,1]) = “(0,0,1) and
Flu, = ¢~ o Ro g, where R: C — R? w — (Re(w), Im(w)), is a smooth map from the
smooth (real!) manifold underlying the complex manifold IP;(C) to the 2—sphere.

Definition. Let M and N be smooth manifolds and F': M — N a smooth map. Then F

is called a “diffeomorphism” if F' is bijective and F'~! is smooth.

Examples. (1) Let A be in GL(m,R) and F = T4 : R™ — R"™. Then F is a diffeomor-
phism.

(2) The map F : IP;(C) — S? defined in the preceding Example (3) of smooth maps is a
diffeomorphism.

Definition. Let M be a smooth manifold of finite dimension and N a subset of M. We
call N a “closed submanifold of M” if N is closed in M and if for each p in N there is an
admissible chart U(p) = V C R™ such that o(p) = 0 and o(U(p) " N) =V N {z, =... =
x, =0} for anin {0,...,m}. (Note that m and n may depend on the point p in N.)

Examples.

(1) Let fi1,..., fr be smooth functions on R™(1 < k < m) and ¢y, ..., ¢ real numbers such
that the gradients V fi(p),...,Vfi(p) are linearly independant for all p in the common
level set {fi = ¢1,..., fr = ¢} C R™. Then this level set is a closed (m — k)-dimensional
submanifold of R™.

(2) Let £ = {W € Go(RY|W is Lagrangian } (with respect to the standard symplectic
form w = € A € + €5 A €, where {e1, ..., €4} denotes the canonical basis of R?* here. Then

L is a closed submanifold of G5(R*?).
In closing this subsection we would like to slightly restrict our class of manifolds.

Let us first recall that a topological space (M,T) is called a “Hausdorff space” or simply
“Hausdorft” if for distinct points p and ¢ in M there are open sets U and V in M such
that pe U,ge Vand UNV = (.

Examples. (1) Let © be open in R” with the subspace topology induced from the usual
metric topology on R™ and let p; and py be distinct points in ). Then there exists ¢; and
€z in R>? such that B, (pr) = {z € R™| ||la — pi|| < ex} are contained in  and disjoint,
i.e. ) is Hausdorff.

(2) Let M = (R\{0})U{p1,p2} and let T be defined as follows: a subset U" C M contained
in R\{0} is open if and only if it is open as a subset of R\{0} C R with its usual subspace
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topology, and a subset U/ C M containing p; or py (or both of them) is open if and only

if (U N (R\{0}) is open in R\{0} and there is a ¢ > 0 such that B.(0)\{0} is contained
in U N (R\{0})). This defines a non—Hausdorff topological space that allows for a smooth
atlas.

Let us also recall that a subset B C T of the topology of a topological space (M,T) is
called a “basis of the topology” if for each U in T there is a family {U\|]A € A} C B
such that UyeaU, = U. Furthermore we call a topological space “second countable” if its
topology has a countable basis.

Examples.

(1) The set B = {Byu(q) | n € N2! g € Q™} is a countable basis of the usual topology of
R™.

(2) A non—countable set M equipped with the discrete topology (i.e. T is the power set
P(M)) is not second—countable.

(3) There are non-second countable Hausdorff topological spaces that have a smooth atlas
(see [Sp]).
In order to avoid lengthy statements in the sequel of the text — unless it is explicitely

stated otherwise — we will assume that a “manifold” is always a finite dimensional, smooth,
Hausdorff and second countable manifold.

On the other hand we will neither assume that a manifold is connected nor that it is
pure—dimensional.

Bibliographical remarks. Beside [Sp] quoted above we recommend [AMR],[Bo] and [Lan]
for further reading on the foundations of differentiable manifolds.

2.2 Lie groups and smooth actions

Definition. A “Lie group” is a manifold that carries a group structure such that the map
GxG—G,(gh)—g-h™!
is smooth.

Remark. Equivalently one can ask for the smoothness of the following two maps:

[:G—=Gg—gland M:GxG— G (g,h)—g-h.

Examples.

(1) Let V be a real respectively complex vector space of finite dimension. Then the addition
“+7 of vectors makes (V,+) into an abelian smooth respectively complex—analytic Lie

group.
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(2) Let I be a countable group. Then the discrete topology makes I' a zero—dimensional
manifold and it follows that I is a zero—dimensional Lie group.

(3) Considering S! as a subgroup of C\{0} and 5* as a subgroup of H\{0} (H denotes the
skew—field of quaternions) give rise to Lie group structures on these spheres.

(4) For K = R and C, the “general linear group” G'L(n,K) is open in Mat (n x n,K)
and matrix multiplication induces a group structure on this set. The usual formulas for
multiplication and the invese of a matrix show that G L(n,R)is a smooth real Lie group and
G'L(n,C) a “complex—analytic Lie group”. Analogously G'Lr(V') is a smooth respectively
complex—analytic Lie group if V' is a finite dimensional vector space over K = R respectively

over K = C.

(5) If V is a finite dimensional K-vector space (K = R or C) then the “special linear
group” SL(V) = SLg(V) = {T € GLg(V) | det(T) = 1} is a closed submanifold of
G'Lg(V) and a Lie group. If V is furthermore equipped with a symplectic form w then the
some assertions hold for Sp(V,w).

(6) The sets O(n,K) = {A € Mat(n x n,K)|*O - O = E,} are closed submanifolds
of Mat(n x n,K) and Lie groups, the so—called “real (respectively complex) orthogonal
groups”.

(7) The sets U(n) = {A € Mat (nxn,C)[!A-A=E,}and SU(n) = {A € U(n)|det(A) =
1} are closed submanifolds of GL(n,C) (looked upon as a real manifold) and Lie groups.

Definition. Let G be a Lie group and H a subset of . We call H a “closed Lie subgroup”
if H is a closed submanifold of G and a subgroup of G.

Exercices. (1) Show that a closed Lie subgroup is a Lie group.
(2) Show that SL(n,R)and O(n,R) are closed Lie subgroups of G'L(n,R).
Definition. Let G and G5 be two Lie groups. A map F': G; — G5 is called a “Lie group

homomorphism” if F' is smooth and a group homomorphism. A Lie group homomorphism F
is called a “Lie group isomorphism” if F' is bijective and I'~! is a Lie group homomorphism.
We call two Lie groups GG and (5 “isomorphic (as Lie groups)” if there exists a Lie group
isomorphism F': Gy — G;.

Example. The following Lie groups are isomorphic: S* U(1) and SO(2,R) = O(2,R)N
SL(2,R).

Definition. Let M be a manifold and G a Lie group. A smooth map ¥ : G x M — M is
called a “smooth (left)—action (of G on M)” if the following two conditions hold

(i) d(e,p) =pforall pin M (e denotes the neutral element of the group ),

(ii) Y(g,9(h,p)) =¥ (g-h,p) for all g,h in G and all p in M.

Remarks. (1) The map M — M,p — (g, p) for fixed ¢ is often denoted by ¥,. Since
Vv, 00,-1 = Idys it follows that ¥, is a diffeomorphism for each ¢ in (. Another useful
notation is g-p for J,(p).

(2) A right-action is defined similarly replacing condition (ii) by
(ii’)  ¥(g,9(h,p)) = I(h-g,p) for all g,h in G and all p in M.
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Examples.

(1) GL(n,R) x R™ = R™" ¥(A,x) = Ta(x) = A - 2.

(2) GL(n,R) x GR(R"™) = G(R™), (A, W) = Ta(W).

(3) Sp(n,R) x L — L, where L = {W C G,(R?")|W is Lagrangian} and 9 as in (2).

(4) Let G be a Lie group and M = G, then 9% : G x M — M,9%*(g)(h) = g - h and
IR G x M — M, 9%(g)(h) = h-g~! are smooth transitive actions. (5) ¥ : Zy x S™ —
S™9(0,2) = x,9(1,2) = —a.

(6)V:Z"xR" = R" J(a,z) =2+ a.

(7) 0 : GL(n + 1K) x P (K) — P,(K),0(A,[z]) = [A- 2] for K= R and C. (The line
generated by z is as usual denoted by [z].)

Definition. Let ) : G x M — M be a smooth action.

1 l (& aCti() iS Called “tra SitiVe” lf f()r €ac air 1 A“ there iS at least one 1 (;
p P, q g
such that ¢-p = gq.

(2) The “fixed point set of an element g in 7 is the set {p € M|g-p = p} and the “fixed
point set of 7 is the set M“ = N {pe M|g-p=p}={p€ M|g-p=pVg<c G}
9€G
(3) The “G-orbit through p” is the set {¢g-plg € G} C M (for p a point in M).
(4) The “isotropy group (or stabilizer) of p (under the G—action)” is G, = {g € G|g-p = p}.

(5) The “orbit space” is the space of equivalence classes M /. = {[p]|p € M}, where p ~ ¢
if and only if there exists a ¢ in G such that g -p = ¢. The map M — M/.,p — [p] is
called the “canonical projection” and is often denoted by .

Exercice. Go through the examples of actions (1) — (7) above and determine the fixed
point sets of the group, the G—orbits, the isotropy groups and (set—theoretically) the orbit
spaces of these actions.

Definition. Let I' be a discrete Lie group, M a manifold and ¢ : I' x M — M a smooth
action. We call the action “free” if the fixed point set is empty for all v in ['\{e}. We call the
action “properly discontinuous” if for all K compact in M the set {y € T'|y(K) N K # 0}
is finite.

Proposition. Let ¥ : ' x M — M be a properly discontinuous and free action. Then the
orbit space M /.. carries a unique differentiable structure such that the projection 7 : M —
M/ is a local diffeomorphism.

Remark. A smooth map F': M — N is a “local diffeomorphism” if for each p in M there
is an open set U containing p such that Fly : U — F(U) is a diffeomorphism.

Proof of the proposition.

Let T be the quotient topology on M/., i.e. U isin T if and only if #=*(U) is open in M.
Since M is a manifold and I' is countable it follows easily that 7 has a countable basis.

Let now z be in M and W % V be a coordinate chart such that B,(¢(z)) C V. Let
Wi =@ ' (Bi/n(e(x)) and K, = Wy, for n > 1. (The notation B, (p) denotes the e-ball
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around a point p in R™.) Then the K, are compact and contained in W. Consider now a
v # e such that v(K1) N Ky # 0. Since K; is compact and + has no fixed-point it follows
easily that there is a N(v) > 1 such that v(K,)N K, = 0 for n > N(v). Since the set
{v € T'|y(K1)N Ky # 0} is finite there is a N > 1 such that Ky Ny(Ky) = 0 for all v # e.
Thus 7T|W1/N : Wiyn = m(Wyn) is a homeomorphism.

Starting with any atlas we can now construct an atlas {(W,, ¥, )|x € M} such that W, N
y(W,) = 0 for all v # ¢ (and for all @ € M). Since n(W,) =: U, is an open set in M/

containing 7(x) we have an open covering {U;|x € M} for M /. and homeomorphisms
0r =Wy 0 (mlw,)" 1 Up — U (W,).

Let now y # @ such that U,NU, contains a point 7(z) (with z € W,..) Then by construction
of the W, for p in M the connected component of (7|w,) (U, N U,) containing z is in
W, N ~(U,) for a unique v in I'. It follows that the coordinate changes of the topological
atlas {(Uy, ¢,)|x € M} of M/ are given by ¢, 0 ¢t =W, 0 -1 0 U ! for appropriate
in I', thus they are smooth maps.

Let now m(z) # m(y) in M/, ie.I'-2 Nl -y =0 for x and y in M. Defining K, (x) and
K, (y) as in the beginning of the proof and K = Ky, (2) U Kn,(y) for Ny sufficiently big
such that Ky, (z) N Kn,(y) = 0, we have only a finite set of v # e with K N ~(K) # 0.
Obviously this implies Ky, (@) Ny (Kn, (y)) # 0 or (K, (2)) N Kn,(y) # 0. Compactness
of the Ky(x) and Ky(y) and the absence of fixed point for v # e imply then that for
N sufficiently big (F . Wl/N(l')) N (F . WI/N(y)> =0, i.e. (Wi n(2)) and m(Wy/n(y)) are
disjoint open neighborhoods of m(x) and n(y). Thus the quotient topology on M/ ~ is
Hausdorft. O

Examples of properly discontinuous and free actions.

(1) 9 : Zy x 8™ — S™ as in Example (5) of smooth actions. The orbit space with the
induced differentiable structure is diffeomorphic to P,,(R)

(2) Let I' be the Z-module in R generated by k R-linearly vectors vy, ..., vg in R™. Then
the orbit space R™/. is diffeomorphic to (S1)F x R™~*.

(3) A general recipe to produce free, properly discontinuous actions is the following:

let I' be a subgroup of a Lie group G such that the subspace topology on I' is the discrete
topology. Then I' is a discrete Lie group and acts by restricting to it the actions ¥* and
1 on M = G. Let, for example, 9 = 9X|r : I' x M — M. Then for each v in ['\{e} the

fixed point set {g € M = G|y - g = g} is empty.

Assuming now that the action ¥ is not properly discontinuous, then there is a compact
set K in (G and a sequence {v,|n € N2'} in [ such that v, # 4, for n # m and
Yu(K)NK 3 ¢y = Yo - hy with g, and h, in K for n > 1. Going to subsequences and
relabelling there are gy and hg in K such that g, — go and h,, — hg. Thus finally we have
Yo = go - hy', a convergent sequence in I' with ~, # ,, for n # m. This contradicts the
fact that I' carries the discrete topology and thus our assumption was wrong and " acts
properly discontinously by ¥ = 9%|r on M = G.
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The quotient M/ being the set {I'-g|lg € G'} of left restclasses, we denote it sometimes by
['/G as in abstract group theory. The corresponding quotient for the action ¥¥|r is then
of course denoted by G/T.

As an illustration we give some concrete examples.

(3.1) Let R be a unital ring and

1 a b

Ggr = (010)
0 0 1

Then Gg is a group, and G respectively G is a real Lie group respectively a complex—
analytic Lie group. Examples of discrete Lie subgroups are Gz, C Gr and Gz C G, and
Gz \Gr respective Gzp1\Ge are compact smooth respective complex—analytic manifolds.

(3.2) Let R be as in (3.1) and

a,b,ce R

1 a b
Np = Gin % R = ((0 | )d)
0 0 1

the product of the group Gr, defined above in (3.1) with the abelian group (R, +). Then
Nz is a discrete subgroup of Ny, and Nz\Ng and Ng/Nyz are compact smooth real four—
dimensional manifolds.

a,b,e,d e R},

Bibliographical remarks. A good reference for the elementary theory of quotients by
discrete groups is [Bo]. A lot of material on differentiable actions of compact Lie groups
can be found in the classic [Bre].

2.3 Vector bundles

Definition. A “smooth (real respectively complex) vector bundle of rank r (over a man-
ifold M)” is a manifold E together with a smooth projection p : E — M such that for
each z in M the fiber p~'(z) =: E, has the structure of a r—dimensional (real respec-
tively complex) vector space and such that the following condition of “local triviality”
is satisfied: for each = in M there is an open set U containing = and a diffeomorphism
Uy p~H(U) = U x K such that pry o Uy = p and Yy |E, : E, = {2} x K is a K-vector
space isomorphism for each # € U. (K equals R or C here).

Remark. We will often speak of the “vector bundle E % M” in order to have a short
notation including the projection map p. Furthermore £ will sometimes be called the “total
space” and M the “base” of the vector bundle.

Examples. Let K be R or C.
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(1) The product manifold M x K" with p = prq is a vector bundle, the so—called “trivial
vector bundle of rank r over M”.

(2) Let ¥ : Z x (R x R) = R x R, ¥(n, (z,v)) = (z 4+ n,(=1)"-v) and £ = (R xR)/_ 5
R/Z, p([x,v]) = [].

Then E is a vector bundle over R/Z = S*.

(3) Let H = {([z],v) € Pn(K) x K®*'|v € ((z))x}. Then H is a closed submanifold of

P, (K) x K™t and the fibers of the projection p : H — P, (K),p([z],v) = [z] are the
one—dimensional K-vector spaces p~*([2]) = {([z],v)|v € ((z))xH= ((z))x C K™T!).

“Local trivializations” are obtained as follows: let U; = {[z] € P,(K)|z; # 0} and x; :
U; x K — p~'(U;) be defined by

20 Zi1 Zi+1 Zm
vl 0 = ([0 (ZJZ—]1JZ—]Z—])>
It is easy to check that x; is a diffeomorphism, that is “fiber-wise linear” and thus ¥; = Xj_l
is a local trivialization of H 5 P,,(K) over U; (for 5 =0,...,m).

Definitions. (1) Let £ L M a vector bundle. A “smooth section of E” is a smooth map

s : M — F such that pos = Idy;. The set of smooth sections of £ form a vector space
which is denoted by ['ce (M, F). The “zero—section” is defined by s : M — E, s(x) = 0,,

where 0, is the zero—element of the vector space F, = p~!(z).

(2) Let Ey 2y M, and Ey B3 M, be vector bundles and let f: My — M, be a smooth map.
A smooth map F': F; — Fs is called a “smooth vector bundle homomorphism (over f)”
if F((F1)e) C(Ey) g for all  in My and F|(g,), : (F1)e = (F2) () is a linear map for all
x in M;. (Sometimes we refer to these properties by saying that F'is “fiber—preserving”
and “fiber—wise linear”.)

If fis a diffeomorphism and F'|(g,), is an isomorphism for all # in M the map [ is called
a “smooth vector bundle isomorphism (over f)”.

