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Weierstrass-Institut für Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin, Germany.
E-mail: kuelske@wias-berlin.de

Received: 10 June 2002 / Accepted: 5 February 2003
Published online: 5 May 2003 – © Springer-Verlag 2003

Abstract: We derive useful general concentration inequalities for functions of Gibbs
fields in the uniqueness regime.We also consider expectations of random Gibbs measures
that depend on an additional disorder field, and prove concentration w.r.t. the disorder
field. Both fields are assumed to be in the uniqueness regime, allowing in particular for
non-independent disorder fields. The modification of the bounds compared to the case of
an independent field can be expressed in terms of constants that resemble the Dobrushin
contraction coefficient, and are explicitly computable.

On the basis of these inequalities, we obtain bounds on the deviation of a diffraction
pattern created by random scatterers located on a general discrete point set in Euclidean
space, restricted to a finite volume. Here we also allow for thermal dislocations of the
scatterers around their equilibrium positions. Extending recent results for independent
scatterers, we give a universal upper bound on the probability of a deviation of the
random scattering measures applied to an observable from its mean. The bound is ex-
ponential in the number of scatterers with a rate that involves only the minimal distance
between points in the point set.

1. Introduction

Concentration inequalities for functions of random fields play an important role in
various areas of probability theory, with numerous applications ranging from the more
abstract to the explicit analysis of given models ([LT91, Ta96, Le01]). Such exponential
inequalities give an upper bound on the probability of a deviation of a function from its
mean; they are of interest when the function is defined in a complicated way and explicit
computations for its fluctuations are not possible. They assume no spatial symmetry of
the function, and so they apply also when there is no reason for a large deviation princi-
ple to hold. When the underlying field is a product field, such inequalities are very well

� Work supported by the DFG



30 C. Külske

known, and are beautifully tied to the concentration of measure phenomenon [Ta96]. If
the function in particular happens to have some (approximate) additivity and there is
translation-invariance they provide a large deviation upper bound that is valid in finite
volume (and not just asymptotically) with a lower bound on the rate function. So, they
are both weaker and stronger than a full large deviation principle (that also incorporates
a lower bound on the probabilities with the correct rate function).

The aim of our present paper is twofold. First of all, motivated by the study of disor-
dered systems, we derive general concentration inequalities for functions of Gibbs fields
in the Dobrushin uniqueness regime that have not appeared before in this simple and
useful form. Replacing “independence” by the “weak dependence” of a Gibbs measure
in the Dobrushin uniqueness regime is a natural generalisation when we are dealing with
a random field on a lattice, or on a graph having some spatial structure. The focus in our
approach is on applicability of the estimates and not just existence. In particular we are
interested not just in the mere finiteness of the constants appearing in the estimates but
in explicit expressions that can be readily evaluated (or estimated) in given models.

Secondly, in parallel to the general treatment, we show in this paper how these esti-
mates can be applied to the analysis of the self-averaging properties of random diffraction
measures of general point sets � in Euclidean space ([BaaHoe00, Hof95a, Hof95b, D93,
EnMi92]). These diffraction measures describe the intensity of the reflections of an in-
coming beam at the points of the set � when looked at from far away (at infinity).
They are given by the Fourier transform of the autocorrelation measure of the scatterers.
Randomness appears here naturally as a probability distribution governing the thermal
dislocations of the scatterers around their equilibrium positions. It is clear that these
dislocations will interact and taking them to be i.i.d. would only be a very crude mod-
el. Additionally, we also consider a random distribution for the scattering amplitudes.
We stress that the scattering patterns described by the random scattering measures are
beautiful objects themselves that are of considerable interest. In this context we give a
universal upper bound on the probability of a deviation of the random scattering mea-
sures from its mean, applied to an observable that models the measurement device. The
bound depends on the point set � only through the minimal distance between its points
(Theorems 4,5). In particular the results also apply to diffuse scattering. This analysis
extends the previous results for independent scatterers of [K01b].

Being motivated by the study of general disordered systems, the first and basic ques-
tion is for a useful concentration estimate of a function of a Gibbs field in the uniqueness
regime, where no assumptions are made about translational invariance (Theorem 1). In
the next more interesting step we will be interested also in expectations of functions
w.r.t. Gibbs measures, when the latter are themselves functions of another random field
modelling the disorder (Theorems 2,3).

This setup corresponds physically to a system that is quenched from an equilibrium
state at some sufficiently high (but finite) temperature. Then the quenched degrees of
freedom are described by the Gibbs field modelling the disorder. This is more realistic
than the assumption of independence for the quenched degrees of freedom which is usu-
ally made for simplicity in the classical models of disordered systems (like the random
field Ising model or the Edwards Anderson spin glass). We emphasize that we are able
to treat also this dependent situation, again assuming no symmetries at all. We believe
that these inequalities can be useful tools in a variety of circumstances to extend results
for disordered systems from independent disorder to dependent disorder.

The assumption we chose to impose on the random distributions is essentially the
Dobrushin uniqueness condition going back to [Do68]. (For an excellent presentation
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see [Geo88] Chapter 8. More precisely we assume even a slightly stronger form of it, but
the difference is minor from the point of view of applications. For general background
material about Gibbsian theory see [Geo88, EFS93].) Recall the idea of Dobrushin
uniqueness: Assume that the total interaction of a spin at any given site with the other
spins is sufficiently small, meaning that the “Dobrushin contraction coefficient” is suf-
ficiently small. Then there is a unique Gibbs measure (“absence of phase transition”)
and this measure has fast decay of correlations. Now, it turns out that the constants that
appear in our estimates can in all cases be expressed by the original Dobrushin contrac-
tion coefficient, and constants measuring the dependence of one random field from the
other one that are defined in the same spirit. We stress that all these quantities can be
estimated in terms of the Hamiltonian defining the interaction of the random field (the
potential of the Gibbsian specification) in a very simple way.

Coming back to our main example of diffraction measures we will need to estimate
the concentration properties of a function that is not convex. Unfortunately non-convex
functions are appearing in a lot of applications, and so very often all elegant methods
based on convexity are simply not applicable. Let us mention in this context also the very
beautiful result of [SZ92] who proved that the Dobrushin-Shlosman Mixing Condition
[DS84] implies a Logarithmic Sobolev inequality and vice versa, at least for certain
state spaces. (The Dobrushin-Shlosman condition is less restrictive than the Dobrushin
condition we are working with. A simple new proof of the first implication was recently
given in [Ce01]). In principle one can obtain exponential concentration as a corollary
to a log-Sobolev inequality (see [Le01] Theorem 5.3). Here the problem would be that
there are no handy formulas for the constant appearing in the log-Sobolev inequality
so that also the resulting concentration estimates would not be explicit. Also, for the
purpose of the concentration results we are interested in, log-Sobolev inequalities are
a detour, assuming an additional structure (gradient) that is not needed for the present
problem.

We conclude this introduction with an outline of the rest of the paper. Section 2 is an
extended introduction containing an overview of the main results, including the general
concentration theorems and a first application to random scattering measures. In Sect.
3 we give more results for random scattering measures along with their proofs. They
follow in an elementary but slightly tricky way from the general concentration estimates.
In Sect. 4 we describe applications to disordered spin systems and provide details about
the estimation of constants. Section 5 contains a simple proof of the basic concentration
estimate of Theorem 1, where in particular the form of the constants appearing becomes
clear. It follows from consequent use of estimates in the Dobrushin uniqueness region
on the basis of the classical martingale method. Section 6 contains a proof of the concen-
tration estimates for expectations w.r.t. random Gibbs measures of Theorems 2 and 3.
They use the explicit knowledge of the variation of the Gibbs measure in the Dobrushin
uniqueness regime when the local specification is perturbed, in combination with a chain
rule argument for variations.