(3) Two vector bundles over the same base manifold M are called “isomorphic” if there
exists a smooth vector bundle isomorphism over f = Idy,.

A vector bundle is called “trivializable” or shortly “trivial” if it is isomorphic to the trivial
bundle of the same rank.

Remark. The vector bundle E of Example (2) is non-trivial.

Definition. Let £ % M be a vector bundle of rank r and {U,|a € A} an open covering
of M such that ¥, : p~'(U,) — U, x K" are local trivializations of E. Then the maps
Gop : Usy = Uy N U — GL(K") defined by

v, o \I/gl U x K — Uy x KU, 0 \Ilgl(:z;,v) = (x, gap(x) - V)

are called the “transition functions of £ with respect to the local trivializations {U,|a €

A},
Remark. The family {g.p|a, 8 € A} fulfills the following “cocycle identities”:
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(1) gaa(x) =1 for all x in U,,

(2) (gap(2))™" = gpa(w) for all @ in Usp,

(3) gap(®) - gay(2) - gya(x) =1 for all @ in Uyp, = U, N Uz NU,,.

Proposition. Let M be a manifold. Then

(i) If {Us]a € A} is an open covering of M and gop : Usp — GL(K") is a family of
maps fulfilling the cocycle identities given above then the set <UaeA(Ua X Kr)>/~, where

(x,v) in Us x K and (y,w) in U, x K are equivalent if and only if v =y € Uyp and
W = gag(x) - v, is a vector bundle of rank r over M.

(ii) If E 5 M is a vector bundle of rank r and if {g.sla,B € A} are its transition
functions with respect to a trivializing open cover {U,|a € A} then E is isomorphic as a

vector bundle to <UaeA(Ua X Kr)>/~.

(ii1) Given the situation of (ii) then a section s of E defines (and is defined by) a family
of smooth maps s, : Uy, = K' (o € A) such that s,(x) = gap(x) - sp(x) for all v in Uyz and
for all a, 3 in A.

Proof. Exercise. O

Remarks. (1) Using the transition functions we can apply pointwise the usual operations
from multilinear algebra to construct new vector bundles from given ones. Let £ and F
be vectorbundles then £ & F' with fiber (E & F), = E, & F; is called the “direct sum of
the vector bundles £ and F”. Similarly one defines £ @ F, Hom (E, F), and, if F' C F is
a “subbundle”, E/F. Furthermore we have the bundles £* with fiber (£*), = (F,)* and
@FE*,SFE* and A*E* for k € Ny.

(2) If f: M — N is a smooth map and p: £ — N a vector bundle we have the “pullback
of F under f7 (or simply the “pullback bundle”) with total space

B =A{(z,l) € M x E[f(x) = p(1)},

a closed submanifold of M x E, and projection f*p: f*E — M given by (f*p)(x,l) = «.

Bibliographical remarks. We recommend [BT] to get some intuition for vector bundles

and [AMR] for many technical details.

2.4 The tangent bundle
Definition. Let M be a manifold and p in M.

(1) A “curve at p” is a smooth map v : I — M, where [ is an open intervall in R containing
0, such that v(0) = p.
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(2) Two curves v, and v, at p are called “tangent with respect to the chart (U, )" if p is
in U and £| (v0m)(1) = 4| (902)0).

¢
0

Lemma. Let (U, ), (U, ") be charts on a manifold M and p in UNU'. Then two curves

1 and v2 are tangent with respect to (U, ) if and only if they are tangent with respect to

(U, ¢").
Proof. Let 4, and 7, be equivalent with respect to (U, ). Then

d d _ o d
771, (Fem)(t) = E‘g((@ o) o (g o)) = (Dopy(¢' 0™ )= (won)(t)
1) 4 d
= (Dt 0 9™)) 7| (p02)(0) = | (& 0 )(0):
Exchanging the roles of ¢ and ¢’ we arrive at the assertion. O

Remark. Let V be open in R™ V' open in R” and ¥ : V — V' a smooth map. We
recall that the “derivative of ¥” in a point = in V is given by the unique linear map

D,V : R™ — R" such that for w € R™\{0}
iy ¥+ w) = ¥(z) — (DT)(w)]

[[wo]|—0 ]|

=0.

Definitions. Let M be a manifold and let p be a point in M.

(1) Two curves v, and 72 at p are called “equivalent” if 4; and v, are tangent with respect
to one (and thus every) chart.

(2) The space {[y], | 7 curve at p} of equivalence classes of curves at p is called the “tangent
space to M at p” and is denoted by T, M.

(3) The disjoint union UpeMTpM is called the “tangent bundle of M” and is denoted by
TM.

(4) Let N be a manifold and f : M — N a smooth map. The map T,f : T,M —
TN, [7]p = [f 0 7] #p) is called the “tangent of f at p”.

Remarks. (1) The tangent of a map f at p is well-defined. Proof as an exercise.)

(2) Despite the terminology it is not obvious that the tangent bundle is a vector bundle!
(The proof will be given in the course of this section.)

(3) Given a smooth map f: M — N we have set—theoretically the “tangent of f”

Tf:TM = TN (Tf) (7)) = (Tof)([7]p)-

Denoting the projection TM — M, [v], — p by pra (and analogously for N') we obviously
have pry o T'f = f o pru.

Lemma. Let L, M, N be manifolds and f: M — N and g: L — M be smooth maps.
(i) Then T'(f o g) = (T'f) o (Tg).
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(11) If M =N and f = IdM then Tf = TIdM = IdTM
(iii) If f is a diffeomorphism then 7' f is bijective and (T'f)~!' = T'(f™1).

Proof. Exercise. O

Lemma. Let V be open in R™,x in V and w in R™. Let us set v,,(t) = « + tw. Then
(1) [Ywle = [Ywrle if and only if ' = w” in R™, and
(ii) Xz : R™ = T, V,w — [v,]e s bijective.

Remark. To be completely unambiguous one should note the curve t — x +1w by 7y, 5. In
order to simplify the notation we will stick to v, especially if we consider the equivalence
classes [Vy]z, where no danger of confusion can arise.

Proof of the lemma.

Ad(i). Let us assume that [yu], = [yuwr]z. Then 0 = % O(Vw/(t) — Y (t)) = w" — w”. Thus

the first assertion is proven.

Ad(ii). By (i) x is injective. Let now 4 be any curve at « and w = %(0). It follows that
4] 000 = 2u) =0, e [7)e = [l 0
Proposition. Let V' be open in R™. Then

(i) T,V is a vector space with a basis given by [ve,|. for k =1,....m. (The vector e is of
course the k—th unit vector in R™.)

(i) TV carries naturally the structure of a trivial vector bundle over V via the bijection
xv =V XxXR" =TV, yv(z,w) = yz(w) = [yulz

fulfilling prv o xv = pri.

(tii) If V' is open in R™ and f : V — V' is a smooth map then Tf : TV — TV' is a
smooth vector bundle homomorphism over f. Identifying TV with V x R™ and TV" with
V< R we have (Tf)(z,w) = (Tof)(w) = (2, (Do f)(0)).

() If a map f as in (iiQ) is a diffeomorphism then T f is a vector bundle isomorphism.
Proof. The first assertion follows immediately from the preceding lemma.

Let xy : V x R™ — TV be given by yv(z,w) = [y,]. then we have yv o pry = Idy o pry
and thus TV carries canonically the structure of a smooth real vector bundle of rank m,

proving (ii).
Since (T'f)[yule = [f 0 ]y and 5| (f ©7w)(0) = (Dof)(w) we arrive at
(T Hlvwle = Dipen) s 0)-
This implies with Uy = (xy)™" and W}, = (yv/)~! that
W, 0T fo(Uy)™ 1V xR™ = V' xR"
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is the map (x,w) — (f(2),(D,f)(w)). Obviously this map is a smooth vector bundle
homomorphism over the map f: V — V.

The last assertion follows from (iii) and the properties we have shown for T'f as a set—
theoretic map. a

Remark. Let V be open in R”, V'’ open in R™ and f : V. — V' smooth. Denoting the
canonical basis of R™ by {e¢y, ..., ¢, } and the canonical basis of R™ by {¢y,...,¢,} we have
for each @ in V' a matrix A, in Mat(n x m,R) such that (7.f)(e;) = > (Az);€i. Writing

=1

f="f,.. ., fn) with n scalar functions f; it follows that (A,);; = a—f"_(:zj), ie. A, is the

O
Jacobi matrix of f in x. (Fill in the details of the computation as an exercise.)

Definition. Let M be a manifold and ¢ : U — V C R™ a chart. We call the bijection
Ty :TU — TV the “natural bundle chart (associated to the chart (U, ¢))”.

Proposition. Let M be a manifold and A = {(U,,pa)|a € A} an admissible atlas for M.
Then the “natural bundle atlas associated to A7, TUA = {(TU,,Te.)|a € A} is a smooth
atlas on T'M such that T'M together with its canonical projection pras to M is a smooth
vector bundle over M.

Furthermore the differentiable structure of (T'M,T2U) depends only on the differentiable
structure of (M,2).

Proof. Since the T'U, cover set-theoretically TM and T, : TU, — TV, (V, = ¢(U,) C
R™) is bijective for each a we can define a topology T on T'M as usual, i.e. §) is open in
TM if and only if (Tp,)(2NTU,) is open in TV, for all a in A. The continuity of prv,
implies that pras : TM — M is continuous, and it follows that (7'M, 7T) is Hausdorff and
second—countable.

The coordinate changes of the atlas TR are given by

(Tep) o (Tea)™ =T(ppopr!) : (Tea)(TUap) = (Tes)(TUqp).

Since T'(¢509;"') is a diffeomorphism, it follows that the atlas 7% on T'M is smooth, and
furthermore that pyys is a smooth map. Since T'V,, is isomorphic as a vector bundle over V,
to the trivial vector bundle V,, x R™ via the vector bundle isomorphism (x4 )" := (xv,) ™",
for a given a, TU, inherits the structure of a vector bundle from T'V,. (We denote the
map Vo, Xx R™ — TV, (z,w) — [Yuw]. again by xv,.) Using the fact that the transition
maps T(ps 0 p;') are vector bundle isomorphisms, the linear structures on the fibers of

pryv M — M are well-defined and
(et opri,pra) o xa o Tos : TUs — Uy x R™

are local trivializiations of T'M over U,. O

Exercise. Show the last assertion of the proposition, i.e. the independence of this con-
struction of the chosen admissible atlas given a fixed differentiable structure on M.
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Proposition. Let M and N be manifolds and f: M — N a smooth map. Then
(i) Tf:TM — TN is a smooth vector bundle homomorphism over f, and

(ti) if o0 = (27,...,20) : Uy = V, CR™ respectively 15 = (ylﬁ,...,yﬁ) Uy — Vy CR?
are local coordinates near p in M respectively f(p) in N, then the map T,f : T,M — Ty N
is given by the “Jacobi—matriz of [ in the local coordinate systems”, i.e. setting

oo F) =T =dpofoel s paUan f7H(Uf) = R

and denoting the canonical basis of R™ and R" again by {ey,...,en} and {¢1,...,¢,} we
have )
TysgoTfoTe ' =Tf and
N .y
T (e, Joatn) = (palp)) - [/“Lﬁi]‘llﬁ(f(p))v

T
=1 a J

where, as usual, [y.,], is the tangent vector in x represented by ., (t) = x + ., and analo-
gously for [a,

Proof. Exercise. O

Remark. Obviously the basic theorems of differential calculus in several variables can
now be applied to smooth manifolds and yield for example the following

Proposition. Let f: M — N be a smooth map and q in N. If the rank of T, f is either
mazimal for all p in f~*(q) or constant on a neighborhood of f~*(q) in M then f~*(q) is
a (smooth) closed submanifold of M.

Proof. Exercise using the rank theorem in local coordinates. O

Bibliographical remarks. Beside the books mentioned at the end of Section 2.1 we would
like to recommend [BroJd] and [Bré] - the latter being unfortunately available only in
german language.

2.5 Vector fields on manifolds
Definitions. Let M be a manifold.

(1) The vector space of real-valued smooth functions on M is denoted by E(M) =
C>(M,R).

(2) Let Us and U, be open neighborhoods of p in M and f € E(Uy),g € E(U,). We say

“f and ¢ are equivalent in p”, f ~, g, if and only if there is an open neighborhood V of p
such that V. C U; NU, and fly = g|v. The set of equivalence classes

{f:U; = Rlpe U;,U; open in M, f smooth }/,
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is denoted by &,(M) and an equivalence class [f : Uy — R], is denoted by f and called

~p
a “germ of a smooth function in p”.
Proposition. Let M be a manifold and p in M. Then

(i) E,(M) is a commutative, associative, unital R—algebra, and

(ii) the vector space Der(E,(M)) :=
{Dp : E(M) = RID, is R-linear and D,( [ - g )=D,( [ )-g(p)+ f(p)-Do( g )}

~p ~p ~p ~p

of its “(scalar—valued) derivations” is R—linearly isomorphic to T, M.

Proof. The first assertion follows from the observation that £(U) is a commutative,
associative, unital R—algebra for each open set U in M.

Since E(U,) — E(V,), [ — foe ! is a R-algebra isomorphism for each chart ¢, : U, —
Vo, C R™, we can assume that M = R™ and p = 0.

The map y
TR™ 2 Der (&(R™)), do([7l0)( )= 7| (For)()

~0

is well-defined and an injective R—vector space homomorphism. In order to show that &g
is surjective we use the “Fundamental lemma” below to develop a smooth function f near

0 in R™ as follows .
0)+ > filx)-aj,
7=1

where f; is a smooth function near 0 fulfilling f;(0) = %(0). Given now Dy in Der (&(R™))
we set a; = Do(z;) € Ry w=>"

a;ej, and v, (1) =t - w as usual. Then we have

So([Yuwo)( I )= %‘Of(tw) = Z Zf] )Do(;) = Do I ). O

Lemma (“Fundamental lemma”).

Let U be an open neighborhood of 0 in R™ and f: U — R a smooth function. Then there
are smooth function f; defined near 0 (for j =1,...,m) such that f;(0) = %(O) and

0)+ ij(l‘) z

for all x in a ball B.(0) for e > 0 sufficiently small.
Proof.
Let € > 0 such that the ball B, (0) is contained in U. For all & in B, (0) we have

f(:z;)—f(())_/ol—ft z) zﬂj: /Olg—ai(t-x)dt>-xj.
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Obviously f;(x) := 01 R (t - 2)dt is a smooth function on B, (0) and f;(0) = 2L(0). O

O
Corollary. Let V be open in R™ and x in V. Then the isomorphism
5 d
LV = Der(&(V)), 6:([0l)( [ )= 5| (For)(t)
maps [Ye,]» to the partial derivative %
Proof. Exercise. O

Definition. Let M be a manifold. A “vector field (on M)” is a smooth section of the
tangent bundle T'M of M. We denote the R—vector space of all vector fields by X(M) =
Lo (M, TM).

Proposition. Let V be open in R™ and let
Der(E(V))=4{D:E(V) = EV)|D is R-linear and D(f-g)=D(f)-g+ f-D(9)}

be the space of all “derivations of E(V')”. Then the maps 6, : T,V — Dery(E,(V)) yield a
R —vector space isomorphism § : (V) — Der(E(V)).

Proof. Identifying T'V via yy with V xR"™, a vector field X on V' is given by a smooth map
w:V = R™ (X(2) = [Yuw@)]e in T V). The map J, takes X(z) to E] ) w](:zj)% , where
w = '(wy,...,w,). Obviously DX := Doty wj% is an element of Der(E(V)), since the
functions w; are smooth, and furthermore we observe that the map ¢ : X(V') — Der(E(V)),

§(X) = D¥ is injective. Let now D be in Der(E(V)), then applying D to germs of smooth
functions yields a map D, : £,(V) — R, D,( f ) = (D(f))(x), which is an element of

Der,(E,(V)). Let now the functions w; be defined by w;(z) = D,(x;) (z; being again the
Jj—th coordinate on V' C R™). Since D, (x;) = D(x;)(x), these functions are smooth and
thus define a vector field X on V. It follows that for f in E(V)

=02 =3 (5

Jj=1

ey =Du( f )

by applying the fundamental lemma to functions defined near x. Since D is uniquely deter-
mined by the family {D,|x € V} it follows that D = DX = §(x) i.e. § is an isomorphism.

a

Corollary. Let M be a manifold. Then there is a R—vector space isomorphism é : X(M) —
Der(E(M)) such that in all charts (V,p) of M § is given as in the preceding proposition.

Proof. Since a vector field as well as a derivation of £(M) are uniquely determined by
their restrictions to the chart domains in an atlas of M, the map ¢ is well-defined and
injective. Given now D in Der (E£(M)) we construct X, on U, for an atlas {(Us, ¢.)|a € A}
as in the proof of the preceding lemma. It remains only to show that the X, define a global
vector field, i.e. a section of T'M. This easily follows from the transformation properties of
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the partial derivatives defined on coordinate charts and the definition of the bundle charts
Tps of TM. (Details as exercise.) O

Remark. The last proposition explains why one speaks of a “vector field on M, locally
given by 2?21 w?%”

0a(Us) = R are smooth functions.

O

, where ¢, = (2f,...,2;,) are local coordinates and w$ : V, =

Definition. Let K be a field and g be a K-vector space with a map [,]: g x g = g. We
call (g,[,]) a “(K-)Lie algebra” if the following conditions are satisfied:

(1) [,] is K-bilinear,
(2) [,
3) [,

| is anti-symmetric,
| fulfills the “Jacobi identity”:
[u, [v, w]] = [[u, o], w]+ [v, [u, w]

for all u,v,w in g.

Example (and exercise). Let A be an associative K-algebra. Then [S,7]:= S-T—-T-5
defines a K-Lie algebra structure on A. Thus for a K—vector space E the algebra A =
Endg(F) is a K-Lie algebra.

Remark. Originating in the above example, the name “commutator” for the map [,] :
g x g — g is frequently used, even if g ist not constructed from an associative algebra.

Definition. Let (g,[,]) be a K-Lie algebra and fj C g a subset. We call h a “Lie subalgebra
(of g over K)” if b is a K—subspace of g such that [£,n] is in § for all £,n in b.

Lemma. Let A be a K-algebra and Der(A) :={D € Endg(A)|D(a-b) = D(a)-b+a-D(b)
Va,be A}. Then Der(A) is a Lie subalgebra of (Endg(A),[,]), the space of K-linear vector
space endomorphisms of A with the commutator [,] coming from the associative composition
of endomorphisms (as in the preceding example).

Proof. Direct calculation (exercise). O

Corollary 1. Let M be a manifold. Then the space Der{E(M)) of the associative R—algebra
E(M) is a Lie subalgebra of (Endp(E(M)),[,]) -

Proof. Follows directly from the preceding lemma. a

Corollary 2. Let M be a manifold. Then the R-vector space X(M) naturally carries the
structure of a Lie algebra induced from Der(E(M)).

Proof. Let X,Y be in X(M) and D = [DX,D"] in Der(&(M)). Since § : X(M) —
Der(£(M)) is an isomorphism there is a unique 7 in X(M) such that D? = §(7) =
[DX, DY]. The bilinear map

[X, Y] == 67H([8(X), 6(Y))).
obviously defines a Lie bracket. a

Definitions. Let M be a manifold and X in X(M).
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(1) Let I be a connected open neighborhood of 0 in R. A smooth curve v : [ — M is called
a “(local) integral curve of X with initial condition p (in M)” if the following conditions
are satisfied

5() = ot = (1) (5] ) = X)) el and 5(0)=p

(2) Let Q be an open set in R x M containing {0} x M. A smooth map ¢* : Q@ — M is
called a “local flow of the vector field X7 if for each p in M the curve t — % (¢,p) =: ©X(p)
is an integral curve of X with initial condition p.

Theorem. Let M be a manifold and X a vector field on M. Then for each p in M
there exist local integral curves of X with initial condition p. Furthermore these curves are
unique, i.e. they coincide on the intersection of their intervals of definition, and there is
a mazimal connected open interval I, in R containing 0 such that ©X(p) is defined on I,
and cannot be extended beyond I,.

The set Q := {(t,p) € Rx M|t € I} is open in R x M and the map o~ : Q@ — M, X (t,p) =
X (p) is smooth, i.c. there is a unique mazimal local flow of the vector field.

Proof. Given any chart ¢, : U, — V, C R™ the vector field X corresponds to a map
w* @V, — R” such that X(z) = (z,w*(x)) on V,. The equation ¥ = X(v(¢)) then
translates to the ordinary differential equation:

Yu(t) = wp(y(t)) for k=1,...,m.

Since the coefficient functions wj are smooth there is for any point of V,, an open neighbor-
hood and some € > 0 such that the solution of this differential equation exists, is smooth
and unique and depends smoothly on the initial condition in this neighborhood. This local
flow can then be transported to M and by uniqueness of the solutions they patch smoothly
with solutions coming from other charts. Thus for each p in M there is a maximal con-
nected open intervall [, on which the curve t — @ (p) is defined. Openness of the set
follows again from local arguments in charts. O

Exercise. Fill out the details of the preceding proof (by using any textbook on ordinary
differential equations for example.)

Corollary 1. (“Flow equations”). Let (M, X,Q,o*) be as in the theorem. Then @y =
Has, and if (,p), (¢ + 5, ), (X (5)) are in Q then oy (p) = ¢X (¢ (p)), in short

“pp = 1dy and ¢, =g 0p).”

Proof. The curves ¢ — ¢ (p) and ¢ — ¢} (¢X(p)) are both defined for small ¢ and are
integral curves of X with initial condition ¢ (p). Uniqueness of this integral curve yields
the assertion. O

Corollary 2. Let (M, X,Q,¢%) be as in the theorem, t in R and U be open in M such
that {t} x U is in 2. Then ¢ : U — M is a diffeomorphism onto @i (U).
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Proof. Obviously ¢t € [, for all p in U. By Corollary 1 we have for p in U and s in [0, ]
the equality i, (p) = ¥X,(¢(p)), i-e. 2, is defined on o (U) and 2, = (¢{'|;)"" :
e (U) = U. O

Definition. Let M be a manifold and X in X(M). The “support of X7 is the closed
subset of M defined by

supp (X) = {p € M|X(p) #0}.

Corollary 3. Let M be a manifold and X a vector field on M with compact support. Then
Q=R x M, iec. the “flow of X is global”. The map ©* : R x M — R is then a smooth
action of the Lie group (R,4) on M.

Proof. Let p be in M\supp (X) then »X(p) = p, i.e. the unique maximal integral curve
is defined for all ¢ in R. Since {2 is open in M there is for each p in M some ¢, > 0 and an
open neighborhood U, of p in M such that (—¢,,¢,) x U, is in . Covering the compact
set K =supp (X) by {KNU,|p € K} we find €y > 0 such that (—eg, €0) x M is in . Let
NOW €max > €0 > 0 be the supremum of all € > 0 such that (—e,¢) x M C Q. Assuming
that e is not 400 there is a p in M such that I, is at least unilaterally bounded. Without
loss of generality we may assume that [, C (—00,3 - €max/2). Setting v(t) = 9952(99552(}7))
for t in [0, 2€max) We see that the assumption on [, is wrong and therefore €pay = +00, i.e.
the flow is global.

The two preceding corollaries now imply that ¥ : R x M — M is a smooth action. O

Remarks. (1) The third corollary shows in particular that the flow of a vector field on a
compact manifold is always globally defined.

(2) The flow equations (see Corollary 1) are the appropriate formulation for a “local R—
action”.

Lemma. Let M be a manifold and let A be an open subset in R x M such that AN(R x{p})

is a connected open interval containing 0 in R x {p} for all p in M. Let furthermore
¢ : A — M be a smooth map such that the flow equations of Corollary 3 are satisfied.

Then the vectorfield X defined by X(p) := % ©X(t,p) is smooth on M and the mazimal
0

flow @ is defined on an open set @ C R x M such that A C Q and ¢*|, = .

Proof. Exercise. O

Remarks. A vector field X on a manifold M together with its flow ©* is often called a
“(continuous) dynamical system on M”. Rigorously speaking this term should be reserved
for those vector fields whose flow is globally (i.e. on R x M) defined. A “discrete dynamical
system” is a Z-action ¥ : Z x M — M. Since ¥ = Idps, 9y = (¥1)! and ¥, = (J1)" the
action is in fact determined by the diffeomorphism v, : M — M. Allowing any smooth
map f : M — M to replace J; we arrive at the notion of a “semi—group action of Ny on
M”:
0 :No x M = M,d(n,p) = (po---0¢)(p) = ¢"(p)
~—_———’
n factors

(and we set of course J(0,p) = p, i.e. ¢ := g := Idps).
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In closing this section let us make contact to the Hamilton equation in R?",

Proposition. Let M be open in R** with coordinates (qi,...,qu,p1,---DPn). Then the
Hamilton equation associated to a smooth function H : M — R, given as

oH . oH

7 = —— L= with initial condition Oy in M
QJ apjv p] aq] (q 7p )

are equivalent to

for the vector field Xy(q,p) = > 0_, <@i — @i)

Proof. Exercise. O

Remark. The vector field Xy in the last proposition is called the “Hamiltonian vector
field” associated to the Hamilton function H.

Bibliographical remarks. As at the end of the previous section, plus a solid reference
on ordinary differential equations as [Ar2].

2.6 Differential forms and the Lie derivative
Definitions. Let M be a manifold and T'M its tangent bundle.

(1) The vector bundle (TM)* =: T*M "X M is called the “cotangent bundle of M” and
the vector space (prsar)~'(z) = (T, M)* =: T*M the “cotangent space in z” (z € M).

(2) A section of T*M is called a “(differential) one—form on M” and the vector space of
all its sections is denoted by EY(M) = Lo (M, T*M).

(3) Analogously we define for & > 1 the bundles A*T*M := A¥(TM)* and call their
sections “(differential) k—forms on M”. The section spaces are denoted by £¥(M) :=
Lo (M, AFT* M),
(4) The space of smooth functions E(M) = C*(M,R) is also called the space of “0—forms”,
EXM) :=E(M).
Remark. If m = dimg M, then A*T>M = {0} for all x in M and all k¥ > m and thus

there are no (non-trivial) k—forms with k& > dimp M.

Definition. Let V be open in R” with coordinates (x1,..., 2, ) and let a vector field X be
identified with the associated derivation §(X) = > " 2 (a; € E(V)). The differential

7=1 a]%
one—form dz; € E(V) is defined by (d:z;j)p(a% o) = 0k forall pin V and thus dz;(X) = a;.
Lemma. Let V be open in R™ and p in V. Then

(i) TV = (({dz1)p, - - -, (d2m), }) ), and
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Furthermore the section space X(0),E°(W) and E(V) for k > 1 are free E(V)-modules

with module basis as follows

(iit) X(V) = ({755 -» ez D)eo,s

(iv) €(V) = ({1}))e(v), and

(v) EFV) = ({daiy A+ Ndai |1 <dyp < -+ <ip <nd))eqry.

Proof. Exercise. O
Definition. Let M be a manifold, p in M, v in T,M and 7 in AkTp*M (k > 1). Then the
“contraction of v and n” is the (k — 1)—form vun =i,n € Ak_lTp*M defined as follows:

(L) (v1, ..o v5—1) = (v, 01, .. v5—1) forall g, .. vy in T,M.

Exercise. Check that 7,1 is multilinear and alternating, i.e. in Ak_lTp*M.

Lemma. Let M be a manifold, X in X(M) and n in E¥(M), then the contraction
X =1xn defined by
(txn)p:=1x,mp forall p inM
is a smooth differential (k — 1)—form, i.e. ixn is in EF1(M).
Proof. Exercise. O

Remark. On the space A*(T)M) = Ak(Tp*M) one has the multiplication “A” of
k>0

exterior algebras. This is easily globalized as follows.

Lemma. Let M be a manifold and n € E¥(M),n € E(M). Then the formula

(A p)p:=mp Ay forall pin M
defines a smooth (k + [)~form n A on M.

Furthermore the space of sections of the vector bundle A*T*M := @ A*T*M is canoni-
k>0

cally isomorphic to @ E*(M) and this space together with the wedge-product is a super—
k>0

commutative, associative, unital algebra over the ring E(M).

Proof. Exercise. O

Remark. Given a smooth map f: M — N between two manifolds M and N, and a point
p in M we have the tangent of f in p, which we will denote also by (f.),, i.e.

(f*)p =T, 0 T,M — Tf(p)N'
Since T, f is linear we have induced maps ®kTJT(p)N — ®kTp*M and AkTJT(p)N — AkTp*M.

Definition. Let f: M — N be smooth and 7 in £*(N). Then the k—form f*5 is defined
by

(f*n)p(vlv . '7Uk) = nf(p)((f*)p(vl)v ceey (f*)p(vk)) Vp S M, v Viy..., Uk € TpM
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is called the “pull-back of n by f”.
Exercise. Check that f*n is a smooth k—form on M.

Remark. It is important to note that the anologous construction on a vector field does
not always work, i.e. (f.X), = (fi)pXp € Ty N for pin M and X in X(M), but this is in
general only a section of the bundle f*(T'N) — M and does not necessarily define a vector
field on N.

Example. Let M = N = R and f(z) = «*. Then (T,f)(a(x)],) € TypR defines a
vector field on R if and only if a(x) = 0 for all  in R, i.e. if and only if the vector field

X = a(:z;)aa—x is everywhere zero.

Lemma. Let L, M, N be manifolds and g: L — M and f: M — N be smooth. Further-
more let n € EF(N) and p in E'(N). Then

(i) J7(n A ) = (F ) A ("),
fii) [0 = b0 | for b in E(N),
(tii) f*: EX(N) — E(M) is an R-linear even homomorphism of superalgebras (over R)

fulfilling
F @)= () (fn) foral ¢ in&(N),

(iv) (fog) =g of :E(N) = E(L).

Proof. Exercise. O
Definition. Let M be a manifold, X a vector field on M and ¢ the flow of X.

For a k—form n on M we define the “Lie derivative of  with respect to X” by

d % .
(Lxn)p = %‘0«(@5) n)p> for all p in M.

Proposition. Let M, X, X be as in the preceding definition and let n,n' be in E¥(M) and
woin E(M) with k,l > 1. Then

(i) Lxn is in EF(M),

(it) Lx(A-n)=X-Lxn for X in R,

(iti) Lx(n+n') = Lxn+ Lxn,

(i) Lx(n A p) = (Lxn) A+ 0 A (Lxp).
Proof.

Ad(i). Since the local flow ¥ is a smooth map from its domain of definition @ C R x M
to M it easy to deduce that Lxn exists in every point p of M and that (Lxn), is in
A (T,M)*, i.e. Lxn is a section of A¥T™M. Since differentiability of a section is a local
condition we may assume that M = V is an open subset of R™. The fact that £%(V) =
(({daiy A--- Ny lin < - < ir}))ev) implies that Lx7 is a smooth section if and only
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if (Lxn)(X1,...,Xg) is a smooth function for all Xy,..., Xy in X(V). For p near a fixed

point pp in V' we have

(Exm)(X1, o X)) = ] (16, (X1 (), Xel)

= (@1, X0 (0, (X)) = | Plep,

and for fixed X, Xi,..., Xy, n the function F(¢,p) is defined for small £ and p near py and
is smooth in both variables. Thus (Lxn)(X1,..., X)) is a smooth function in p near po for
all pp in V', and the first assertion is proven.

Assertions (ii) and (iii) follow directly from the R-linearity of the maps ()"

The last assertion can be derived from the formula (X)*(n A p) = ()0 A (¢X)*1 by
writing £ () 0), = limio 2(((¢)*0), — o) (for all o in £€*(M)) and mimicking the
proof of the Leibniz rule for functions of one real variable. a

Lemma. Lel M be a manifold, X in X(M) and [ in E°(M) = E(M). Then

Lxf=X(f), ie Lxf=D),
where DX is the derivation of E(M) canonically associated to X.
If furthermore 1 is in EX(M) with k > 1 we have Lx(f 1) = (Lxf) -n+ f-(Lxn).
Proof. Let p be in M, then

(Lx D)) = 5] (X7, = 2| (Foedi) = 5] 1eF o),

i.e. (Lx f)(p) is the derivative of f in the direction %|O<p§ (p) = X(p). Since this is the very
definition of (DX (f))(p) the first part is proven.

The second part follows as sketched in the proof of Assertion (iv) of the preceding propo-
sition. O

Definition. Let M be a manifold and X and Y in X(M). The “Lie derivative of Y with

respect to X7 is defined as follows

(ExY)(p) 1= ] (1) (&5 ()} for all pin M.

Remark. Since the flow ¢* is smooth LxY is a well-defined section of T'M. Its smooth-
ness will follow a fortiori from the next proposition.

Definition. Let M’ and M” be manifolds and F' : M’ — M" a diffeomorphism. For a

vector field Z on M’ we define its “push—forward” as follows

(FuZ)g = (Tp-1() F)(Zp-1(g)) = (F)p-1()(Zp-1()) for all ¢ in M".
Remark. Considering a fixed point ¢ = F'(p) the above formula is just the tangent of the
map F. In the case here considered when F'is a diffeomorphism, £, 7 is easily seen to be

a smooth section of TM", i.e. F,Z is a vector field on M".
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Lemma. Let M', M" F and 7 be as in the preceding definition, and let p? be the flow of
Z on M'. Then the flow of F.Z on M" is given by pi*? = F o @Z o F'7',

Furthermore, if f is in E(M") then ((F.Z)(f))(q) = (Z(f o F))(F~(q)) for all ¢ in M".
(F.Z)(f) denotes of course again D™Z(f)).

Proof. Obviously we have F' o pZ o I'~' = Idysm. Furthermore

d _
2| (F ol 0 F ) (a) = (Trm F) Zeaiy) = (.2),

so that the first assertion is proven.

Let now f be in £(M") then

(200 = (7o o0 = | o Foet o r i
- % o FY e (F(q))) = Zeq(f o F) = (Z(f o F))(F~'(q))-

Proposition. Let M be a manifold and X and Y in X(M). Then

LxY =[X,Y]

Proof. Since X(M) is canonically isomorphic to the derivations of £(M) it is enough to
show that (LxY)(f) = ([X,Y])(f) for all f in E(M).

Let f be in £(M) and p a point in M. There is a € = ¢(p) > 0 and an open neighborhood
U of pin M such that ;| : U — W, = ;" (U) is a diffeomorphism for all ¢ with [¢| < e.
(The sets W; are of course open in M.)

We compute

) o eE oI £ )= | 1, s

0 N @i (p) ~p "~ dtlo ~p

EV( )=

where we consider for every ¢ the diffeomorphism F' = ¥, : W, = M’ — U = M" and we
use the pushforward notation.