2. Main Results

2.1. Basic concentration estimate in the Dobrushin uniqueness regime. Suppose that �

is a countably infinite or finite set and E is a standard Borel space. In our applications
below E will be a finite set or a ball in a finite-dimensional Euclidean space.

Suppose we are given a random field X = (Xx)x∈� taking values in E� , with distri-
bution µ. Usually the distribution µ will be explicitly given as a Gibbs measure in terms
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of the exponential of the negative Hamiltonian defining the model which associates an
energy to a configuration of Xx’s. More precisely this Hamiltonian is in turn given by an
interaction potential which is the proper basic object. The measure µ will then describe
physically the “equilibrium distribution” corresponding to this interaction. However, we
don’t need to make these quantities explicit at this point.

Following standard notation, we denote by

C = (
Cx,y

)
x,y∈� with Cx,y := sup

ξ,ξ ′∈E�

ξyc=ξ ′
yc

∥∥µ( · ∣∣ξxc )− µ( · ∣∣ξ ′xc )
∥∥

x
(2.1)

the Dobrushin interdependence matrix. Here the r.h.s. of (2.1) denotes the variational
distance at the site x. Given two measures ρ and ρ′ on E� it is defined by

∥
∥ρ( · ) −

ρ′( · )∥∥
x
= maxf

∣
∣∫ ρ(dξx)f (ξx)−

∫
ρ′(dξx)f (ξx)

∣
∣/δ(f ). The maximum is over non-

constant functions f on E. Here and throughout the paper δ(f ) := supu,u′ |f (u)−f (u′)|
denotes the total variation of a function f , where u, u′ are taken over the range of defi-
nition of this function. If f is vector valued, | · | denotes the Euclidean norm. We write
yc ≡ �\y for the complement of the site y.

One says that the random field X (respectively its distribution µ) satisfies the Dobru-
shin uniqueness condition iff

cX := sup
x∈�

∑

y∈�
Cx,y < 1. (2.2)

The “Dobrushin contraction coefficient” cX is a well-known quantity which estimates
the possible change of the single site conditional expectations (appearing on the r.h.s.
of (2.1)) when the field values at the other sites are varied. The Dobrushin uniqueness
condition (2.2) is perhaps the best-known weak-dependence condition in the theory of
Gibbs measures. We need to introduce a new notion. Let us say that the random field X

(resp. µ) satisfies the transposed Dobrushin uniqueness condition iff

cX
t := sup

y∈�

∑

x∈�
Cx,y < 1. (2.3)

Obviously cX and cX
t vanish if the Xx’s are independent. Then we have the following

general concentration estimate.

Theorem 1. Suppose the random field X = (Xx)x∈� taking values in E� is distributed
according to a Gibbs measure µ that obeys the Dobrushin uniqueness condition with
Dobrushin constant cX, and also the transposed Dobrushin uniqueness condition with
constant cX

t .
Suppose that F is a real function on E� with µ

(
exp(tF (X))

)
<∞ for all real t .

Then we have the Gaussian concentration estimate

µ
(
F (X)− µ

(
F (X)

) ≥ r
)
≤ exp

(

− r2

2

(1− cX)(1− cX
t )

∥
∥δ(F )

∥∥2
l2

)

∀r ≥ 0. (2.4)

Here δ(F ) ≡ (
δx(F )

)
x∈� is the (infinite) variation vector of F , where δx(F ) =

supξ,ξ ′;ξx=ξ ′x |F(ξ) − F(ξ ′)| denotes the variation of F at the site x. Its l2-norm is de-

noted by
∥∥δ(F )

∥∥2
l2
≡ ∑

x∈�(δx(F ))2. If this norm is infinite, the statement is empty
(and thus correct).
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Remark. Ready-to-use upper bounds on the Dobrushin constant cX are known when the
conditional expectations are given in terms of a Gibbsian specification with a defining
interaction potential � (see Georgii Chapter 8.1)1. Let us mention the following general
classic bound on cX that takes care of all high-temperature situations. We point out here
that it gives the same estimate we would have on cX also on the constant cX

t . So, suppose
that µ(dξx |Xxc = ξxc ) = exp

(−∑
A�x �A(ξxξ�\x)

)
λ(dξx)/Zx(ξ�\x) for a Gibbsian

potential � = (�A)A⊂� (meaning that �A is a function on E� that depends only on
EA). Here λ is a σ -finite measure on E, which must be the same for all sites x ∈ � and
Zx(ξ�\x) is the usual normalization factor. Then we have that

cX, cX
t ≤

1

2
sup
x∈�

∑

A�x
(|A| − 1)δ(�A) (2.5)

which is independent of the single-site part δ(�x). This is stated as Proposition 8.8 in
[Geo88] as a bound for cX, for a brief explanation why it implies the bound for cX

t too,
see Sect. 4. Be aware however that interdependence constants Cxy and Cyx whose actual
values differ significantly could occur for models with very different �x for different
sites x ∈ �.

Remark. Often the theorem will be used in the following situation. Suppose that F =
F(X	) is a function that depends only on variables in a finite set 	⊂�. Then ‖δ(F )

∥∥2
l2
≤

|	| ‖δ(F )‖2l∞ . The reader who likes to see an interesting application of this is advised
to go directly to Sect. 2.3, “First application to random diffraction measures”.

2.2. Chain rule concentration estimates for disordered systems with dependent disorder.
The concentration inequalities we are going to present now apply to situations where
a random field Y is given whose distribution depends on the realizations of another
“external” random field X. This is precisely the case in the study of disordered systems.
Here X models the quenched randomness (which we sometimes will call external ran-
domness) and one is given the Gibbs distribution of Y for any fixed configuration of
X. We assume here that both fields are in the Dobrushin uniqueness regime in a natural
sense, and that the dependence of Y on X is not completely unreasonable. To control
these properties quantitatively we will have to introduce constants (in the spirit of the
Dobrushin constant) governing the deviation of the fields X (respectively Y ) from the
case of product distributions, and constants governing the degree of influence from Y on
X. Very often in disordered systems the distribution of the external random field X will
even be assumed to be a product distribution, but we don’t need this for our estimates.
We emphasize that we are able to treat the more general case of Dobrushin uniqueness
for X. The resulting concentration estimates will depend only on these constants, and
thus contain only minimal information about the distribution of (X, Y ). We stress that
while the definition of the constants might look a little frightening at first sight, they are

1 Prescribing a consistent set of finite volume conditional probabilities in terms of an interaction poten-
tial � is of course the standard way of producing a Gibbs measure. Recall the following well-known facts
about Dobrushin uniqueness. If µ is an infinite-volume measure for which the Dobrushin uniqueness
condition (2.2) holds, it is necessarily the unique Gibbs measure for the local specification defined by the
system of its conditional expectations. This can be proved by a contraction method where the Dobrushin
constant c appears as a contraction coefficient (See e.g. Theorem 8.7 of [Georgii]). Existence must be
proved separately but is of course guaranteed e.g. by a compact state space E.
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very easy to control, so the estimates are very explicit. (This is done e.g. by (2.5) and an
analogous consideration given below in Sect. 4.)

We call them “chain rule estimates” because the distribution of the field Y is a (pos-
sibly very complicated) function of the field X, so that in order to control expectations
of functions of both fields some “chain rule for variations” will be needed. Let us now
formulate our results in a precise manner.

Suppose that �X and �Y are countable (finite or infinite) sets, and EX and EY are
standard Borel spaces. Suppose that we are given two random fields X = (Xx)x∈�X

taking values in E
�X

X and Y = (Yx)x∈�Y
taking values in E

�Y

Y . Suppose that their joint
distribution µ satisfies the following conditions.

(i) The marginal of µ on the variable X, denoted by µX, is a Gibbs measure that obeys
the Dobrushin uniqueness condition (2.2) and the transposed condition (2.3). We
denote the corresponding “marginal Dobrushin constant” by cX and its transposed
version by cX

t .
(ii) For any realization η of X the conditional distribution of Y given X, denoted by

µ( · |X = η), is a Gibbs measure that obeys Dobrushin uniqueness and its trans-
posed version. Moreover we demand uniformity in η in the sense that the following
uniform Dobrushin constant cY,∞ and its transposed version c

Y,∞
t obey

cY,∞ := sup
x∈�Y

∑

y∈�Y

sup
η

CY
x,y(η) < 1, c

Y,∞
t := sup

y∈�Y

∑

x∈�Y

sup
η

CY
x,y(η) < 1.

(2.6)

Here CY
x,y(η) denotes the Dobrushin matrix for the fixed configuration η.

(iii) To control the dependence of the field Y on the field X let us introduce their depen-
dence matrix in the following way:

CY←X
z,u := sup

η,η′;ηuc=η′
uc

ωzc

‖µ( · ∣∣X = η, Yzc = ωzc)− µ( · ∣∣X = η′, Yzc = ωzc)‖z.

(2.7)

It describes the possible change of the fixed Y -single-site conditional distribution at
z w.r.t. variation of the X-variables at u. The supremum is taken over the respective
spaces, i.e. η, η′ ∈ E

�X

X and ω ∈ E�Y

Y . We demand that the following dependence
constant and its transposed version obey

cY←X := sup
z∈�Y

∑

u∈�X

CY←X
z,u <∞, cY←X

t := sup
u∈�X

∑

z∈�Y

CY←X
z,u <∞. (2.8)

For independent X and Y these constants vanish, obviously.

We need a little more notation. Let us write δX
x (G) := supη,η′;ηxc=η′

xc ,ω |G(η, ω) −
G(η′, ω)| for the X-variation at the site x ∈ �X for a function G on the product
space. The notation for δY

x (G) is analogous. Note that the corresponding partial infinite
variation vectors δX(G) ≡ (

δx(G)
)
x∈�X

and δY (G) are not in the same space anymore,
in general, because the index sets �X and �Y are different.

Then the first result concerns the concentration properties of Y -averages w.r.t. the
field X.
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Theorem 2. Suppose that X and Y are random fields with joint distribution µ satisfying
(i), (ii), (iii). Suppose that G is a real function on E�X ×E�Y with µ

(
exp(tG(X, Y ))

)
<

∞ for all real t . Then we have the Gaussian concentration estimate

µX
(
µ
(
G (X, Y )

∣∣X
)− µ

(
G (X, Y )

) ≥ r
)

≤ exp




− r2

2

(1− cX)(1− cX
t )

(∥∥δX(G)
∥∥

l2
+ cY,eff‖δY (G)

∥∥
l2

)2




 ∀r ≥ 0 (2.9)

with the “effective constant” cY,eff =
(

cY←XcY←X
t

(1−cY,∞)(1−c
Y,∞
t )

) 1
2

<∞.

Remark. We can view cY,eff as the “effective strength” of the influence the random
field X has on the field Y . The form of the constants will become clear in the proof
that combines an application of Theorem 1 for the X-marginal with a chain rules for
variations.

Remark. The reader should realize that the dependence constants (and thus cY,eff) are
as easily estimated as the Dobrushin constants if the single-site conditional distribution
of Yx is given in a Gibbsian form with a random energy function. This is analogous
to the estimate for the Dobrushin constants in (2.5) and is explained in more detail in
Proposition 2 of Sect. 4.

Almost automatically we then also have the following “total concentration result”.

Theorem 3. Under the hypothesis of Theorem 2 we have the “total” concentration
estimate

µ
(
G (X, Y )− µ

(
G (X, Y )

) ≥ r
)

≤ exp




− r2

2











(1− cX)(1− cX
t )

(∥∥δX(G)
∥∥

l2
+ cY,eff‖δY (G)

∥∥
l2

)2






−1

+
[

(1− cY,∞)(1− c
Y,∞
t )

‖δY (G)
∥∥2

l2

]−1





−1


 . (2.10)

Remark. The form is easy to understand. The term within the inverse of the outer square
brackets has the character of a squared variance. It is the sum of the term for the Y -aver-
age from Theorem 2 and a uniform version of the term for the conditional Y -distribution
from Theorem 1.

2.3. First application to Random diffraction measures. It is our aim now to look at
the self-averaging properties of the diffraction pattern created by random scatterers
(“atoms”) located on a general discrete point set � which is a subset of Euclidean space.
The function F whose concentration properties we will be interested in describes the
result of a measurement at the random diffraction pattern. We stress that this function is
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not a convex function, so all methods based on convexity simply cannot be applied. To
appreciate the charm of this topic the interested reader may take a look at some of the
beautiful experimental diffraction patterns of quasicrystals (This is how quasicrystals
were discovered in 1982). Here is the problem. Let us describe at first how this function
is defined.2 Consider the scattering image of the complex random measure (“random
Dirac comb”) given by

ρ�(η, ω) =
∑

x∈�
ηxδx+ωx , (2.11)

where δx denotes the Dirac-measure at the site x. The point set �⊂R
ν is assumed to be

countable. The ηx’s are complex numbers modelling scattering amplitudes. The ωx’s
(“dislocations”) are vectors in the underlying Euclidean space R

ν . Below they will be
made random according to a random field X = (Xx)x∈� taking values η = (ηx)x∈� and
a random field Y = (Yx)x∈� taking values ω. So, the point set � modelling the locations
of the scatterers in Euclidean space has a geometric meaning here, but it also serves just
as an index set for the random fields. The classes of distributions we allow for them will
be described later.

Fix any finite volume 	⊂�. Then, the object that contains all information about the
scattering image of the points in 	 is the finite volume scattering measure which by
definition is the Fourier-transform of the corresponding finite volume autocorrelation
measure. The latter is defined as follows

γ
η,ω
	 := 1

|	|
∑

x,x′∈	
ηxη
∗
x′δx−x′+ωx−ωx′ . (2.12)

Here the star denotes complex conjugate. Since we allow 	 to be any finite set, we have
chosen the natural normalization by the number of points, as in [K01b]. A measurement
on the scattered intensity is described by an observable k → ϕ(k) in Fourier-space,
modelling the measurement device, which is usually taken as a Schwartz test-function.

The corresponding result of the measurement is then given by γ̂
η,ω
	 (ϕ) ≡ ∫

γ̂
η,ω
	 (k)

ϕ(k)dk. Here the Fourier-transform of a tempered distribution γ is defined by duality,
γ̂ (ϕ) = γ (ϕ̂), where ϕ̂ denotes the Fourier-integral of the Schwartz-function ϕ over R

ν .
So, the function we are interested in is given by

(η, ω) → γ̂
η,ω
	 (ϕ) = 1

|	|
∑

x,x′∈	
ηxη
∗
x′ ϕ̂(x − x′ + ωx − ωx′). (2.13)

We assume that the function ϕ(k) is real and view it as a fixed parameter, so that (2.13) is
a real function3 on the random fields modelling the dislocations and random amplitudes.