By the previous lemma we have

(ExV )l [ )= L 1o Die o)

~p
In order to calculate this derivative with respect to ¢ we introduce the smooth maps
Al = (—€¢€) = . x [.,A(t) = (A1(1),As(t)) := (¢, 1) and
il L= Rp(r,s) = (Y(f o Z))(er (p)-
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(If necessary we choose a smaller € > 0 here.)
It follows that

(£xv), = 4 e n)n = (20.0) - (S5H0) + (Zo.0) - (220)

S

= (XY ()P) -1 = F(XUNP) -1 =X Y]())p)-
O

Proposition. Let M be a manifold, X a vector field on M and n a k—form on M (with
k>1). Then

('CXU)(XM cee 7Xk) = ’CX(U(XM cee 7Xk)) - Zn(le s 7Xj—17'CXXj7Xj+17 cee 7Xk)

J=1

for all vector fields Xy,..., X, on M .
Proof. For all (¢,p) in Q, the domain of the local flow of X, we have

(X (X, X)) = L) () (X X Mo ()
= () i (X () Xl ()

= (50, (X)) AT D) -5 (X)) iy (XX ()

Thus, using the Leibniz rule repeatedly in the variable ¢ as in the preceding proof one has

(Ex(n(Xe, - X)) = 5| (X6, X0 0)

= (('CXU)(XM e 7Xk))(p) + Zn(le coy X, Lx X, X, - 7Xk)(p)'

i=1
O

Bibliographical remarks. Books on manifolds as quoted at the end of 2.1 plus [GHL].

2.7 The exterior derivative of differential forms and de Rham cohomology

Example. Let Q be an open subset of R A vector field, given as K = 2?21 ]&’}%
J

with K in £(), is — especially in physics — often described by the smooth vector—valued

function K = (K, Ky, K3) : Q — R® The canonical Riemannian structure and orientation
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allow the definition of the usual operations of vector calculus (for ¢ in £(€) the expression
0;¢ denotes here the partial derivative % with 7 in {1,2,3}):
J

* the “gradient” of a smooth real-valued function f on £ is defined as
L0
grad [ = V[ = ;@fa—xj

or by Vf = (00 f. 0. ).
* the “curl” of a vector field K is given as

curl K = Vx K = (82](3 — 83[(2)8% + (83](1 — 81[(3)8% + (81](2 — 82[(1)8i
1 2

T3

or as V x K, where V = t(a%, %, 8873) and “x” is the vector product,

* the “divergence” of a vector field L is

3
divL => 0L,
7=1

—

.
or as V- L, where “.”

is the scalar product.

It is easily checked that div (curl K') = 0 and curl (grad f) = 0. Thus in order to decide
e.g. if a given force field K is conservative, i.e., a gradient field, we immediately find the
necessary condition curl( K’) = 0.

In order to translate the “exact sequence” (i.e., div o curl = 0 and curl o grad = 0)
£0(0) £ X(Q) =5 x(Q) =5 £°()

into the language of differential forms we define the following £(2)-module isomorphisms

3 3
d
o X)) = EHQ), T g Kj%) = g K;dxj;
=1 !

J=1

o X(Q) = £4HN), TQ(ZLja%)

== lel'z A dl’g — del'l A dl’g + Lgdl'l A dl’g,
5 EQ) = EX(Q), fr fdry Adeg Ades.

Setting do := 7 0 grad, dy := 7 o curl o (7'1)_1,623 := 730 div o (72)”! we get an exact
sequence (dj41 0 d; = 0) as follows:

£0(0) oy g1() 1 £2(0) 2y £3(0).
Over first objective is to generalize this sequence to an arbitrary manifold.
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Definition. Let M be a manifold and 7 a differential k—form on M (k > 0). The “exterior
derivative d(n) of n” is defined by the following formula:

k+1
() (Xrs o Xpr) == D> (1PN (X, X X))
7=1
+ Z(_l)i-l—jn([XivX]]lev s 7Xi7 s 7Xj7 s 7Xk+1)

i<
for all Xy,..., X1 in X(M). (A hat “A” on a vector field means that the corresponding

vector field is omitted.)

Remarks. (1) The expression d(n) defines a smooth (k 4+ 1)—form on M. (Proof as an
exercise. )

(2) For fin EM) = E°(M) and X in X(M) we have (d(f))(X) = X(f) = D¥(f), and
for o in E'(M) and X, Xy in X(M) we have

(d(e)) (X1, Xz) = Xi(a(X2)) — Xo(a( X)) — a[X1, X))

Let us recall that a k—form n on an open set V' C R™ can be described as a finite sum

Yo fudxy, where J = (ji, ..., jx) is a multi-index of “length &” (|.J| = k), j1 < -+ < Jg,
|J|=k

and dvy = dxj A...Adzj;, and f;in E°(V).

Lemma. Let f, f; be in E°(V) for V an open set in R™ and n = > fidxy a differential

|J|=k
k—form with k > 1. Then

(i) d(f) = 3 fhdz., and

(it) d(n) = 22 (d(fs)) Ndw;,

|J|=k
Proof. Ad (i). Since df is a 1-form there are function g; on V such that d(f) = E;nzl gijdz;.

We calculate
a= (Y 0de,) o) = W) = (o)) = 5

Ad(ii). Since the operator d : E5(M) — E*1(M) is obviously R-linear we may assume
that n = fdxy A ... A dxyg. Since d(n) is a (K + 1)~form we know that

dig) = > gdey Ao Ndeg Ade Y g da,
I=k+1 |J'[=k+1

where J' = (j1,...,J54,) with 5{ <--- < g and {1,....k} & {j1,..., 7541} We have

5 5 k+1 0 9 F) 0
gy = (d(n))(axﬁ,...,—a%H) = ;(—1) Jes <77 6xj{""’axj;"“’aj;€+l)>
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o 9] 0 d J 0
_1\rts -
+2_(=1) 77([691;]‘;781:]4]’8:1:117""61;1;""’81;11@7”"61;4/ > !

r<s Jk41

since by [52, 5] = 0 the second sum vanishes and since the first sum is zero by J'\{j} #
x;? dx;

{1,...,k} for all r.

FPurthermore

k ~

O Ny 000
= )G g ) = 2D g (g G 5y 30

0 0 0 o 0 0
—I—(—1)k+1+1a_:m<77(a—x1,...,a—u)> + Z(il)n( [8—:1;7,’6—:1;5] ’8—:1;,5"”>'

The third sum vanishes termwise as above since the “coordinate vector fields commute”,

i.e. { o 2 } = 0 for all r and s. The first sum also vanishes termwise since (dxy A ... A

dxy’ 8_735
d:z:k)(%, el aa;i ey %, 8%1) is zero for all [ > k. Thus we find
0
— _1 k-l—?_
g1 ( ) axl(f)
and hence
d(n) = Z (—l)k""zg—idxl Ao N dag Ndxy = Z g—idxl ANdxy Ao AN dy
[=k+1 [=k+1

"9
:Za_fdx,AdxlA...Adxk:(d(f))AdxlA...Adxk.
€]
=1

Lemma. Let V be open in R™ and 7 in {1,...,m}. Then

d(l']) = dl‘j.

Proof. The right hand side is the 1-form uniquely determined by (dxj)(a%l) = §;, for
[ =1,...,m. Let us compare this to the exterior derivative of the j-th coordinate function

(e ) = o) = 6.

a

Remark and definition. Since the preceding lemma shows that there is no difference
between d(x;) and dx; from now we will simplify the notation and will not distinguish
between them, i.e.

dn:=d(n) forallnin & (M).
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Proposition. Let M be a manifold of dimension m, n a k—form and p a [-form on M.
Then

(i) d(X-n)=X-dn for X inR,

(i) d(n +p) =dn+dp if k=1,

(iii) d(n A @) = (dn) A p+ (=1)"n A dp,
(tv) dn =0 if k > m,

(v) d(dn) = 0.

Proof. The first two assertions follow directly from the definition and the fourth one from
the fact that there are no non—zero n—{forms for n > m on a m—dimensional manifold.

In order to show the remaining assertions we observe first that d is a “local operator”,
i.e. to calculate (dn), it is enough to consider n on an open neighborhood of p. We can
therefore assume for the rest of the proof that M =V is an open subset of R™.

Furthermore we may assume that n = fdx, A... Adz;, and p=gdx;, A...ANdzj,.

It follows
dinAp)=d(fgde;, N...Nde;, Ndxj, A ..o Ndxj,)

=d(fg) Ndxy N Ndxj, = (g(df) + f(dg)) Nday, Ao Ndaj, = (df ANdag, Ao AN day,)
Agdzi N . Ndx;) (=D (f dei A Aday, )N dghdz; A. . Adz;) = (dy)Ap+(=1) nA(dp).

Ad(iv). Let f be in E°(M) and X, X, in X(M). Then
(d(df)) (X1, X2) = Xa((df)(X2)) — X2((df )(X1)) — (df )([ X1, X2])
= Xi(X2(f)) = Xo(Xu(f)) = [X0, X5](f) = 0.

By localizing near a point p in M we can again assume that M = V', open in R™, and that
n = fdxy, AN...A dx; . It follows that

d(dn)) = d((df) N dxiy A ... ANdxy,)

= (d(df)) A dl‘il VAN dl‘zk —|— (df) A d(dl'“ AN dl’zk) = 0
since d*(f) = 0 and d(dx;) = 0. O

Example (and exercise). Check that in the example at the beginning of this section
the operators Jj are the operator d in the different degrees (of differential forms.) Translate
the assertions of the preceding proposition to formulas in vector analysis.

Remark. Since £5(M) = @4>0E¥(M) the operators d : E¥(M) — E¥(M) can be put
together to build an operator d : £(M) — £*(M). The assertions (i) — (iii) can then be
rephrased by saying that d is an odd super—derivation of the real super—algebra £*(M).

Proposition. Let M and N be manifolds, and dy; and dy the respective exterior deriva-
tives. Let furthermore F': M — N be a smooth map then

dyo F* = F*ody.
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Proof. Going to local coordinates we may assume that M = V is open in R™, N = W is
open in R”, and that the map F' : M — N is given by n scalar functions I' = *(F,..., F,).

Given a k—form n on W we can assume that n = gdy; A ... A dyg, where g is in E°(W) and
Y1,...,yx are the first & coordinate functions on W C R™.

We calculate (setting intermediately dys = dy = d for convenience):
(dM o] F*)(U) = dM(F*(gdyl JANAN dyk)) = dM((g o] F)dFl JANAN dFk)

:d(goF)/\dFl/\.../\dFk:ZZ(%OF)Zi
7 K3

dl’i/\dFl/\.../\dFk
7=1 =1

— <Z F*(S—j)dﬂ) ANdFy A ... NdF, = F*(dg) NdFy A ... NdFy, = (F* o dy)(n).
. J

J=1
O

Corollary. Let M be a manifold and X a vector field on M. Then the following identity
of operators holds on E*(M).
EX O d = d O ﬁX.

Proof. Since (Lxn) = 2| ((¢)*n) the assertion follows easily from the preceding propo-
0

sition. O

Proposition (“Cartan’s magic formula”). Let M be a manifold and X a vector field
on M. Then the following identity of operators holds on E*(M):

Lxy=doix +ixod.

Proof. The formula holds trivially for 0—forms, i.e. functions on M. Let now & > 1 and
n a k—form on M. Let furthermore Xi,..., X} be in X(M) and set Xq = X. Then

(doix +ixod)(m)(X1,... Xe) = (dn(X, .. ) X1s .., Xp)+ ((d)(Xos .. ) (X1, .., X5)

1<i<y
k
+ Z( 1)Z+2X2(77(X07 7X27 7Xk)) + Z(_l)]n([Xonj]lev 7X'7 7Xk)
i=1 0<y
+ Z (_1)i+j77([Xi7Xj]7X07 7Xi7 7)?]7 7Xk)
0<i<y
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= XO(U(Xh cee 7Xk)) - Zn(le s 7Xj—17 [Xon]]vXj+17 cee 7Xk)

0<g
= (Lxn)(X1,..., Xp).
O

Remark. Beside this “algebraic” proof of Cartan’s formula there is also an “analytic”
proof using the flow of the vector field X. We will not present it here but we will use the
latter approach to get a stronger result for “time—dependent vector fields” as a preparation
for Moser’s method to prove Darboux’s theorem.

Corollary. Let M be a manifold, X,Y in X(M) and f in E°(M). Then for n in EX(M)

one has
(i) Lyxn = [+ Lxn+(df) A GE(X)n).
Furthermore the following identies hold on (M)
(ii) [Lx,ty] = ixv],
(iii) [Lx,Ly] = Lixy]-
Proof. Ad(i).
Lixn=dn(fX,...))+ (dn)(f- X,...)=d(f-n(X,...)) + f - (d)(X,...)
A X ) (X)) + - ()X,
= (d)AN@X)n) + - (doix +ixod)(n) = [ Lxn+ (df) A (((X)n).

The second assertion follows from the explicit formula for Lz, 7 € X(M), i a differential
form shown at the end of Section 2.6.

The third formula is then derived from the second and Cartan’s magic formula. O
Remark. If M is a manifold of dimension m then we have the sequence

M) S er M) S S ek S e My S Sem M) S o,

which is “exact” in the sense that d o d = 0.

Definition. Let M be a manifold, then for £ > 1 the “k-th de Rham-cohomology group
of M7 is defined as follows

ker(d : E5(M) — EFY(M))

Hip(M) = Hip(M.R) = im(d : (M) — EF(M))’

where ker and im denote the kernel and the image of the corresponding R—linear maps.

For k = 0 one defines
HOp (M) := H)5(M,R) := ker(d : E°%(M) — EY(M)).
Remarks. (1) A differential form n such that diyp = 0 is called “closed”, and if there is a

form p fulfilling dp = n we call n “exact”. The Rham cohomology groups measure therefore
“how many closed forms on M are not exact.”
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(2) Though traditionally called “cohomology groups” the spaces H4n(M) are in fact R-
vector spaces.

(3) If the dimension of M is less or equal than m, then Hfn(M) = {0} for all & > m + 1.

(4) A function f in £°(M) is in the kernel of d if only if f is locally constant. (Proof as an
exercise.) Thus for a connected manifold M we have that H9,(M) = R.

(5) Tensorizing the bundles A*¥T*M with the trivial complex bundle M x € — C we get
smooth complex vector bundles A*T*M @y € — M. Its sections [ee (M, A*T*M ), €)
are denoted by £%(M) and called “complex(-valued) differential kforms on M”. The
exterior derivative d can be extended to the spaces £(M) by complex-linearity and we
can, in complete analogy to the preceding definition, define H¥,(M,C). Tt is not difficult
to see that HY,(M,C) = HY,(M,R) Q) C.

Remark. Though easy to define the de Rham cohomology groups of a given manifold M
might be difficult to calculate.

Example (and exercise). Let again Q be open in R and K : @ — R® a smooth force
field on Q. Recall that K is called conservative if and only if there exists a smooth function
V :Q — R, a potential, such that K = VV. Since curl o grad =0 (i.e. d* = 0), we arrive
at the necessary condition VxK = 0, which is equivalent to d( 2?21 K;dx;) = 0. Thus
for Q open in R? we have

. qcurl-free force fields on Q}
Hap(Q)

- {conservative force fields on 2}

Let now Q := R*\{ (2, x5, 23) € R3z; =0 and 5 = 0} and K = 75<_—9”2 ngggg,()).

1’? —I—acg ’
A direct calculation shows that V x K = 0, i.e. K is curl-free.

Assuming now that K =VV for a function V : Q — R, then the work along a path should
depend only on the endpoints, i.e. in physicists’ language

/ K-ds = V(b) — V(a)

if ' is a path from a to .
Defining now paths C, for ¢ = &1 by maps 7. : [0,1] = Q as follows

cos(mt)
Ye(t) := | e€-sin(nt)
0

1 —1 .
we find 7. (0) = [ 0 | ,7(1) = 0 and [, K-ds = me, i.e. ¥ cannot be a conser-

0 0
vative field.
Otherwise stated, the differential 1-form oy = 2?21 K;dx; defines a non-—zero class in

Hjn(Q). In fact, one has Hin(Q) = (([ax]))r-
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In order to prove the aforementioned fact as well as the “Poincaré lemma” below we will
first investigate the relation between homotopies and cohomology in general.

Definitions. Let M and N be manifolds and A a closed submanifold of M.

(1) For a smooth map F:[0,1] x M — N we set Fi(p) := F(t,p). We call F' a “(smooth)
homotopy between the maps Fy and Fy (from M to N).”

(2) Let f: M — N and g : N — M be smooth maps such that g o f is homotopic to Idx,
and f o g homotopic to Idy. We then say that “M and N have the same homotopy type
(in the C>—sense)”.

3) If M has the same homotopy type as a point we call M “contractible”.
( py typ p

(4) If ¢ + A — M is the inclusion map and r : M — A is a smooth map that restricts
to the identity on A, i.e. r o1 = Idy4, we call r a “retraction of M to A”. If furthermore
1or: M — M is homotopic to the identity of M we call r a “deformation retraction of M
onto A.”

Remark. A map F':[0,1] x M — N is smooth if F} is smooth for all ¢ and if ¢ — F(¢,p)
is smooth for all p in M, where smoothness in the boundary points is defined by taking
appropriate (one-sided) differential quotients.