We can now take averages of this function describing the random scattering image,
for instance w.r.t. the distribution of the dislocations ω to obtain an ω-averaged scatter-
ing image. This can of course also be done w.r.t. the scattering amplitudes η, or w.r.t. to

2 For a summary of the basic notions of mathematical scattering theory for point scatterers, see e.g.
Sect. II of [BaaHoe00] and Appendix A of [K01b]. The reason for the definitions of the diffraction
measures can be understood in an elementary way by superposition of the reflections of an incoming
beam at the individual scatterers. The results are physically meaningful when one takes measurements
at distances far away from the scatterers and there is only single-scattering.

3 Write γ̂
η,ω
	 (k) = |∑x∈	 ηxeik·(x+ωx)|2 for the Lebesgue density of the finite volume scattering

measure. So, for real test functions ϕ(k) the function (2.13) is always real, and it is nonnegative if ϕ ≥ 0.
Of course it is not a convex function of ω but of oscillatory nature! It is convex as a function of η though.
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both random fields η and ω. The study of the large 	-behavior of the average is then
one part of the story that is essentially reduced to understanding the diffraction pattern
of � without disorder. The other part of the story which we are going to discuss now
is the control of the self-averaging properties of the diffraction image. Concentration
estimates were looked at for the first time in [K01b], for the cases of independent ωx’s
and fixed ηx’s, and vice versa. Before that there were only few partial results of the
SLLN type, which can be found in the quasicrystal literature for special sets �, see how-
ever [Hof95a]. (This is because of the different inclinations of probabilistic, statistical
mechanics and diffraction communities which we are hoping to bring together at this
point.) The emphasis in this study is to understand the influence of the point set � and
the function ϕ̂ for the quality of the concentration estimate. Since scattering experiments
are a tool to guess the structure of � one is interested in estimates that depend on very
little a priori information about �. It turned out in [K01b] that for the independent case
we could obtain large deviation upper bounds that involve only the minimal distance
between points in � and hence do not depend on the structure of the set � at all. This
means in particular that the quality of the large deviation estimate is independent of the
nature of the limiting diffraction image when 	 tends to infinity, be it pure point or
diffuse. The dependence on the observable ϕ is expressed then in terms of a suitable
Sobolev-norm.

The proof given in [K01b] for the independent case used a cluster expansion for the
logarithmic moment generating function of (2.13). At the price of some technical work,
it has the advantage to provide also a central limit theorem (for “non-pathological” �, in
particular lattices) and shows that the bounds appearing are essentially optimal. On the
basis of the general results in Theorems 1,2,3 we can now extend the concentration result
in a rather easy and elegant way to the case of dependent fields that obey Dobrushin
uniqueness. Let us give here only the result that corresponds to Theorem 1, and provide
more discussion later.

Theorem 4. Assume that X = (Xx)x∈� is a field of complex random variables (“scat-
terers”) indexed by the point set �⊂R

ν , and that Y = (Yx)x∈� is a random field of
R

ν-valued random variables (“thermal dislocations”). Assume that the field of the joint
variables Z = (X, Y ) = (XxYx)x∈� is distributed according to a Gibbs measure µ that
obeys the Dobrushin uniqueness condition (2.2) with a Dobrushin constant c. Assume
also the transposed Dobrushin uniqueness condition (2.3) with constant ct .

Let 	⊂� be any finite set. Assume that the random point set {x + ωx, x ∈ 	} has
minimal distance b > 0, for µ-a.e. realization of ω of the dislocations. Moreover we
assume the following µ-a.s. uniform bounds on the single-site distributions

|Xx | ≤ 1, δ(Xx) ≤ εsc, δ(Yx) ≤ εdl (2.14)

for all x ∈ 	.4 Then the corresponding random scattering image γ̂
X,Y
	 (ϕ) in the finite

volume 	 obeys the universal large deviation estimate

µ
(∣∣
∣γ̂ X,Y

	 (ϕ)− µ
(
γ̂

X,Y
	 (ϕ)

)∣∣
∣ ≥ r

)

≤ 2 exp

(
−|	| r

2

8

(1− c)(1− ct )
(
εsc‖ϕ̂‖ν,b + εdl‖dϕ̂‖ν,b

)2

)
∀r > 0. (2.15)

4 So εdl bounds the diameter of the supports of the distribution of the dislocation variables Yx taken
in the Euclidean norm for all sites x.
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Here we have introduced the Sobolev-norm involving integrals of derivatives up to
the order of the dimension ν where we make explicit also a scaling factor b/2. For a
function g : R

ν → C the norm is given by

‖g‖ν,b := 1

|B1|
ν∑

k=0

1

k!

1

(b/2)ν−k

∫

Rν

‖dkg(y)‖dy. (2.16)

The constant b/2 plays the role of fixing a length scale and here it is the “uniform packing
radius” as defined above. The constant |B1| denotes the volume of the ν-dimensional
unit ball.5

Remark. Theorem 4 shows self-averaging of the diffraction measures with an explicit
estimate on the rate. We regard this estimate as very satisfactory. Indeed, the l.h.s. of
(2.15) depends in a complicated way on three complicated objects, the geometry of the
point set 	⊂�, the test function ϕ, and the distribution µ of the random field (ω, η).
The upper bound on the r.h.s. of (2.15) is in comparison very simple. The influence
of the dependence structure of the random field is entirely factorized into the constant
(1 − c)(1 − ct ), a structure that is inherited from Theorem 1. The dependence on ϕ

is only through the integrals appearing in the Sobolev norm. The dependence on � is
only through the uniform packing radius b/2 > 0 appearing as the scaling factor in this
norm. We stress that all quantities appearing in the estimate (2.15) are explicitly com-
putable, and so an experimentalist can produce actual numbers on the r.h.s. of (2.15).
Also the assumption of uniform positivity of the packing radius can be given up, leading
to somewhat uglier estimates. For more on this see Sect. 3, Addition to Proposition 1.

Remark. Even for the independent case this bound is slightly better than the one given
in [K01b]. It seems possible to prove a result of this type by an extension of the expan-
sion method described in [K01b], at least to certain smaller classes of weakly dependent
Gibbs fields. This would be at the price of adding a huge layer of complexity to the
expansions, so the concentration estimate method is to be preferred.

3. Further Application to Diffraction – Proofs

3.1. Concentration result for quenched scatterers or quenched dislocations. It is physi-
cally important to know what happens when we have a frozen configuration of scattering
amplitudes η and we are interested in the concentration of γ̂

η,ω
	 (ϕ) centered at its

average over the dislocations ω, for fixed η. So, we have “quenched” the η-configuration.
This describes a disordered material with frozen types of scatterers that are subjected to
thermal motions around their equilibrium positions. We mention that we get the valid
bound for this case by the formal application of Theorem 4 (although this case is not
logically contained in the statement of the theorem). The corresponding constant in the
denominator of the argument of the exponential is obtained by putting the bound on the
variation of the amplitudes εsc = 0. So, it doesn’t depend on the Sobolev norm of ϕ

5 Of course, dkg(y) : (Rν)k → R
ν denotes the kth differential of g at the point y and ‖dkg(y)‖ =

sup|v1|=...|vk |=1 |dkg(y)[v1, . . . , vk]| is the usual norm of a k-multilinear mapping, at any fixed point y,

where |v| denotes the Euclidean norm. Similarly ‖dg‖ν,b = 1
|B1|

∑ν
k=0

1
k!

1
(b/2)ν−k

∫
Rν ‖dk+1g(y)‖dy.

The advantage of including the factor b > 0 inside the definition of the norm is the scale invariance: Re-
scaling of the measurement function ϕσ (k) = σ−νϕ1(k/σ ), where ϕ1 is a probability density w.r.t. the ν-
dimensional Lebesgue measure, leads to ‖ϕ̂σ ‖ν,b = ‖ϕ̂1‖ν,bσ . Similarly ε ‖dϕ̂σ ‖ν,b = εσ ‖dϕ̂1‖ν,bσ .
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anymore but only on the Sobolev norm of its differential. Next c, ct have to be taken as
constants for the ω-distribution for that particular η.

An equal game can be played by exchanging the roles of η and ω, so that we are
fixing the latter ones. Note that, when ω is fixed we are left with a model on a distorted
but fixed point set {x + ωx, x ∈ �} (with modified but positive minimal packing radius
b/2). Thus we can assume without loss of generality that ωx ≡ 0 for all x ∈ �.

3.2. Concentration result for average over dislocations. It is physically very natural to
consider a model for the joint distribution of scatterers η and dislocations ω whose joint
distribution (X, Y ) ≡ (η, ω) is of the type as described in Sect. 2.2. A special case for
this would be a model of independent scatterers with thermal dislocations that might
depend on the type of the scatterer, but we don’t need independence for the scatterers.

Theorem 5. Suppose a distribution for the scatterers X and dislocations Y as described
in Sect. (2.2). Again we assume the uniform bounds on the scatterers and amplitudes as
detailed in Theorem 4 (2.14).

Then, the corresponding fixed-scatterer scattering image that is averaged over the
dislocations obeys the universal large deviation estimate

µX
(∣∣∣µ

(
γ̂

X,Y
	 (ϕ)

∣∣X
)− µ

(
γ̂

X,Y
	 (ϕ)

)∣∣∣ ≥ r
)

≤ 2 exp




−|	| r

2

8

(1− cX)(1− cX
t )

(
εsc‖ϕ̂‖ν,b + cY,eff εdl‖dϕ̂‖ν,b

)2




 ∀r ≥ 0. (3.1)

We also have the total bound

µ
(∣∣∣γ̂ X,Y

	 (ϕ)− µ
(
γ̂

X,Y
	 (ϕ)

)∣∣∣ ≥ r
)

≤ 2 exp




−|	| r

2

8





[

(1− cX)(1− cX
t )

(
εsc‖ϕ̂‖ν,b + cY,eff εdl‖dϕ̂‖ν,b

)2

]−1

+
[
(1− cY,∞)(1− c

Y,∞
t )

(
εdl‖dϕ̂‖ν,b

)2

]−1





−1


 . (3.2)

Let us now give the estimate on the l2-norm of the variation of our function w.r.t.
the scatterers and the dislocations. From this, Theorem 4 follows immediately from
Theorem 1. Similarly Theorem 5 follows from Theorem 2 and Theorem 3.

Proposition 1. Look at the function (η, ω) → γ
η,ω
	 (ϕ̂) on the set where |ηx | ≤ 1 for all

sites x ∈ 	 and the minimal distance of the point set {x + ωx, x ∈ 	} is bigger than
b > 0. Then we have

∥
∥∥δη

(
γ

η,ω
	 (ϕ̂)

)∥∥
∥

l2
≤ 2‖ϕ̂‖ν,b

|	|

(
∑

x∈	
[δ(ηx)]

2

) 1
2

(3.3)
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and

∥∥∥δω
(
γ

η,ω
	 (ϕ̂)

)∥∥∥
l2
≤ 2‖dϕ̂‖ν,b

|	|

(
∑

x∈	
[δ(ωx)]

2

) 1
2

. (3.4)

Proof. For each x ∈ 	 we have for the variation of the non-normalized observable that

δη
x

( ∑

x′,x′′∈	
ηx′η

∗
x′′ ϕ̂(x′ − x′′ + ωx′ − ωx′′)

)

≤ 2δ(ηx)× sup
ω

∑

x′∈	

∣
∣ϕ̂(x − x′ + ωx − ωx′)

∣
∣, (3.5)

where we have used that |ηz| ≤ 1 for all z, and that |ϕ̂(x)| = |ϕ̂(−x)|. This expression is
not particularly transparent, but it can be estimated in terms of the much nicer Sobolev
norm. To get good estimates it is important to refrain from the temptation to put the sup
inside the sum! Now, let us use the following fact that was proved as Proposition 3 in
[K01b]: For any point set �′⊂R

ν whose points have a minimal distance of a > 0 we
have the estimate

∑

z∈�′
|g(z)| ≤ ‖g‖ν,a. (3.6)

Here the norm on the r.h.s. was introduced in (2.16). This statement is reminiscent of
Sobolev embedding theorems. It follows from the fact that for any ν-times differentiable
function g on the unit ball B1 around the origin one has

|g(0)| ≤ 1

|B1|
ν∑

k=0

1

k!

∫

B1

‖dkg(y)‖dy.

We apply this statement for the set �′(x, ω) ≡ {x−x′ +ωx −ωx′ , x
′ ∈ �} that includes

the arguments the r.h.s. of (3.5) is summed over. It is simple but important to note that
its minimal distance is bounded below by b > 0, independently of x and ω. So we get

∑

x′∈	

∣∣ϕ̂(x − x′ + ωx − ωx′)
∣∣ ≤

∑

z∈�′(x,ω)

∣∣ϕ̂(z)
∣∣ ≤ ‖ϕ̂‖ν,b. (3.7)

This already proves the desired estimate (3.3) on the l2-norm.
Next we show the result (3.4) for the ω-variation. It is in the same spirit but there is

a small trick involved. We have

δω
x

( ∑

x′,x′′∈	
ηx′η

∗
x′′ ϕ̂(x′ − x′′ + ωx′ − ωx′′)

)

≤ 2 sup
ωxc

sup
ωx,ω′x

∑

x′∈	\x

∣∣
∣ϕ̂(x − x′ + ωx − ωx′)− ϕ̂(x − x′ + ω′x − ωx′)

∣∣
∣. (3.8)

This time, for each fixed x, ωxc , and ω′x let us define the set �̃(x, ωxc , ω′x) := {x− x′ +
ω′x −ωx′ , x

′ ∈ �\x} including all the arguments of the second ϕ̂-term. We note that the
minimal distance between the points of any of these sets is bounded below by b > 0.
Then we can bound the r.h.s. of (3.8) by



Concentration Inequalities 41

2 sup
ωx,ω′x

sup
ωxc

∑

z∈�̃(x,ωxc ,ω′x)

∣∣∣ϕ̂(z+ ωx − ω′x)− ϕ̂(z)

∣∣∣

≤ 2 sup
|u|≤δ(ωx)

sup
�̃

∑

z∈�̃

∣∣∣ϕ̂(z+ u)− ϕ̂(z)

∣∣∣, (3.9)

where sup�̃ is over all �̃ with minimal distance≥ b. For u �= 0 and any such �̃ we write