Proposition. Let F' : [0,1] x M — N be a smooth map. Then there exists a R-linear
operator H : E(N) — E*(M), lowering the degree of differential forms by one, that satisfies

doH+ Hod=F] - Fj.

Remark. Such an operator H is called a “homotopy operator”.
Proof of the proposition.

Let # be in E(N), pin M and vy,...,v_; in T,M. We set for ¢ in [0,1] : 3, : M —
[0,1] x M,i.(p) = (t,p) and define

1
» d . .
(Hﬂ)p(vlv ce e Ul—l) = / {(F M)(tm)(a ) (Zt)*pvlv ) (Zt)*pvl—l) dt.
0 (tvp)

(Since [0,1] x M is a product the injections i; are obvious and we will omit the maps (¢;).
in the rest of the proof.)

In order to show the asserted formula it is enough to consider an open neighborhood of a
given point p in M, i.e. we can assume that M =V is open in R™. Thus Hpu is determined
by its values on the “coordinate fields”:

x) — /01 {(F*M)(t,x)(% (m))} dt

where z is in V and 7; < --- < ¢;_;. This local description of Hu immediately shows that
Hy is smooth in = as a “parameter—depending” integral.

0 0

0
(Hﬂ)w(al'“ x7 Y 6:1;il_1

(tz) Oz,

0

7 .« . o 7 -
(t,) Ox;,_,
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Let us now calculate the terms in the left hand side of the assertion, applied to a fixed
k—form n on N (and for iy < --- < iy):

(T 5) = Y1

9 ) 9
Bor x((Hm(a%,...,a%,...,axik>)+

St ([ g )

r<s
: "o J 0 5 5
— ERRYEE w0
B ;( g /0 [8:1;2»] “’((F n)(af dwg 0y, 3$zk))] "

since the coordinate fields commute. On the other hand

o 0 0
E’E"“’a?ik)} dt

)y = |

i

(F7dn).(

:/01 {(d(F*n))x(%,%,,%)} dt:/ol {%{(F*n)l’(ailvva%%)}} di

- g 0D Bl Bl
+;(_1)1+2/0 {axij A 77)(%axil""’axij"”’axik)H dt,

since all commutator terms involue either [%, ai
r

] or [a%r, 5] and thus vanish.

We therefore arrive at

9 9 N 9
) + 1)) = [ S g
. . 0 0
—(F177—Fo77)x(67i17---767%)-

Definition. Let M and N be manifolds and f : M — N be a smooth map. The “induced

map on de Rham cohomology” is defined as follows

F(n) :=1[f"n] for all classes [n] in Hjz(N).

Remark. Given a class ¢ in Hz(N), one easily verifies that the class f*cin Hip(M) is
independent of its representative n in £*(N).

Lemma. Let M and N be manifolds and f : M — N a smooth map. Then
(i) [*: Hip(N) = Hip(M) is R-linear,

(ii) Hip(M) is a super—commutative, associative real super—algebra with multiplication
given by

(] A (] i= [ Al
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(tii) f* is a algebra—homomorphism, i.e. [f*n] A [f*u] = f*nAp] .

() If L is a further manifold and g : L — M is smooth then (f o g)" = g*o f* on de
Rham cohomology.

(U) ]fM = N and f = ]dM then f* = (]dM)* = ]dH;R(M)-
Proof. Exercise. O
We collect now several important applications of the last proposition (and the last lemma.)

Corollary 1. Let M and N be manifolds and f,g: M — N be two smooth maps that are

homotopic. Then
["=9": Hip(N) — Hjp(M).

Proof. Let F':[0,1] x M — N be a smooth map such that Fy = f and F; = ¢. For a
class ¢ in H5,(N) represented by a closed form 7 in £(N) we find

gc=g"[n]l = [g"n] = [F{n] = [Fgn + dHn + Hdn]

= [Fon] + [dHn] = [Fon] =[] = fn] = e
O

Corollary 2. Let M and N be manifolds having the same homotopy type. Then Hip(M)
and Hip(N) are isomorphic as R-algebras.

Proof. Let f: M — N and g : N — M smooth maps such that g o f is homotopic to Ids
and f o g homotopic to Idy. Then, by Corollary 1

f* ) g* = (g 0 f)* = (IdM)* = IdH;R(M) and

g of = (fog) = dn)" =ldg v
and thus f* and ¢* are mutually inverse isomorphism between H}n(M) and Hin(N). O

Corollary 3. Let M be a contractible manifold. Then HO5(M) = R and H5,(M) = {0}
for k> 0.

Proof. Since the cohomology of the zero—dimensional connected manifold consisting of
one point is isomorphic to R in degree zero and trivial in all other degrees the assertion
follows from Corollary 2. O

Corollary 4. Let M be a ball IBr(0) with radius 0 < R < oo in R™, then Hip(M) = R
and HY (M) = {0} for k > 0.

Proof. The map
F:]0,1] x Bg(0) = Bg(0), F(t,z)=(1 —1t) -«

is a smooth homotopy from M to the origin 0 in Bg(0) such that Fi(0) = 0 for all ¢. It
follows easily that IBg(0) is contractible and thus by Corollary 3 the de Rham cohomology
of M = Bg(0) is as asserted. a
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Corollary 5. Let M be a manifold and A a closed submanifold such there exists a de-
formation retraction r : M — A from M onto A. Then r* : Hip(A) — Hip(M) is a

R -algebra isomorphism.
Proof. Follows directly from Corollary 2. O

Corollary 6. Let M and N be manifolds and o : M — N a diffeomorphism. Then
0" Hin(N) — H;p(M) is an isomorphism.

Proof. Let v = ¢=!' : N — M, then the assertions (iv) and (v) of the last lemma imply
immediately that ¢* and * are mutually inverse isomorphisms in de Rham cohomology.
Examples (details as an exercise).

(1) Let M be R™. Then H3p(M) = R and H5,(M) = {0} for k > 0.

(2) Let E -2+ M be a vector bundle. Then H (M) -, H;p(FE) is an isomorphism.

(3) Let Q be R*\{zy = 0,22 = 0}. Then A = {23 = 0,27 + 23 = 1} is a deformation
retraction of © and thus 7 : A < € induces an isomorphism ¢* : H;z(2) — H}p(A).

Bibliographical remarks. As at the end of the last section plus the parts on de Rham
cohomology in [BT], [J] and [KL].

2.8 Integration of differential forms on manifolds

Definitions. Let M be a connected manifold of dimension m.

(1) An “orientation form on M” is an element © in €7 (M) such that 9, # 0 for all p in
M, ie. ((2))r = A™(T,M)* for all pin M.

(2) Let Q" and Q" be two orientation forms on M. Then “Q" and Q" are equivalent (as
orientation forms)” if there is a smooth function f : M — R such that f(p) > 0 for all p
in M and Q" = f- Q. We write then [(V'] =[]

orientation —
(3) An “orientation on M” is the class [(]]

orientation-

orientation of an orientation form {2 on M.

(4) The manifold M is called “orientable” if there exists an orientation form on M.

(5) An atlas A = {(Ua,¢a) | € A} of an oriented manifold (M, [Q]  ientation) 15 called

“positively oriented (with respect to the orientation [Q] ientation)” if for all ain A

(07')"Q = gadaf A ... Adal,

with a smooth strictly positive function g, : Vo, = ¢.(Us) — R. (The coordinates on
V., C R™ are denoted by (zf,...,2%).)

2 'm

Remarks.
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(1) An orientation form (respectively an orientation) on a m—dimensional manifold should
be intuitively seen as a “smoothy varying orientation form (respectively an orientation) on

T,M for all pin M”.

(2) A m—dimensional connected manifold M is orientable if and only if the smooth real

line bundle A™T*M — M is trivializable.

(3) An orientable connected manifold has exactly two orientations.

(4

)
(5) A manifold M is called orientable if each connected component of M is orientable.
)

(6

A smooth map F' : M — N is called “orientation—preserving” if [F*Qy]

The notion of a positively oriented atlas is well-defined.

Let M and N be manifolds and Q,; and Qx orientation forms on M respectively N.

orientation =
[QM]orientation'
Examples.

(1) The form dxy A ... Adx,, on R™ is called the “canonical orientation form on R™”.

(2) Let m > 2 and let f : R™ = R, f(2) = 3(||z]|* = 1) then {z € R™| f(z) = 0} = 5™
and T,5™ = {v € T,R™|(df),(v) = 0} for all p in S™ . Furthermore U := B, (0) = {z €
R™| f(z) < 0} and QU = {z € R™| f(x) = 0} = S™!. The “(outward pointing) normal

field on S™ 17 is defined as
m B af 0
w-(S6E) G )

Jj=1 J=1
Note that N is not a vector field on S™~! but the restriction of a vector field defined on
an open neighborhood of S™~! in R™ to S™7!, i.e. a section of (TR™)]| gm-1-

More concretely we have the formula N(p) = E] \PiT | Let furthermore A := dx; A
..Ndz,, be the canonical orientation on R and let us set Q= inpAy = (iNA)p|TpSm_1.

Then € is a non—vanishing (m—1)—form on S™~'  in explicit terms

= (Y (~Dagdaes Ao Aday A A day),

i=1

The orientation [Q],ientation O 5™ " is called the “canonical induced boundary orien-
tation (with respect to S”~! = QU and the orientation [A]  ientation)” -

(3) Let again m > 2 and P,,_1(R) = P(R™). Denoting the canonical projection R™\{0} —
P(R™),x + [z] by 7, we have a smooth surjective map of constant rank m — 1 defined by

m: 8" S P (R), w(z):=7(z) = [2].
For any (m — 1)-form © on P,,_1(R) we have the pullback 7*@ in ™~1(5™~ ). Since

P_1(R)= S™/., where & ~ y if and only if either y = @ or y = —x =: 7(x), a differential
form n on S™~! is the pullback of a form on P,,_;(R) if and only if 7% = 5. Obviously
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70 = (—1)"€Q for © the orientation form on S™~! constructed in Example (2). It follows

that P,,_1(R) is orientable for m an even integer with m > 2.

Let now be m > 2 and odd. Assuming that P,,_1(R) is orientable, the pull-back of an
orientation form © is a multiple of Q : 7@ = ¢ - Q with ¢ a smooth function on S™1,
Since 7 has constant rank equal to m — 1, 7*0 is an orientation form on S™~! and, after
possibly changing © to (—0), we can assume that g > 0 on S™ ! since ) is an orientation
form. The identity

g-Q=7(g-Q) =7(g)-7(Q) = (go7)(-Q)

implies that ¢ is a strictly positive smooth function on S™~! fulfilling g(—x) = —g(x) for
all  in S™ !, Since there are no such functions ¢ it follows that P5.(R) is not orientable
for n > 1.

Definitions. Let M be a manifold and 2 = {(U,, ) |a € A} an atlas of M.

(1) The atlas 2 is called “locally finite” if for all p in M the number of a in A such that
p is in U, is finite.

(2) Let 2 be now a locally finite atlas. A collection of smooth functions {x. | € A} on M
is called a “partion of unity (subordinate to 21)” if the following conditions are satisfied:

(I) the values of v, are in [0, 1] for all « in A,

(IT) The closed set supp xo = {# € M|xa(x) # 0} is contained in U,,
(LII) For all p in M one has > .4 xa(p) = 1.

(Note that the sum in (III) is finite since 2 is locally finite.)

Proposition. Let M be a manifold. Then there exists a locally finite atlas and for each
locally finite atlas there exists a partition of unity.

Remark. We will not give a proof of the preceding proposition, but we stress at this point
that we included the conditions of Hausdorff and second-countability in our definition of
a manifold. These conditions assure the existence of partitions of unity. (See textbooks on

manifolds as [AMR] for details.)

As a first application we note the following

Proposition. Let M be a m—dimensional manifold. Then the following are equivalent:
(i) M is orientable.

(it) M has a locally finite atlas that is positively oriented with respect to an orientation
form  on M.

(tit) M has a locally finite atlas {(U,,pa)| o € A} such that the Jacobi determinants
det ((pap)«) are everywhere positive for all o, 3 in A.

Proof. Let M be oriented by the orientation form € and let 2 = {(Uys,@0) | € A} be
any locally finite atlas. We define ¢, : U, — R™ as follows: if (¢;')*Q = g, daj A ... Adz?,
and g, is everywhere positive, we set @, = @,. If g, is everywhere negative then we
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define ¢, := W o @,, where W(af, x5, ..., 22) = (—af,z5,...,22). It follows that A =

2 'm

{(Ua, pa) | a € A} is a positively oriented atlas (with respect to Q).
Given any atlas A = {(U,, ¢o) |a € A} and (') *Q = goday A ... A dz2,, we calculate

—1\* * 1 o o
(det((pap)s))-dz? AL A daf = hpldei A AN dey) = (c,oﬁl) 0(wa) (— ga dxSN. . .Ndx)))

O

1 1

=1y —1y%

= (¢ Q) =(—)(p Q=
( g ) (gozoﬁoa ) (gaogoaocpﬁl)( g ) ga(‘toaﬁ)

Thus for a positively oriented atlas we have (det(¢as)<) > 0.

d:z;f/\...d:z;ﬁ

m*

[t remains only to prove that (iii) implies (i). Given a locally finite atlas A = {(U,, ¢4 ) | €
A} such that (det((¢ag)«)) > 0 and a partition of unity {x. |« € A} subordinate to 2 we
define differential forms Q, := xo - @i (dxd A ... A dx2) on M. Since Q,(p) = 0 for all but

a finite number of a for each p in M, the differential m—form

Q::Zﬂa

aEA

is well-defined on M. Given p in Ug we have (with A, ={a € A|p € U,})

(25" ) Destr) = D (05 ) Q)onm) = Y, (X095 )- (95" ) 00i(dat A A )],

aEAp aEAp

= > Xalp) - (@hp(daf A A d2D)) g, :[Zxa (det((pus)ep))| - da? Ao A daf

OZEAP OzEAp
and thus  is a nowhere-vanishing m—form on M, i.e. an orientation form (and 2 a
positively oriented atlas with respect to Q). a
Corollary. Let M be a connected manifold with m = dimg M > 2 and U an open subset of
M such that OU is a closed (m—1)-dimensional submanifold of M and such that OUN U

(U denotes the interior of the closure of U) is empty. If M is oriented then OU has a
“canonical induced boundary orientation”.

Proof Let A = {(Uas, pa) | € A} be a locally finite oriented atlas of M such that for
N := 09U we have (U, NN) ={(a7,...,22) € Vo = oo (Uy) |27 = 0} and ¢, (U, NU) =
{(af,...,20) € V, |20 < 0}. LetB—{a€A|U ﬂN#@}and\Il : U, NN — R™ !

be defined by Wo(p) := (y7'(p),-.- ym_1(p)) := (23(p);..., 25 (p)). Then B = {(Us N
N, VU,)|a € B} is a locally finite atlas for N and it is easy to check that det((V,z3).) >0

for all o, 3 in B. By the preceding proposition there exists an orientation form on N = 9U
such that B is positively oriented with respect to this “canonical boundary orientation”.O

Exercise. Show that the boundary orientation we constructed on S ! is a special case
of the preceding corollary.

Definition. Let V be open in R™ and let A = g-dxy A ... A dx,, be in E7(V) such that

supp ¢ is compact. Then
/A = / gdzxy...dx,,,
v v
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where the right-hand side is defined by iterated integration (in the sense of the Lebesgue
or the Riemann integral).

Lemma. Let V' and V" be open sets in R™, oriented by the standard orientation form
of R™. Let furthermore A be in E™(V") with compact support, and ¢ : V' — V" an
orientation—preserving diffeomorphism. Then

[ =]

Proof. Using the transformation formula for multiple integrals we find

/@(V/):V“ A= /w(V’) 9W)dys-- - dym = /,((det () - gle(x)) - dry ... day,

= //((det e )(@)) - gle(x))dey A ... Nday, = //g(c,o(:z;))dcpl Ao Ndpn, = // ©"A.
O

Definition. Let M be an oriented m—dimensional manifold and A a m—form with compact

support. Then
A=Y [ e
/]\4 @a(Ua)

a€A
where A = {(U,,¢.)|a € A} is a locally finite, positively oriented atlas for M and
{Xa | € A} is a partition of unity subordinate to 2.

Exercise. Show that fMA is well-defined, i.e. independent of the chosen locally finite,
positively oriented atlas and the chosen subordinate partition of unity. (Hint: Use the
preceding lemma.)

Theorem (“Stokes’ theorem”). Let M be a connected, oriented, m—dimensional man-
ifold with m > 2, and n in E™=L(M). Let furthermore U be an open subset of M such that
its closure U is compact and its boundary AU is a smooth closed submanifold of M. Then

/dn:/ n.
U ou

Proof. The detailed derivation of this theorem can be found in many textbooks on
manifolds. For a short proof see, e.g., [BT], pp. 31. O

Remarks.

(0) A purist whould introduce the injection j : dU — M, j(p) = p and write Stokes’

formula as follows:
fn= /
aU

It obviously follows that the integral of j*(n) over boundary components of dimension
strictly smaller than m — 1 vanishes since they have no non-zero (m — 1)—forms.
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(1) Given our preparations the proof of Stokes” theorem is reduced to an ingenious re-
duction to the “Fundamental theorem of calculus”: if /' : R — R smooth and a < b then
F(b)— F(a) = [ F'(z) de.

Though formally not included in the above formulation of Stokes” theorem it fits in the
following sense:

Let M =R, U = (a,b) and n = F in E°(M) = €™ (M). The outward pointing normal
vectors in OU = {a, b} are then

N(a) = —i

X

d
and N(b) =

a ~de

b
b
i.e. parallel to the positively oriented basis % in b and anti—parallel in a. Thus “the integral
of the zero—form F' over dU with respect to the boundary orientation” should be (—F(a))+

F(b), i.c. b
F(b)—F(a):/aUF:/UdF:/UF’(:z;)dx:/a F'(z) dz.

(2) The usual integral theorems known from vector calculus in R? and R? are special cases
of Stokes’ theorem. As an example we will give the following.

Corollary (Gauss’ theorem). Let V be open in R® and K = '(Ky, Ky, K3) : V — R?
be a smooth force field. Let furthermore be U open in 'V such that its closure U is compact
and contained in V' and such that OU is a smooth closed submanifold of V.. Then we have
forn =igA (with K = 2?21 Kj% and A = dxy N dag A das):

/d(l]{/\):/ Z.](A.
U ou

Proof. Obviously the assertion of the corollary is a special case of Stokes’ theorem. O

Remark. The interesting part of the corollary is given by a further translation into vector

calculus. First, a direct calculation shows that d(ixA) = <23 8KJ> - A = (div(K)) -

7=1 W

A= (6 : [;’) - A. Secondly, in a point p of JU the two—form ixA restricted to T,0U is
necessarily proportional to the canonical orientation (:xA), = inyAp, where N(p) in T,V
is uniquely fixed as the outward pointing normal vector such that | N(p)|| = 1, N(p) is
orthogonal to T,0U C T,V = T,R® and p + eN(p) is outside U for small ¢ > 0. (Here
N(p) = 2?21 Nj(p)% , and N = *(N1, N2, N3) of course.)

Let us remark that N(p) = <E§’:1 |887g](p)|2> L <E§’:1 %(p)-%bj) if g is a local function
near p such that {g < 0} = U and {¢g = 0} = JU and dg|,;; # 0 as considered before in

this section.

We fix an ordered orthonormal basis {vy,vs} of T,0U such that (iyA),(vy,v2) > 0 (and
then equal to one in fact) and calculate:
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since {N(p),vi,v2} is an orthonormal basis of T,V = T,R® and thus (ixQ),(vi,v2) =
((K’ . Z\_f)(p))(iNQ)p(vl,vg), le. i) = (K’ . Z\_f)zNQ Interpreting N(ZNQ) as the “vectorial
surface element dS” we arrive at a formulation of Gauss’ theorem which is frequently found
in the physics literature:

/(ﬁ-f%mxldxz dxs :/ K -dS.
U oU

Proposition. Let M be a manifold and N a compact submanifold with an orientation.
Then the integral over N defines a linear functional on Hip(M).

Proof. For u in EF(M) let fNM denote the value of fN in(p) defined by the orientation
of N. (The inclusion map N — M is denoted by iy here.)

Let us assume that g = dy for n in E¥1(M). Then i3 (1) = d(i%(n)) and with Stokes’
theorem we will show that [, i% (1) = 0.

Let p be any point in N and ¢ : W — V be a chart of N such that ¢(p) = 0 and such that
B, (0) C V for a g > 0. Let U, := N\ ¢ !(B,(0)) for 0 < € < ¢ then by Stokes’ theorem

we have
/ (1vm) —hm/ (1vm) —11_1%1 ZN77.

/aUe = Axnze(‘ffl)*(%*v??)

and thus converges for € N\ 0 to zero.

It follows that fN dn = 0 and thus the map

On the other hand

HiA(M) > R, [u] /N "

is a well-defined linear functional. O

Corollary. Let M be a compact connected orientable m—dimensional manifold. Then

[Q] # 0 in Hip(M) for all nowhere—vanishing m—forms Q on M.

Proof. Let Q4 be a m—form defining an orientation of M. Then ) = f-Q, for a nowhere—
vanishing smooth function f on M. We may assume without loss of generality that f > 0.

Let A = {(Us,¢a)| o € A} be any locally finite, positively oriented atlas of M and
{Xa | @ € A} any partition of unity subordinate to Ql Then

fo=f o= ] wrem =3[ iener )

a @a(Ua)

and all summands on the last right hand side are non—negative, and at least one is strictly
positive. Thus [, € > 0.
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Since the functional

Hip(M) =R, [u] — / o
M
is well-defined by the preceding proposition it follows that { cannot be exact, i.e. [{2] # 0
in Hjp(M). O

Remark. With the hitherto developped theory it is possible to sharpen the assertion of
the last proposition to the statement that integration over M is, in the compact case, an

isomorphism from HJp(M) to R. (See [AMR], pp. 552.)
Bibliographical remarks. As for Section 2.7.

3. Symplectic geometry
3.1 Symplectic manifolds

Definitions. Let M be a (real) manifold.

(1) A differential 2-form w on M is called an “almost—symplectic form” if and only if
kerw, = {0} for all pin M,
i.e. “w is everywhere non—degenerate”. A pair (M,w) consisting of a manifold M and an

almost—symplectic form w is called an “almost—symplectic manifold”.

(2) An almost—symplectic form w on M is called a “symplectic form” if and only if w is
closed, i.e. dw = 0. A pair (M,w) consisting of a manifold M and a symplectic form w is
called a “symplectic manifold”.

Lemma. Let M be a manifold and w in E*(M). Then the following are equivalent:
(i) w is an almost—symplectic form

(i1) w; T, M — (T,M)* = (T*M), is an isomorphism for all p in M.

If M is furthermore of pure dimension m then (i) and (ii) are equivalent to

(iii) W™ is an orientation form on M.

Proof. The assertions follow directly from Section 1.3 and the definition of an orientation
form. O

Corollary. Let (M,w) be an almost-symplectic manifold of dimension m. Then M is
orientable and m is even.

Proof. The corollary follows immediately from the preceding lemma. a
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Definition. Let (M,w) be a symplectic manifold of dimension m = 2n. The orientation

form |
0= <(—1) 7 - E)w
is called the “canonical orientation form (or Liouville form) on (M,w)”. The associated

orientation [(}] is called the “canonical orientation on (M,w)”.

orientation

Proposition. Let M be a connected compact manifold of dimension m. Let furthermore
w be a symplectic form on M and ¢ = [w] in Hip(M) be the de Rham cohomology class of
w. Then the de Rham cohomology classes ¢* are non-zero in Hip(M) fork=1,2,..., .
Proof. Since w is closed it defines a de Rham cohomology class ¢ = [w].

Assume that there is a k in {1,2,..., 2} such that ¢* = 0, i.e. there exists p in E*~1(M)
such that du = w*. Closedness of w implies that w? = dn with 5 := p A w{Z 9. Since w?
is nowhere vanishing fMuJ% # 0, where the integral is defined by one of the two possible
orientations of M, e.g. by the canonical orientation of (M, w). Since it was shown in Section
2.8 that f,, dn =0 for all 5 in £™~'(M) we arrive at a contradiction. Thus there is no &

in {1,...,2} such that w* is exact. 0

Remark. The preceding results of this section show that not all manifolds can carry a
symplectic form.

Examples.

(1) M =R?*" and w := 2?21 dej A dx,qj. Then (M,w) is symplectic and

n—1)n 1
Q= <(—1) z —>w” =dx; Ndxy A ... Ndzg,—1 Ndz,.

"7l
The form w is sometimes called the “standard symplectic form on R?".”

(2) Let ¥ be a two—dimensional orientable manifold and 2 an orientation form on ¥. Then
w = is a symplectic form on ¥ (and ) = w is the canonical orientation form on (X,w)).

(2.1) Let ¥ = S2. In the notations of Section 2.8 there is a natural orientation form
Q = (inA)|pge (with A = dxy A dog A dxs and N = 2?21 :I;j%). Then (5%, Q) is a

symplectic manifold.

(2.2) Let M = S' x St and Q = dv; A dv)y, where dﬁj(%) = 6, Then (S* x S1. Q) is a

symplectic manifold.

(3) Let (My,w1) and (M3, ws) be symplectic manifolds and Ay, A in R\{0}. Then the form
A1 - (priwr) 4+ Az - (priws) is a symplectic form on My x Ms.

(4) Let (M,w) be a symplectic manifold and U be open in M. Then (U, w/|;,) is a symplectic
manifold.

Proposition. Let ) be a manifold, M := T*Q its cotangent bundle and m = 772 : T*Q —
Q the canonical projection. Then M has a canonical differential one—form 0 := 07" defined

by
0oy (Vay) = q((Ti)ay(va,)) for all ¢ in Q,aq in (T7Q), = (T,Q)" and vy, in T, (T7Q).
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Furthermore, the two—form w = w’ @ := —db is a symplectic form on M = T*Q.

Remark. The form 6 (respectively w) on T*Q is often called the “canonical one—form
(respectively two—form) on the cotangent bundle T*Q".

Proof of the proposition. Let ¢ : U — V C R” be a coordinate chart with domain
U, an open set in Q Then there is an induced vector bundle isomorphism ® = (T'¢)*

TV — T*U over =" : V. — U defined as follows:
P

T*V = (Tap—l(x)@)* N T;V = (Tl,v)* —> (Tw—l(l,)U)* = T;_l(l’)U fOI’ ELH X IH V

Furthermore we trivialize T*V as usual: let @ = “(x1,...,2,) in V C R” and y =
"(y1,...,yn) in R™, then we set

UV xR = TV, (x,y) Zy]dx]|

Clearly W is a vector bundle isomorphism over Idy.

We describe elements of T, (V x R™) by pairs ({,n) = <E] L €= 5, |, E] LN 8yj| >
with &,...,&,m,...,m, in R and calculate:
(@ 0 ) 0)20)(£:1) = Oau(ey) (P 0 W) (&) = Q(W(z,y)) (77 ?)w 0 @u o WL)(E,n)).

Since (77™ 0 ® o W)(z,y) = p~ () it follows

(@0 W) )y (&) = (Te) (W2, y N(Te™)(€)) = (¥(z,9))(E)
= <;yy‘ dl‘j|x> <Z§]8 > Zyyé} = <;yy‘ d%)(x’y)(ﬁm)?

Le (PoW)0=>3""_ y;de;in E'(V x R").

It follows from this local computation that § and w = —df are (smooth) differential forms
on M = T*(Q). Furthermore we have

(PoV)w=(PoU)(—df) = —d((PoV)*f) = z”: dx; A dy;

and hence w is non—degenerate in all points of the open set T*U in T™(). Since the above
local calculations are valid for all charts of () and since the cotangent bundles over chart do-
mains of ) form an admissible atlas of T*(@) it follows that w is everywhere non—degenerate
on M = T"(). Closedness of w is trivial since d od = 0 and thus w is a symplectic form on

T7=Q.
]

Remark. If we describe elements of V' x R™ (V open in R™) by (¢,p) = ((q1,---,¢n),
"(p1,...,pn)) the preceding proof yields the traditional formulas:

(PoW)d= ijdqj and (PoW)w= Z dg; N dp;

J=1 J=1
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for the cotangent bundle forms 6 and w.

Exercise. Show that the canonical cotangent bundle twoform w?™" on T*R" is pulled-
back by ® o ¥ = ¥ to the standard symplectic two—form on R*" (up to renaming of the
variables y; =: x4, for j=1,...,n).

Remark. Given a manifold @), a “configuration space”, the symplectic manifold (7*Q),w)
with the cotangent bundle two—form w is often called the “phase space (associated to @)”.
Furthermore the dimension of () is often referred to as the “number of degrees of freedom”.

Bibliographical remarks. The classics for the mathematical treatment of mechanics in
the symplectic language are of course [AM] and [Arl]. We would like to add [Be], [Bry]
and [GS].

3.2 Maps and submanifolds of symplectic manifolds

Definitions. Let (M,wys) and (N,wyn ) be symplectic manifolds and F : M — N a smooth
map.

(1) The map F'is called “symplectic” if F*(wy) = was.

(2) If F'is a diffeomorphism such that F*(wy) = wa, F is called a “symplectic diffeomor-
phism” (or sometimes also a “symplectomorphism”).

Proposition. Let (M,wy) and (N,wn) be pure—dimensional symplectic manifolds and
F: M — N asymplectic map. Then

(1) Tl = (F)p : (T,M, (wn)p) = (Tppy N, (wn)F(p)
is a symplectic linear map, i.e. (T,F)*((wn)rp)) = (wa)p for all p in M.

Thus T, s injective for all p in M, so thatl in particular dimp M < dimp N and the rank
of F' in p equals the dimension of M (for all p in M ).

If furthermore dimp M = dimg N =: 2n then
(ii) F is a local diffeomorphism, the local inverses are also symplectic, and

(tii) F*(Qn) = Qu, i.e. F preserves the canonical orientation forms and hence, a fortiori,
the canonical orientations. If furthermore F' is a diffeomorphism then its inverse is also
symplectic.

Proof. Exercise using Section 1.4. O
Examples.

(1) Let f:Q — @ be a diffeomorphism of a manifold Q and F := (T'f~')* : T*Q — T*Q,
defined by F(ay) = (Ty(q)f ") (ey) for all ¢ in ). Then F is a vector bundle isomorphism
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over f and F*(077?) = 0772 Thus we have of course F*(w!"?) = wT™? i.e., I'is a symplec-
tic diffeomorphism of T*(Q). Since F' is induced from a diffeomorphism of the configuration
space (), it is traditionally called a “point transformation (of T*Q)”.

(2) Let ¥ be an orientable two—dimensional manifold and 2 an orientation form on X.
Then a diffeomorphism of ¥ (with the symplectic form w := Q) is obviously symplectic if
and only if it is volume—preserving.

(3) Let g be in GL(m,R) C Mat(m x m,R). Then T, : R™ — R™ Ty(z) = g-x is a
diffeomorphism of R™ with

ie., ((T,)«)r can be identified with the (linear!) map 7,. Furthermore we define for A in
Mat(m x m,R) a vector field X4 by X4(x) := E;rfk:l Cl]‘kil/’k%b- Then the flow o4 := ¥4
of such a “linear vector field on R™” is easily seen to be given by

c,oA(t,:L') = (etA) cx = Taa(x).

Taking m = 2n and wy := 2?21 dx; A dx,y; it follows that the diffeomorphism T} is
symplectic if and only if ¢ is in Sp(2n,R),

In particular for n = 1 we find that ¢ is symplectic if and only if trace (4) = 0.
Exercise. Fill in the details in Examples (1) and (3).
Definition. Let GG be a Lie group and (M,w) a symplectic manifold. Then a (smooth

Y

left—)action ¥ : G x M — M is called a “symplectic action” if ¥} (w) = w for all g in M.
Examples.

(1) If @ is a manifold, G a Lie group and ¥ : G x () — @ an action, then for all g in ¢&
the map ¥, := (V,-1)* : T*Q — T*Q is a vector bundle isomorphism over ¥, such that

o~

(9,)*(077°9) = 779, Thus each ¥, is a symplectic diffeomorphism and one easily sees that
V:GxT*Q — T*Q, (g, «) := J,(a) is a symplectic action.

(2) The map 9 : Sp (2n,R) x R* — R?*", (g, ) := g-x is a symplectic action if we supply
R?" with the canonical symplectic form wg.

(3) Let (R*",+) act on itself by vector addition, i.e., G := R* M :=R* ¢ : G x M —
M, 9(a,x) := & + a. Then ¥ is symplectic, again with respect to the canonical symplectic

form on R~

(4) Let @ = ixA be the usual orientation form on the two-sphere S* C R? and let
¥ : SO(3,R) x 5% — 5% be defined by ¥(g,z) = ¢ - x. Then ¥ is a symplectic action with

respect to the symplectic form w := € on 52,

Definition. Let M be a (2n)-dimensional manifold with symplectic form w and N a
closed k—dimensional submanifold of M. Then

(TN)* :={v, € T,M|pe N and w,(vy,w,) =0Yw,€T,NCT,M}
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is called the “skew—complement (or w—complement) of TN in TM|,”.
Lemma. Let M be a manifold and N a closed submanifold of M. Then

(i) TM|y = UpeNTnM carries a natural vector bundle structure and TN is a subbundle
of TM]|y.

If furthermore M carries a symplectic form w then

(i)) (TN)* is a subbundle of TM|y and dimg T,N + dimg((T'N)*), = dimg T,M for all p
in N.

Proof. Ad(i). Given a point pin N thereis a chart ¢ = (21,...,2,): U =V =¢(U) C

R™ with U open in M and such that (U N N) =V N{xy =--- =2, = 0}. Working in
this chart T'M is trivialized by the sections 8871, ce % (over V) and hence so is TM|,
over (U N N). The bundle T'N is, again over (U N N) trivialized by 8xaT+17 cee % and

thus the first assertion is proven.

Ad(ii). Still working in a chart as above we have now m = 2n for n in N and we set
© = (¢ 1)*w. Clearly { 9 } is a basis for T,o(U N N) for all  in (U N N)

drpy1
and thus

z 2n

(0ot () ((Tom1(yN)4) = (Tup(U O N))* = ﬂ ker <@;<a%

J)

%‘ > are linearly independent so that (TN)‘

is a subbundle of T'M |, and the asserted dimensional formula holds true. O

Since @ is symplectic, the functionals JJZ,(

Remark. Given M and N as in the first part of the preceding proposition, the bundle
T M|, is often called the “tangent bundle of M restricted to N” and with the canonical
inclusion jy : N — M, jn(p) = p we can describe it (isomorphically) by the pull-back
bundle (jn)*T M.