∑

z∈�̃

∣∣
∣ϕ̂(z+ u)− ϕ̂(z)

∣∣
∣ = |u|

∑

z∈�̃

∣∣
∣
∫ 1

0

d

ds

∣∣
∣
s=0

ϕ̂(z+ tu+ su/|u|)dt

∣∣
∣

≤ |u|
∫ 1

0

∑

z∈�̃

∣
∣
∣

d

ds

∣
∣
∣
s=0

ϕ̂(z+ tu+ su/|u|)
∣
∣
∣dt

≤ |u| sup
0≤t≤1

∑

w∈�̃+tu

∣
∣
∣

d

ds

∣
∣
∣
s=0

ϕ̂(w + su/|u|)
∣
∣
∣. (3.10)

It is important to note that �̃+ tu is still a set with minimal distance≥ b, for any fixed t .
So we can estimate the sum uniformly in t and get

∑

w∈�̃+tu

∣∣∣
d

ds

∣∣∣
s=0

ϕ̂(w + su/|u|)
∣∣∣ ≤

∥∥∥∥
d

ds

∣∣∣
s=0

ϕ̂(· + su/|u|)
∥∥∥∥

ν,b

≤ ‖dϕ̂‖ν,b. (3.11)

This finishes the proof of Proposition 1.

The assumption that {x+ωx, x ∈ �}may have a positive minimal distance, µ-a.s. is
not necessary for a similar estimate to hold. We will now briefly discuss what estimates
can be made when the a.s. minimal distance assumption is lifted, however still assuming
a.s. uniformly bounded dislocations. In fact, the reader will realize that the proof of
Proposition 1 shows the a priori sharper statement (i) given below. The resulting esti-
mate is then exploited more explicitly in statement (ii) under the assumption of bounded
dislocations.

Addition to Proposition 1.
(i) For a function g : R

ν → C define the norm ‖g‖�,µ to be the smallest number such
that

sup
v∈Rν

∑

x∈�+v

|g(x + Yx)| ≤ ‖g‖�,µ for µ-a.e. realization of Y. (3.12)

A similar definition is made for a linear form dg by replacing the modulus on the
l.h.s. by the norm of the linear functional at x + Yx . Then, under the sole condition
that |ηx | ≤ 1 without any restrictions on � and µ, Proposition 1 holds with ‖ · ‖�,µ

replacing ‖ · ‖ν,b.
(ii) Denote the minimal distance of the unperturbed set �⊂R

ν by b0 > 0 and assume
that |Yx | ≤ R a.s., for any fixed arbitrarily large R <∞. Then we have the (crude)
estimate ‖ · ‖�,µ ≤

(
2+ 2R/b0

)ν‖ · ‖ν,b0 .

Remark. Note that therefore Theorem 4 and Theorem 5 have obvious extensions
obtained by the application of the Addition to Proposition 1 on the basis of the general
concentration Theorems 1,2,3!
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Proof of (ii). The idea is to estimate the sum on the l.h.s. of (3.12) in terms of sums of
integrals over balls with fixed radii b0/2 that might overlap, using the statement given
after (3.6). Then simply count the possible number of overlaps. Without loss of generality
put v = 0. Then

∑

x∈�
|g(x + Yx)| ≤ 1

|B1|
ν∑

k=0

1

k!

1

(b0/2)ν−k

∫

Rν

∑

x∈�
1B b0

2
(x+Yx)(y) ‖dkg(y)‖dy

≤
[

sup
y∈Rν

∑

x∈�
1B b0

2
(x+Yx)(y)

]
‖g‖ν,b0

≤
(

2+ 2R/b0

)ν‖g‖ν,b0 . (3.13)

To understand the last inequality note that, at any point y the sum in the bracket must be
smaller than the number of points in any set with minimal distance b0 whose distance to
y is smaller than R′ = R + b0/2. But this number is certainly bounded by the volume
of the ball with radius R′ + b0/2 divided by the volume of the ball with radius b0/2. It
is obvious from this argument that the given factor could be improved by more careful
counting.

4. Application to Random Gibbs Measures

Example: Self-averaging of free energy density for dependent disorder. Let us mention
at first an application that shows exponential self-averaging of the free energy for the
case of a disordered model with disorder field that obeys Dobrushin uniqueness. For the
case of independent disorder such estimates can already be found in [HP82]. For a full
large deviation principle for the free energy of a random spin system with i.i.d. disorder
distribution, see Sect. 5 in [SY01].

Note that in our setup we don’t assume absence of phase transition for the spin vari-
ables of the model itself. It is a straightforward application of the basic concentration
Theorem 1 and reads in the abstract setting as follows.

Corollary 1. Suppose the random field X = (Xx)x∈� (“disorder field”) taking val-
ues in E

�X

X is distributed according to a Gibbs measure µX that obeys the Dobrushin
uniqueness condition with Dobrushin constant cX, and also the transposed Dobrushin
uniqueness condition with constant cX

t . Suppose that � is a measurable space (“spin
space”) and ρ is a positive measure on � (“a priori measure on the spin-space”).
Suppose that H is a real function (“Hamiltonian”) on E

�X

X × �. Define the function
(corresponding “free energy”) by

F(X) := − log
(∫

ρ(dω)
(
e−H(X,ω)

))
(4.1)

whenever it exists. Then we have the Gaussian concentration estimate

µX
(
F (X)− µX

(
F (X)

) ≥ r
)
≤ exp

(

− r2(1− cX)(1− cX
t )

2
∥∥δX(H)

∥∥2
l2

)

∀r ≥ 0. (4.2)
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This follows from the easy fact that the partial variation δX
x (F ) is bounded by the

partial variation δX
x (H). Note that the estimate can be used to prove self-averaging of the

finite volume free energy density that is exponentially fast in the volume (for disordered
spin systems whose Hamiltonians have bounded local variations w.r.t. the disorder field
X). This is clear since

∥∥δX(H)
∥∥2

l2
will be of the order 	 when H is any reasonable

finite volume random Hamiltonian depending only on spin variables in 	 (while fixing
a spin-boundary condition outside). Note that for very general non-local dependence of
H on X this fact is still true, the precise constants depending on the specific model, of
course.

Example: Pair interactions on general graphs. Let us now discuss the class of models
with pair interactions on a general graph to illustrate how the various “Dobrushin-type”
constants can be estimated in terms of simpler constants bounding the pair potentials
themselves. Suppose that GX = (�X, BX) is a graph with vertex set �X and set of
edges (or “bonds”) BX. Suppose that its degree is bounded by mX. Suppose that µX is a
measure with state-space E

�X

X obeying Dobrushin uniqueness and its transposed version
with formal Boltzmann weight

∝ exp
(
−

∑

{x,y}∈BX

Ux,y(ωx, ωy)
) ∏

x∈�X

λ(dηx) (4.3)

with a pair potential satisfying supω,ω′ |Ux,y(ω) − Ux,y(ω
′)| ≤ u for all {x, y} ∈ BX.

Then we have from (2.5) that cX, cX
t ≤ mXu/2 for the constants appearing in Theorem

1. The same would be true if there were any additional single-site potential possibly
differing from site to site (as long as all integrals converge).

Let us now consider a disordered (or nested) system whose fields X and Y are both of
the pair potential type and see what constants arise in the chain rule estimates of Theo-
rem 2 and Theorem 3. Let us suppose that Y is a variable whose conditional distribution
µ( · |X = η) is a Gibbs measure on a graph GY = (�Y , BY ) with vertex set �Y and set
of edges BY . Suppose that its degree is bounded by mY . Suppose uniform Dobrushin
uniqueness and its transpose for the distribution with formal Boltzmann weight of the
form

∝ exp
(
−

∑

{x,y}∈BY

Wx,y(ωx, ωy, η{x,y})
) ∏

x∈�Y

λ′(dωx) (4.4)

with a pair potential W that is a function also of an edge variable ηx,y . So, we as-
sume that �X = BY equals the set of edges of the inner variable Y . This is the case
e.g. for “nearest neighbor” pair-interacting spin glass models on arbitrary graphs. Sup-
pose that the X-influence on the interaction between Y ’s is bounded in the sense that
supω supη,η′ |Wx,y(ω, η) −Wx,y(ω, η′)| ≤ q. Then we have from Proposition 2 given
in the section below that CY←X

x,y ≤ q/2 so that the interaction constants are bounded by
cY←X ≤ mXq/2 and cY←X

t ≤ q.
Finally, assuming that supη supω,ω′ |Wx,y(ω, η) − Wx,y(ω

′, η)| ≤ w, we get the

bound on the uniform Dobrushin constants cY,∞, c
Y,∞
t ≤ mY w/2. In this way all con-

stants appearing in Theorems 1,2,3 have been expressed in the elementary variation
parameters q, w, u of the potentials and the degree of the two graphs appearing.

In the simple situation of the graph �Y = Z
ν with independent Xx’s we thus have in

particular cX = cX
t = 0, cY←X ≤ νq, cY←X

t ≤ q, and cY,∞, c
Y,∞
t ≤ νw.
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Simple estimates on the dependence constants. For practical use let us mention the
following proposition that was already applied in the previous example.

Proposition 2. Suppose that the conditional distribution of Yx has the Gibbsian form
µ(dωx

∣∣X = η, Yxc = ωxc) = exp
(−Hx(η, ωx, ωxc )

)
λ(dωx)/Zx(ηω�\x), where

Hx(η, ω) is a function on the product space and λ is a σ -finite measure on EX. Then we
have that

CY←X
x,y ≤ 1

2
δX
y (Hx). (4.5)

Proof of Proposition 2. Within the proof of Proposition 8.8 of [Geo88] the following
was shown. Suppose that λ

(i)
x (dωx) = eu(i)(ωx)λ(dωx)/

∫
λ(dω̃x)e

u(i)(ω̃x ), i = 1, 2 are
two measures on the single-site space E, given in terms of the functions u(i). Then their
variational distance can be bounded in terms of the variation of the function u(1) − u(2)

so that one has ‖λ(1)
x −λ

(2)
x ‖x ≤ 1

4 supωx,ω′x |u(1)(ωx)−u(2)(ωx)−u(1)(ω′x)+u(2)(ω′x)|.
But from here the proposition is obvious.

Proof of Estimate on Dobrushin constants and transpose given in (2.5). Assuming the
inequality above one sees that Cx,y ≤ 1

2

∑
A⊃{x,y} δ(�A) (which is also explicitly point-

ed out in the proof of Proposition 8.8 in [Geo88]). We point out for our purposes that it
is symmetric in x, y. So one gets (2.5) from here, for both cX and cX

t .

5. Proof of Theorem 1

The proof of Theorem 1 relies on an appropriate extension of the martingale method
that is well-known for the case of functions of independent variables to the case of Do-
brushin uniqueness. (See e.g. [Ta96] Paragraph 4 for independent variables). Recall the
idea of this method. The exponential moment generating function of F(X)− E(F (X))

is estimated in a simple way: Put some order on the sites and write F(X)−E(F (X)) as
a sum of martingale differences. These are differences between conditional expectations
obtained by fixing of the values of the field on sets differing at one site. Then integrate
the exponential successively over the individual fields, using bounds on the integrals
at each step. Our application is based on Lemma 1 which is a uniform estimate on the
martingale differences which are obtained by introducing an arbitrary order of the sites
of the index set �. The interesting point of the proof is then to understand how the weak
dependence of the Gibbs distribution can be handled, in comparison to the case of in-
dependent variables. It turns out that this can be done in a very simple and elegant way
by the use of estimates of the variational distance of Gibbs-measures in the Dobrushin
uniqueness regime w.r.t. changes of the local specification. A clear two-page proof of
the result we need for our purposes can be found in [Geo88]; we won’t repeat it here and
just refer to the necessary information we need as “Fact about Dobrushin uniqueness”.
This “fact” will be exploited again in more generality below in the proof of Theorem 3.

Now, let us start with the proof. In fact we prove the following stronger (but less
convenient) statement.

Theorem 1′. Fix a bijection from the positive integers to � and denote by < the order
on � that is inherited by that bijection. Denote by D< =

(
Dx,y1x<y

)
x,y∈� the trian-

gular matrix given in terms of the geometric series D = ∑∞
n=0 Cn of the Dobrushin

interdependence matrix.
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Suppose that F is a real function on E� with µ
(
exp(tF (X))

)
< ∞ for all real t .

Then we have

µ
(
F (X)− µ

(
F (X)

) ≥ r
)
≤ exp



− r2

2
∥∥(1+ [D<]t

)
δ(F )

∥∥2
l2(�)



 . (5.1)

Dt denotes the transpose of a matrix D, and 1 is the unit matrix. Assuming this,
Theorem 1 is implied for simple reasons: We first use that ‖(1 + Dt

<)v‖2 ≤ ‖Dtv‖2
for vectors v with positive entries, because of the positivity of the matrix elements
of C. Next use that ‖Dtv‖2

l2
= |∑x,y(DDt)x,yvxvy | ≤ 1

2

∑
x,y(DDt)x,y(v

2
x + v2

y) ≤
supx

∑
y(DDt)x,y‖v‖2l2 . We have that supx

∑
y,z Dx,zDy,z ≤ supx

∑
u Dx,u supz∑

y Dy,z = ‖D‖l∞‖D‖l1 , where the last symbols denote the operator norms. Not-

ing that the Dobrushin constant equals cX = ‖C‖l1 and that cX
t = ‖C‖l∞ we see that

the last expression is bounded by (1 − cX)−1(1 − cX
t )−1. This proves the form of the

estimate given in Theorem 1.
Now let us start with the proof of the uniform bounds on the martingale differences

of the function F(X).

Lemma 1. Define the decreasing sequence of σ -algebras by putting Tx :=
σ(Xy; y ≥ x), for x ∈ �. Then the Martingale differences of the random variable
F(X) taken w.r.t. this ordering obey the uniform bound

‖µ(F(X)|Tx)− µ(F(X)|Tx+1)‖∞ ≤ δx(F )+
∑

y∈�,y<x

δy(F )Dy,x. (5.2)

Proof of Lemma 1. This estimate relies on the following piece of information (see
[Geo88], Theorem 8.20).