Definition. A closed submanifold N of a symplectic manifold (M,w) is called

(1) “symplectic” if (TN)*NTN = Im (0y), the image of the zero-section oo : N — T M|,
(2) “isotropic” if TN C (T'N)4,

(3) “coisotropic” if (TN)* C T'N,

(4) “Lagrangian” or a “Lagrange submanifold” if (T'N)4 = T'N.

Remark. The first condition is often written (T'N)* N TN = {0}.

Lemma. Let N be a closed submanifold of a symplectic manifold (M,w) and jny : N — M
the canonical inclusion of N in M. Then

(i) N is symplectic if and only ipr|TpN is non—degenerate for all p in N, i.e. if (jn)*w is
a non—degenerate two—form on N,

(i) N is isotropic if and only ipr|TpN is the zero—form for all p in N, i.e. (Jn)*w =0,
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(ii1) N is Lagrangian if and only if N is isotropic and N has half the dimension of M, i.e.
dimp T,M = 2 - (dimg T,N) for all p in N.

Proof. Exercise. O
Examples.

(1) Let N be a closed one-dimensional submanifold of a symplectic manifold (M,w). Then
N 1is isotropic.

(2) Let N be a closed hypersurface of a symplectic manifold (M,w). Then N is coisotropic.
Proposition. Let Q) be a manifold and n a one—form on Q. Then the image of n, n(Q) =
{nlq) € T;Qlq € Q} is a closed submanifold of T°Q and the map n : Q — T*Q a
diffeomorphism of Q) onto n(Q).

Furthermore n(Q) is Lagrangian in the symplectic manifold (T*Q,wT @) if and only if 5
is closed.

Proof. The first part follows from the general fact that the image of a section o of a
vector bundle £ —"+ M is always a closed submanifold such that ¢ : M — (M) C E is a
diffeomorphism with inverse |U(M). (This fact is easily proven by using a local trivialization

ofEL>M.)

Denoting n(@) by N and the canonical inclusion N — T*Q by jn, the equation jy =
1o 7|, o) implies that it is enough to show that n*(wl™?) = 0 if and only if 5 is closed,
since 7T|77(Q) = N — @ is a diffeomorphism and clearly n(Q) has half the dimension of 7*(Q).

Let thus ¢ be in () and u in T,,(), then
(77 (07°9))g (1) = (077 (ne(w)) = (@) (s 0 ) (u)) = my (),

i.e. n7(07°9) = 5. It follows that n*(w? @) = —di and thus the second part of the proposi-
tion is proven. a

Corollary. Let QQ be a manifold and f be a smooth function on Q. Then (df)(Q) C T*Q

is Lagrangian with respect to the canonical symplectic form wT 9.
Proof. Obvious, since d(df) = 0. O

Proposition. Let (M,wy) and (N, be symplectic manifolds and F : M — N a

wN )
diffeomorphism. Then the graph U'r = {(z, ) € M x N|y = F(x)} is a Lagrangian
submanifold of the symplectic manifold (M x N, (pry;) wn — (pry)*wn) if and only if F is
symplectic.

Proof. Let us first observe that for any smooth map F': M — N between two manifolds
the graph 'z is a closed submanifold of M x N and F': M — I'p, @ — (z,F(z)) is a

diffeomorphism with inverse 7| .

Thus we calculate
(F)((prag)wnr — (pry) wn) = (pryg 0 F)wonr — (pry o F)wy = wyr — Frwn,

and thus I'p is Lagrangian if and only if wy, = Ffwy on M, i.e. if and only if F' is
symplectic.
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In order to prove that all symplectic manifolds of a fixed dimension 2n are locally diffeo-
morphic to the “symplectic model space” (R**,wy = 2321 dxj A d,4;) we introduce the
useful tool of “time-dependent vector fields” and the crucial computational formula which
is at the base of “Moser’s method”.

Lemma. Let M be a manifold and X a vector field on M. Then Cartan’s homotopy
formula

Lxn=d(ixn)+ixdy foral n in E(M)
is equivalent to the formula

(1)) = () (dlixn) +ixdn) forall 3 in E(M).
(Here o~ denotes of course the flow of X.)
Proof. Evaluating the second formula in { = 0 immediately gives Cartan’s formula.
By the flow equation ¢, = ¢ 0 ;" we find
(i ym) = () ) = —=lmo((5) ™) = (97 ) (Lxn).
Inserting the right hand side of Cartan’s formula for Lxn yields the second formula, i.e.

the two formulas are equivalent. a

Definition. Let [ be a connected interval in R that contains 0, M a manifold and
n:l x M — A*T*M a smooth map. We define n;(p) := 5(t,p) for all (¢,p) in I x M and

we call n a “time—dependent k—form on M” if n; is a k~form on M for each ¢ in [.

Lemma. Let M be a manifold, X a vector field with flow X on M andn a time—dependent
k—form on M. Then

(1)) = (1) <d(@X77) Fiydn + 8—tt>
in all poins p in M.t in I, where o* is defined. (Here % is of course again a time—

dependent k—form on M and thus for fixed t a k—form.)

Proof. The formula follows immediately from the preceding lemma and the Leibniz rule
in one variable. O

Definition. Let [ be a connected interval in R and X : [ x M — TM a smooth map,
and let X,(p) := X(¢,p) for all (¢,p) in I x M.

(1) We call X a “time—dependent vector field (on M)” if X; is a vector field on M for each
tin M.

(2) Let X be a time-dependent vector field on M. A smooth curve v : J — M with J
open and connected in [ is called an “integral curve of the time—dependent vector field X
(with initial condition ¥(tg) = p)” if p is in M, to in J and

. d :

() = (7*)75(%‘7:) = X;(y(t)) forall ¢ in J and ~(t) =p.
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(3) Let X be a time—dependent vector field on M, M := I x M and )?(t,p) = % (tp)—l—Xt(p)

in T(m,)ﬁ =T, & T,M. The vector field X on M is called the “suspension of (the time—
dependent vector field) X7.

Remarks. (1) Typically the interval [ is either R or [0, 1], or the latter “with periodic
boundary conditions”, i.e. X : ST x M — T'M such that X; is a vector field on M.

(2) Using the suspension X ofa time—dependent vector field X it is not difficult to deduce

existence and uniqueness of integral curves of X and of maximally defined flow maps c,offs
such that c,ofs(p) = p and %c,offs(p) = Xt(c,offs(p)) (where they are defined). The local flow
equations are then replaced by c,ofs = Idps and Lpft 0 L,offs = c,ofs and in the case that X
is time-independent one has ¢, = ¢X .. (See, e.g., [AMR] or [Ar2] for more details on

time—dependent vector fields and their flows.)
For our purposes the following will be enough:

Proposition. Let X : R x M — M be a time-dependent vector field such that the closure
of {p € M |3t € R such that X,(p) # 0} is compact in M. Then the flow maps c,offs are
defined on all of M for all t,s in R. In particular & := c,offo is a smooth family (in the
parameter t in R) of diffeomorphisms of M with ®f = c,oéfo = Ildy;.

If furthermore n; (t € R) is a smooth time—dependent differential k—form on M then

d N 3 . . an ,
E((Q)f) ny) = (CI)f() <d(th77t) +ix,dn; + a—;) forall t in R.

Proof. Exercise (possibly supported by a textbook as [AMR], [Be] or [GS]). O

Theorem (“Local normal form of symplectic forms on a manifold” or “Theorem
of Darboux—Moser—Weinstein”). Let (M,w) be a symplectic manifold of dimension
2n. Then for each point p in M there is an open neighborhood U = U(p) in M and a
diffeomorphism v : U — (U) = V, V an open set in R*, such that V(i day A
dxn-l-j) = w|U'

Proof. Let ¢y : Uy — ¢(Uy) = Vi C R*" be any chart such that ¢;(p) = 0. We may
assume without loss of generality that V) is R*". Let wy = (¢f1)*(w|Ul) and wj; in R
be defined by wo(0) = E]‘<k wik(dz; A dxy)|,. Then wy and wy = E]‘<k wjpdz; A dxy are
symplectic forms on R?* fulfilling wo(0) = wy(0).

Since R?" is contractible there is a 1-form ¢ on R*” such that do = wy — w;. Replacing &
if necessary by o + df with an appropriate function f on R?*" we may furthermore assume

that o(0) = 0.

Let us define w; by (1 — t)wo + tw;. Clearly w;(0) = wo(0) and dw, = 0. It follows that for
¢o > 0 there is an open neighborhood V5 of 0 in R*” such that w; is a symplectic form on
V, for all ¢ in [—e€p, 1 + €o]. Furthermore there is a dg > 0 such that By, (0) C V.

Denoting the inverse of the ismorphism w” : V — V* on a symplectic vector space (V,w)
by w' we define a smooth time dependent vector field X for z in V; (and ¢ in [—co, | + ¢o])

as follows
Xi(@) = (wi(@)) (o (2)).
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Using a smooth non-negative function y on R x R** such that y = 1 on [0, 1] x By, (0) and
X =0 on R x (R*\ Bss, (0)) we can extend y - X; to a time-dependent vector field Y; on

R?" such that Y; = X; on By, (0) for all ¢ in [0,1] and Y; = 0 for ||z|| > % and for all ¢ in
R.

Thus we can apply the preceding proposition and we have a smooth family {®, := S‘QZO |t €

R} of diffeomorphisms of R*" with ®¢ = Idg2n, ®;(0) = 0 for all ¢ in R and ®,(Bys, (0)) =
Bys, (0) for all ¢ in R. Thus for ¢ in [0, 1] the map ®; = & is a diffeomorphism from Bs, (0)
to ®;* (Bs,(0)) such that
d * d X\ * X\ * . . awt X\ *
—(Piwe) = (B ) wr) = (97 ) (d(ix.wr) + ixedwr + ——) = (97 )" (do + w1 —wo) = 0.
dt dt ot
It follows for ¢ = 1 that ® := & : Bs, (0) — & (Bs, (0)) fulfills ®*w; = w.
Let furthermore ¢ in G'L(2n,R) be such that (7})*( 2?21 dej N dr,,j) = w.

We set p :=T, 0P 0 : U =V =(U) C R?", where U := ;' (Bs,(0)) C U; is an open
neighborhood of p in M. Then # is a chart fulfilling ¢>(p) = 0 and

¢*<Z dx; A d:z;n+j> =¢jod o T;(Z dx; A d:z;n+j> = Y] (wo) = Wl
=1 j=1

a

Remarks. (1) The above proof relying on the construction of the time-dependent vector
field X; and the formula for £((®)*w;) goes back to [M] and is therefore also referred to
as “Moser’s method”. Though the local normal form of symplectic forms on a manifold
can be reached in a simpler way we chose this approach since it easily yields proofs for

several substantial generalizations. (See e.g. [GS] and [Weil].)

(2) Local coordinates (x1,...,22,) as in the preceding theorem, i.e. such that w is given
as 2?21 dx; N\ dz,y; are often called “symplectic coordinates”. Writing g; = ;. p; = x4
for y = 1,...,n the form w is given as 2?21 dq; N dp; and we will call such coordinates
(q1y-- -y qu,P1s- -, pn) symplecticas well. (The older term for the latter version is “canonical
coordinates”.)

Bibliographical remarks. The references cited in the text of this section plus those men-
tioned at the end of 3.1.

3.3 Kahlerian and almost Kahlerian manifolds
Definitions. Let M be a manifold.

(1) A smooth section g of the vector bundle @?T*M over M is called a “pseudo—Riemannian
metric (on M)” if the following two conditions are fulfilled for each p in M:
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(i) g, is symmetric, i.e. g,(v,w) = g,(w,v) Yo, w € T,M.
(ii) g, is non—degenerate, i.e. for all 0 # v in T, M there is a w in T, M such that g,(v,w) # 0.
(

2) A pseudo—Riemannian metric on M is called “Riemannian” if g(v,v) > 0 Vv €

T,M\ {0} for all pin M.

(3) A pair (M, g) consisting of a manifold and a (pseudo-)Riemannian metric is called a
“(pseudo-)Riemannian manifold”.

Remark. A (pseudo-)Riemannian metric on a manifold is nothing else than a smoothly
varying assignement of a (pseudo-)Riemannian metric to each tangent space.

Examples.

(1) Let M be R™ and g = >3, ; ..., gij¢; @ €} be a (pseudo-)Riemannian metric on the
vector space V = R™. Setting for each p in M g, = Elsmsm gi;(dx;), @ (daj), (where
(x1,...,2,) are the canonical global coordinates on M), we get a (pseudo-)Riemannian
metric on M. Though slightly abusive, it is convenient to denote this (pseudo-)Riemannian
metric by the letter g as well.

(2) Let (M, g) be a Riemannian manifold and N C M a closed submanifold. Then for each

pin N T,N is a subspace of T, M and thus gp|TpN is a Riemannian metric on the vector

space T, N. It is easy to check that (N, g|;,) is a Riemannian manifold.

Definition. Let M be a (real!) manifold and J : TM — T'M be a smooth vector bundle
homomorphism over Idy; such that J? = J o J = —Idry. Then J is called an “almost—
complex structure on M” and the pair (M, .J) is called an “almost—complex manifold”.

Proposition. Let M be a real manifold and 2 a holomorphic atlas on M. Then M carries
an almost—complex structure canonically associated to A. Furthermore, if o : U — V =
e(U) C C™ is a chart on an open subset U of M that is (holomorphically!) compatible with
A and if o = (z1,...,2m) with 2y = 2, + /=Ly fork=1,....m, then

J<aim>:aiyk and J<aiyk>:—aixk fork=1,....m

in these coordinates.

Proof. The complex—analytic atlas 2 provides the vector bundle TTM — M with the
structure of a holomorphic vector bundle and in particular each fiber is a complex vector
space. For each p in M, one defines J, as the real-linear endomorphism induced on the
real tangent space T, M of the underlying real manifold M by the multiplication with the
complex number i = /—1 on the space T,M viewed as a complex vector space. It follows
that J is an almost—complex structure on the real manifold M, canonically associated to
the complex—analytic atlas 2.

Without loss of generality we may now assume that M = V' is open in C” and ¢ = Idy =

21y .oy 2m) with 2 = x5 + 1yx and xg, yx real. Considering % and % as elements of the

complex vector space T,M (for p any point in M), we find

0 . 0 0 .
de(a—xk) = (dz; + Zdyj)(a—u) = ;5 and de(a—yk) =10k
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Using the C-linearity of the functionals dz; on T, M we find
.0 . 0 .
dzj(z-a—xk) = dZ])(a—:L‘k) =10k
It follows that, for k =1,...,m,

d d d d
J<8—:1;k> = a—yk and J<a—yk> = “Oar

a

Definition. An almost-complex structure J on a real manifold M that is canonically
associated to a complex—analytic atlas 2 (as in the preceding proposition) is called a
“complex structure”.

Remarks.

(1) Though the distinction between complex structures and almost—complex structures is
important, some texts on symplectic geometry are not attentive to it.

(2) An almost—complex structure that fulfills a certain “integrability” condition is called
an “integrable almost—complex structure”. In finite dimensions every integrable smooth
almost—complex structure is already a complex structure by a deep theorem of Newlander
and Nirenberg (see the original work [NN] or [H] for a proof).

Definitions. Let (M,.J) be an almost—complex manifold and ¢g a (pseudo-)Riemannian
metric on M.

(1) The metric g is called “almost (pseudo-)Hermitian” if, for all p in M
9p(Jpv, Jw) = g,(v,w) for allv,win T, M.
(2) If J is a complex structure and ¢g almost (pseudo-)Hermitian then ¢ is called “(pseudo-)

Hermitian”.

(3) If g is almost (pseudo-)Hermitian, the 2—form w, defined by
wp(v,w) :gp(‘]p(v)vw) VpE M7 \V/U,UJE TPM7

is called the “fundamental 2—form (on the almost (pseudo-)Hermitian manifold (M, .J, g))”.

Lemma. Let (M,J,g) be an almost pseudo—Hermitian manifold. Then the fundamental
2—form is almost-symplectic.

Proof. We only need to check that w, is alternating and non-degenerate for all p in M.
This is proven in Section 1.5 since (T,M, J,, g,) is a pseudo—Hermitian vector space for all
pin M. O

Definitions. Let (M, .J,g) be an almost (pseudo-)Hermitian manifold and w its funda-
mental 2—form.

(1) The triple (M, J, g) is called an “almost (pseudo-)Kahlerian manifold” if w is closed.
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(2) An almost (pseudo-)Kahlerian manifold is called “(pseudo-)Kahlerian” if .J is a complex
structure.

Remarks.
(1) The last lemma implies that each almost pseudo—K&hlerian manifold is symplectic.

(2) Obviously every Kéahlerian or pseudo—Kahlerian manifold is almost pseudo—Kahlerian
and thus, a fortiori, symplectic.

(3) It was conjectured that each symplectic manifold is Kahlerian. This is wrong (see
example (5) below) but a “partial converse” of (2) holds true:

Proposition. Let (M,w) be a symplectic manifold and J,(M) be the set of almost—complex
structures J on M such that (M, J, gy) is almost Kdihlerian with fundamental 2—form equal
to w. Then J,(M) is not empty, i.e. every symplectic manifold is almost Kihlerian.

Remark. Upon considering J,(M) as a subset of the “Fréchet space” ['ce (M, End(T M))
one can use Section 1.5 to prove the following important sharpening of the preceding
proposition: the topological space J,(M) is non—empty and continuously contractible to

a point. (See, e.g., [McDS].)

Proof of the proposition. The existence of a partition of unity subordinate to an ap-
propriate covering of M easily shows that M carries a Riemannian metric g.

Applying the theorem of Section 1.5 to V' =T, M yields maps
U, R(TLM) — J.,,(T,M)

such that W,(g,) = J, and (T,M, J,,g,) is Hermitian for all p in M. Since ¥ is real—
analytic in the variable g € R(V) one easily poves, by going to local charts, that .J is a
smooth section of End (T'M). Thus .J is an almost—complex structure on M. The theorem
in Section 1.5 implies furthermore that the Riemannian metric g; defined by

(gJ)p(an) = wp(v,Jp(w)) VpeM, Vo,weT,M

is almost Hermitian on (M, .J) and the fundamental 2—form of (M, J, g;) is equal to w. O
Examples.

(1) Let (M,2() be a 2-dimensional real manifold with a complex—analytic atlas and ¢ a
Hermitian metric on M. Then (M, .J, g) is Kéhlerian since every 2—form on M is closed.

(2) Let M =C" 2 R* and g = > _;_,(dz, @ dxy, + dyr @ dyy) the standard Riemannian
metric on R?". Since ‘](a%) = —% the metric g is Hermitian and the fundamental 2—form

of (M, J,g) is given as follows
w= Z dzxy A dyy.
k=1

Obviously, w is closed and thus (M, .J, g) is Kahlerian.

(3) Given a discrete subgroup I' of (C*,+) one easily checks that the complex structure,
the metric and thus the fundamental 2-forms “descend” to the quotient C*/I' = I'\C",
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since they are in fact invariant under the whole group (C*,+) acting on M = C*. Thus
C* /T is Kahlerian.

(4) Open subsets of Kahlerian manifolds, products of Kéhlerian manifolds and complex
submanifolds of Kahlerian manifolds are naturally equipped with induced complex struc-
tures and Hermitian metrics such that they are Kahlerian.

(5) Let M = Ng be as in Example (3.2) of Section (2.2), i.e.,

1
M = 0 w ||z, y,z,weR 3} 2R x R.
0

Y

O = 8
— @

Let & = dy A dz 4 dx A dw, then & is a symplectic form on M that is invariant under the
action of Ng on M given by left-multiplication. It follows that M = N7\ Ng is a compact
manifold with a unique 2—form such that under = : M — M we have m(w) = ©. It follows
easily that (M,w) is symplectic since 7 has everywhere rank four.

Standard arguments from algebraic topology show that the dimension of H},(M,R) is
equal to three which shows that M cannot carry a Kahlerian metric. (See [BT] and [GriHa]
for more details on the algebraic topology respectively Hodge theory needed to show the
above assertions.) The manifold M was considered by Thurston to exhibit a compact
symplectic manifold allowing no Ké&hlerian metric. (See, e.g., [Wei2].)

(6) The complex projective space P,(C) is a very important K&hlerian manifold with
respect to the so-called “Fubini-Study metric” and its associated fundamental 2-form, the
“Fubini-Study form” wgs. (See, e.g., [GriHa] or [J] for more details.)

Bibliographical remarks. Beside the references cited in the text we would like to men-
tion [MK] and [Wel] for the theory of Kdhlerian manifolds. The reader should be aware
that traditionally the class of Kdhlerian manifolds is viewed as a special case of complex
manifolds and not of symplectic manifolds and thus notations are rather “complex” than
“real”.

3.4 Hamiltonian dynamical systems on symplectic manifolds

Remark. Given an almost—symplectic manifold (M,w) the map
W TM — T*M,wb(vp) = w;(vp) for all pin M and all v, in T,M
is a vector bundle isomorphism over Idy;, the inverse of which we denote by w.

Definitions. (1) Let (M,w) be a symplectic manifold and H a smooth function on M.
Then we define a vector field Xy on M by

Xy = wH(dH).

89



The vector field Xy is called the “Hamiltonian vector field associated to the Hamilton
function H” (or “symplectic gradient of H”).

(2) A triple (M,w, H) consisting of a symplectic manifold (M,w) and a smooth function
H on M is called a “Hamiltonian dynamical system”.

Remark. Since we associated to a function H on (M,w) a vector field Xz, a Hamiltonian
dynamical system comes equipped with the (local) flow X% i.e. a local R-action on M.
This explains the terminology.

Remark. Since w’ o w? = Idg«ys the vector field X is often defined as the unique vector
field on M fulfilling
w(XH, ) =dH.

This formula is clearly equivalent to the above definition and is in fact very useful in
computations.

Proposition. Let (M,w,H) be a Hamiltonian dynamical system and ¢ =
(G1y- s GusP1y- ey pu) = U = o(U) =V C R* a symplectic chart defined on an open
subset U of M. Then the Hamiltonian vector field is given (on V') by the following formula

" /OH 0 O0H 0
Xy=S (& L2 9
" z:: (5}% dq;  Iq; 5}%‘)

Remarks.

(1) It is understood that the function H should be read as H=Ho o~ in the formula of
the proposition. We follow the usual practice to suppress this inconvenient notation.

2) From the last proposition in Section 2.5 we know that (on V the differential equation
“Hamilton’s equations”) for the flow of X H as in the formula of the proposition is the

given by
oH . OH

j=— p;=—— Tor 7=1,... n.
QJ apjvp] ap] .] 9 9

Proof of the proposition. Let first ¢ : U — V C R?" be any chart on M and H =
Hop ™', & = (¢7")*w. Then @ is a symplectic form on V and the vector field X5 = &ﬁ(dﬁ])
fulfills

wXpg,v)=w(Xg,0v) YoeTl, M Ymel.

It follows by the non-degeneracy of w and @ that (¢.), Xu(m) = Xg(p(m)) for all m in
U,ie., Xg is given by Xz in the chart ¢.

Let us now assume that ¢ = (¢, ..., qa, D1, - - -, ps) is a symplectic chart, i.e. & = (p™H)*w =
2?21 dgj Ndp; =t woon V C R*". Let j € {1,...,n} and X5 = >,_, <Oék3% + ﬁka%>
with ag, Br in (V). Then
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It follows that

as claimed in the proposition. a

Let us observe that there is another way of expressing Hamilton’s equations on R*" (in fact,
more generally, on almost Kahlerian manifolds) which brings into play the almost—complex
structure:

Lemma. Let V be open in R*", H a smooth function on' V and J, = ( IE? _([)En ) the

standard almost—complex structure on R*" (as in Section 1.5). Then Hamilton’s equations
are equivalent to

i = —J(VH(z)).

Proof. Let x = (q1,...,qu,p1,---,0u) =: (¢, p).

Then Hamilton’s equations

are obviously equivalent to
. oH oH
. (q\ _ 0 —1 g _ ap

TTlp /)T UL 0 o | T\ _aH |-

Definition. Let (M,w) a symplectic manifold and X in X(M).
(1) We call X a “symplectic vector field” if Lxw = 0.

(2) We call X a “Hamiltonian vector field” if there exists a smooth function H on M such
that X = XH

Lemma. Let (M,w) be a symplectic manifold and X in X(M). Then Lxw = 0 if and
only if
(¢ )w=w,

in all points where the last equation makes sense.

Proof. Obviously the second formula implies the first. The equality

Sl ) = () (Lxw)

which follows from the flow equations (compare Section 3.2) shows that Lxw = 0 implies
(97 )*w = w. Thus the two formulas are equivalent. 0
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Lemma. Let (M,w) be a symplectic manifold and X a symplectic vector field. Then the
powers of w are invariant under X, i.e.,

Lx(W)=0 for k=0,1,...,(dimg M)/2.

Proof. Obvious. O

Corollary. Let (M,w) be a symplectic manifold and X a symplectic manifold. Let fur-
thermore t be in R and U open in M such that ¢ is defined on U. Then for all (2k)-
dimensional orientable submanifolds of U one has that

/ Wh = :I:/ WP
Yok 0 (Za1)

(if one and then both sides of the equality is finite).

Proof. Let us without loss of generality assume that c,of( P o — 995(2%) is orientation

preserving. It follows that wa(Ezk) wk = f22k () (Wh) = f22k w* by the invariance of the
t

integral under orientation preserving diffeomorphisms. O

Remark. Assuming that dimg M = 2n and taking Y9 = U an open set with finite “phase

n(n—1

Volume”fUQ = fU <(_1)T2>w” yields the result that “the phase volume is invariant

under symplectic flows”.

Lemma. Let (M,w) be a symplectic manifold and X in X(M). Then
(i) X is symplectic if and only if the one—form ixw is closed, and

(i) X is Hamiltonian if and only if ixw is exact.

In particular, a Hamiltonian vector field is symplectic.

Proof. Since w is closed, Cartan’s homotopy formula implies for all X in X(M) that
Lxw = d(ixw). The assertions follow now immediately. O

Since a closed form on a manifold is always locally exact by Poincaré’s lemma the following
notions are rather natural:

Definition. Let (M,w) be a symplectic manifold.
(1) A symplectic vector field is also called a “locally Hamiltonian vector field.”

(2) The set of all Hamiltonian vector fields (respectively all locally Hamiltonian vector

fields) is denoted by Ham(M,w) (respectively Hamy.(M,w)).

Lemma. Let (M,w) be a symplectic manifold and let X and Y be locally Hamiltonian
vector fields. Then [ X, Y] is the Hamiltonian vector field associated to the smooth function
H=-w(X,)Y).

Proof. It is enough to show that

dH(Z)=w([X,Y],Z) forall Z in X(M).
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Using the formula iy 5 = [£4,i5] on E(M) for A, B in £(M) we find:

w([X,Y], Z) = X(w(Y, Z)) — (Y, [Z,X]) = -Y(w(X, Z)) + w(X,[Z,Y]).
Closedness of w implies
0=X(w(Y,2)) - Y(w(X,2)) + Z(w(X,Y)) —w([X,Y], Z) + w([X, Z].Y) — w([Y, Z], X).
Combining these identities yields

2([X, Y], Z) = —Z(w(X,Y))+w([X, Y], Z), ie, w(X,Y],Z)=—Z(w(X,Y))=dH(Z).

Corollary. Let (M,w) be a symplectic manifold. Then Ham;,.(M,w) is a Lie subal-
gebra of (X(M),[,]) fulfilling [Hamy,.(M,w), Hamy, . (M,w)] C Ham(M,w). Furthermore
Ham(M,w) is a Lie subalgebra of (X(M),[,]) and an ideal in Ham,.(M,w).

Remark. A subspace h) of a Lie algebra (g, [,]) is called an “ideal” if [X, H] is in § for all
X in gand H in b.

Proof of the corollary. Obvious from the preceding lemma. O

Exercise. Let (M,w) be a symplectic manifold. Then the quotient vector space
Hamy,.(M,w)/Ham(M,w) is canonically isomorphic to Hjz(M). Supplying the latter with
the trivial commutator, i.e. all brackets are zero, the following sequence of Lie algebra mor-
phisms is exact:

{0} — Ham(M, w) —= Hamy, (M, w) = Hip(M) — {0},

where « is the natural injection and 3 the projection on the above mentioned quotient
followed by the canonical isomorphism.

Definition. Let (M,w) be an almost-symplectic manifold and let H, Hy, H, be in E°(M).
(1) The “almost-symplectic gradient of H” is the vector field Xy = w#(dH).

(2) The “Poisson bracket of H; and H” is the smooth function w(Xg,, Xg,) denoted by
{H,, Hy}.

Lemma. Let (M,w) be an almost—symplectic manifold and Hy, Hy € E°(M). Then
(1) {Hy, Hy} = —Xp,(Hy) = Xy, (Hy), and
(i) the map

{7} : gO(M) X gO(M) — gO(M)v (HlvHQ) = {HlvHQ}
is R-bilinear and anti—symmetric, and fulfills

{Hl,HQ . Hg} - {Hl,HQ} . H3 —|— H2 . {Hl,Hg}.
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Proof. We have
{Hlv H2} = W(XHUXHz) = iXHQ (w(XH17 )) = iXHQ (dHl) = XH2(H1)'

Since w is anti-symmetric the first assertion is thus proven.

Bilinearity over R and anti-symmetry of {,} follow directly from the properties of an
almost—symplectic form.

It remains to show that for each H; in £°(M) the map {H;,} : E%(M) — E°(M) is a

derivation:
{Hy, Hy - H3} = =Xy, (Hy - Hy) = —Xp, (Hy) - Hy — Hy - Xp, (Hs)

- {Hl,HQ} . H3 —|— H2 . {Hl,Hg}.

One important motivation of the closedness condition on w is the following

Proposition. Let (M,w) be an almost—symplectic manifold. Then the Poisson bracket
{, } fulfills the Jacobi—identity on E°(M) if and only if w is closed.

Proof. For F,( and H functions on an almost—-symplectic manifold one has by a simple
calculation

w([XFvXG]vXH) = _{Fv{Gv H}} + {Gv{Fv H}}

A lengthy but elementary calculation shows now that

(dw)(Xny, Xn,, Xi) = {H1, {Ha, Hs}} — {{H1, Ha}, Ha} — {Ha, {H:1, Hs}}.
Thus closedness of w implies that the Jacobi-identity holds for {, } on E°(M).

On the other hand given an element o in T7M for a p in M there exists a smooth function
H on M such that ¢ = (dH)(p). Thus by the non—degeneracy of an almost—symplectic
form there exists, given a point p in M and vy, vy, v in T, M three functions Hy, Hy, Hs on
M such that Xp (p) = v; for j = 1,2,3. Assuming now that {, } fulfills the Jacobi-identity
we conclude that the three—form (dw) satisfies the following condition:

(dw),(vy,v9,v3) =0 forall p in M and for all vy, ve,v3 in T, M,

le., dw=0. O

Definition. Let (M,w) be a symplectic manifold and « : £(M) — Ham(M,w) be defined
by k(H) = —Xpg. The following sequence of R—vector spaces and R-linear maps is called
the “fundamental sequence (on a symplectic manifold)”:

{0} = kern —25 £(M) - Ham(M,w) — {0}.

(The map j is the injection of kerx in E(M).)

Lemma. The fundamental sequence on a symplectic manifold is an exact sequence of Lie
algebras and ker k is the space of locally constant functions on M.
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Remark. A continuous function on a manifold is called locally constant if for each point
of the manifold there is a neighborhood of this point such that the function is constant
on this neighborhood. Obviously a continuous function is locally constant if and only if it
is constant on each connected component of the manifold. A C'function is thus locally
constant if and only if df = 0.

Proof of the lemma. Since w is non—degenerate x(H) = —Xp is zero for H in E(M)
if and only if dH = 0, i.e., ker k is the space of locally constant functions on M and the
Poisson bracket of such two functions is the zero function. Thus ker k is a Lie subalgebra
of (E(M),{,}). which is in fact easily seen to be an abelian ideal.

Since x is R-linear and surjective it remains only to show that s({Hy, Hz}) =
[k(H1),k(Hy)] for all Hy, Hy in E(M). Since vector fields on a (finite dimensional ) manifold
can be identified with derivations it is enough to prove that both act in the same way on
functions. Let thus Hs be in E(M), then

[x(Hy), k(H2)](Hs) = Xor, (X, (Hs)) — X, (X, (Hs))

= —({{#s, H1}, Ha} + {H1, {Hs, H2}}).
By the Jacobi-identity the last right-hand side equals

_{H37{H17H2}} = _X{H17H2}(H3) = ﬁ({HlvHQ})(Hiﬂ)?

showing the assertion. O

Definition. Let (M,w, H) be a Hamiltonian dynamical system and F' a smooth function
on M. The function F'is called a “first integral (of the motion)” or a “conserved quantity”
if and only if F' is constant on the integral curves of H.

Lemma. Let (M,w, H) be a Hamiltonian dynamical system and F in E(M). Then F is
a first integral if and only if {H, F'} = 0.

Proof. Considering I' as a O—form on M we have

L) = ST F) = (65 (L, F) = (&) (H, ).

Thus {H, F'} =0 if and only if F o ¥ = Fopl® = F, i.e. if and only if F' is constant
on the integral curves of Xp. O
Proposition (“Noether’s theorem”). Let Q be a manifold, (M,w) = (T*Q,w’™?),
and H a smooth function on M. Let furthermore ¢ : Q@ — @Q (Q open in R x Q) be a local

flow on Q such that the induced local flow @ on M fulfills H(@(m)) = H(m) whenever the
left-hand side is defined. Then there exists a smooth function F' on M such that

{H,F}=0 and ¢*F =0,
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Proof. Let X be the vector field on M that generates the local flow @, i.e., X(m) =
L|,pe(m) for m in M. We define a smooth function F' on M by setting F' = §779(X). It
follows that (0 = 0779, w = wT"? = —df):

dF = (doix)f = —(ix 0d)f + Lx0 = ixw = w"(X)

o~

by the fact that the “lift” & of the point transformations ¢ preserves the 1-form 6. Thus
X = Xp, the Hamiltonian vector field associated to F' and 3, = xi*. Obiously H o ¢ 7 =
H o g; = H and therefore {H, F'} = 0. O

Remarks. (1) The analogous statement for “Lagrangian dynamical systems” on T'Q is
in fact more often referred to as Noether’s theorem.

(2) In physics the above theorem is often formulated as follows: “a continuous symmetry
of the Hamiltonian gives a conserved quantity”. (The word “continuous” should be viewed
in distinction to “discrete” here, i.e. a “continuous symmetry” is a local R-action that
preserves w and H.)

Bibliographical remarks. As at the end of Section 3.1.
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