Fact about Dobrushin uniqueness. Suppose that � is a countable set, infinite or finite,
and the random variables (Xx)x∈� are distributed according to a Gibbs measure ρ that
obeys the Dobrushin uniqueness condition (see the Introduction). Put D = ∑∞

n=0 Cn,

where C is the interdependence matrix of ρ. Suppose that we are given another Gibbs
measure ρ̃ such that the variational distance of the single-site conditional probabilities
is uniformly bounded

sup
ξ

‖ρ( · |ξ)− ρ̃( · |ξ)‖x ≤ bx (5.3)

with constants bx for x ∈ �. Then the expectations of any function f (ξ) on the infinite-
volume configurations ξ don’t differ more than

|ρ(f )− ρ̃(f )| ≤
∑

y,x∈�
δy(f )Dy,xbx. (5.4)

To show Lemma 1 let us use short notations like µ(F(X)|Tx)(ξ) ≡ µ(F(X)
∣∣ξ≥x),

etc. Now, to estimate the martingale differences in (5.2) let us write
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∣∣µ(F(X)
∣∣ξ>xξx)− µ(F(X)

∣∣ξ>x)
∣∣

≤
∣∣∣∣µ(F(X<xξxξ>x)

∣∣ξ>xξx)− µ(F(X<xξxξ>x)
∣∣ξ>x)

∣∣∣∣

+µ

(∣∣∣F(X<xξxξ>x)− F(X<xXxξ>x)

∣∣∣
∣∣∣∣ξ>x

)
. (5.5)

The second term is bounded by δx(F ). For the first term we apply the “fact about Do-
brushin uniqueness” on the conditional spin-system on the sites y in � with y < x that
is obtained from the original conditional probabilities by fixing ξ>x . Putting ρ(dξ≤x) =
µ(dξ≤x

∣
∣ξ>x) and ρ̃(dξ≤x) = µ(dξ≤x

∣
∣ξ>xξx) we have the estimate (5.3) with by = 0

for all y < x and bx = 1. This gives in fact that supx supξ>xξx
over the first modulus on

the r.h.s. of the last inequality is bounded by the second term in (5.4). This finishes the
proof of Lemma 1. Note that, in this application, we applied the “fact about Dobrushin
uniqueness” to the finite index set of the sites that are less than or equal to x. In this
situation the proof of the “fact” becomes even simpler, as is easily seen by going through
the short proof of Lemma 8.18 and Theorem 8.20 given in [Geo88]. It is also simple to
verify that the statement holds for any, possibly degenerate kernels ρ̃( · |ξ) allowing e.g.
also for Dirac measures on specific configurations.

To complete the proof of Theorem 1′ we apply Lemma A.1 (given in Appendix A)
on the filtration (decreasing sequence of σ -algebras) defined in Lemma 1. To be able to
do so we need that µ is trivial on the tail σ -algebra, but this is clear because it is the
only Gibbs measure that is compatible with the specification defined by its conditional
expectation, using Dobrushin uniqueness again. So the proof of Theorem 1′ is finished.

Lemma A.1 itself, at least in the case of a finite filtration, is a simple application
of the Martingale method in the context of uniformly bounded Martingale differences.
However, we need to treat correctly the presence of the infinite filtration. Infinities in
the filtrations appear also in a slightly different way in the proof of Theorem 3, so
for the sake of clarity we give the results needed along with their complete proofs in
Appendix A.

Remark. We remark that a term like µ(f (Xz)
∣∣ξ>xξx)−µ(f (Xz)|ξ>x) is dangerous in

the presence of a phase transition for the measure µ. Then we could not exclude that
there might be discontinuous behavior, even for arbitrarily distant sites x, z, for certain
ξ>x . Therefore the proof doesn’t generalize to the phase transition region.

6. Proof of Theorems 2, 3

The Proof of Theorem 2 relies on Theorem 1′ and another application of the “Fact about
Dobrushin uniqueness” stated in Sect. 5, along with the application of a chain rule for
variations. Again, let us give the strongest version of Theorem 2 first.

Theorem 2′. Fix a bijection from the positive integers to �X and denote by < the or-
der on �X that is inherited by that bijection. Denote by DY,∞ = ∑∞

n=0

(
CY,∞)n

the

geometric series of the uniform Dobrushin matrix C
Y,∞
x,y = supη CY

x,y(η).
Suppose that G is a real function with µ

(
exp(tG(X, Y ))

)
<∞ for all real t .

Then we have the Gaussian concentration estimate

µ
(
µ
(
G (X, Y )

∣
∣X

)− µ
(
G (X, Y )

) ≥ r
)
≤ exp

(
− r2

2M2

)
, (6.1)
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where

M =
∥∥∥∥
(

1+ [
DX

<

]t)
δX(G)+

(
1+ [

DX
<

]t)[
CY←X

]t [
DY,∞]t

δY (G)

∥∥∥∥
l2

(6.2)

whenever this quantity is finite.

Of course the definition of DX
< is the same as D< in Theorem 1′ for the marginal

distribution on X.

Proof of Theorem 2′. We denote the function that appears in the estimate by F(η) :=
µX=η(G(η, Y )) and apply Theorem 1′ for that function. We need to estimate its variation
δX
z (F ). We will show that, in the sense of the inequality between coordinates, we have

δ(F ) ≤ δX(G)+ [
CY←X

]t [
DY,∞]t

δY (G). (6.3)

From that Theorem 2’ follows by Theorem 1′.
Take any η and η′ with ηz = η′z, and put G−(ηzc , ω) := infηz G(ηzcηz, ω). Then we

have

µX=η(G(η, Y ))− µX=η′(G(η′, Y )) ≤ µX=η(G(η, Y ))− µX=η(G−(ηzc , Y ))

+ µX=η(G−(ηzc , Y ))− µX=η′(G−(ηzc , Y )) ≤ δX
z (G)

+ sup
η̄

δX
z

(
µX=η

(
G(η̄, Y )

))
. (6.4)

To control the variation of the conditional spin system when we change its local
specification by changing the X-variable we need to use again the “Fact about Dobrushin
uniqueness”.

Denoting ρ(dω) = µX=η�\zηz (dω) and ρ̃(dω) = µX=η�\zη′z (dω) we have to put
bx ≤ CY←X

x,z in the statement of the “fact” controlling the change in the local specifica-
tions caused by a single-site variation of X. For fixed η̄ we set f (ω) := G(η̄, ω) so that
we get from the “fact”

∣∣µX=η
(
f (Y )

)− µX=η′(f (Y )
)∣∣ ≤

∑

y∈�Y

δY
y (f )

∑

x∈�Y

DY,∞
y,x CY←X

x,z . (6.5)

Collecting terms and using vector notation the desired inequality for δ(F ) follows.

Assuming this, Theorem 2 is obtained from Theorem 2’ by an analogous estimate on
M as Theorem 1 is obtained from Theorem 1′. Using the triangle inequality and splitting
off the common matrix we are left with the new term

‖[CY←X
]t [

DY,∞]t
v‖2

l2
≤ ‖CY←X

[
CY←X

]t‖2
l2
× ‖[DY,∞]t

v‖2
l2
. (6.6)

The first factor is bounded by cY←XcY←X
t . The second factor has already been seen to

be bounded by (1− cY,∞)−1(1− c
Y,∞
t )−1‖v‖2

l2
.
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Proof of Theorem 3. To prove Theorem 3 we need a double filtration. Define the filtra-
tion T (1)

x := σ
(
Xy; y ≥ x

)
on the probability space E�X and the filtration T (2)

x :=
σ
(
Yy; y ≥ x

)
on the probability space E�Y . Then Lemma A.2 tells us that we can treat

them like they were finite filtrations if the function in question has exponential moments
and we have bounds on their martingale differences. Now, the martingale differences in
the first line of (A.3) are controlled by (5.2) applied to the conditional distribution of
Y given any fixed configuration of X. The martingale differences in the second line of
(A.3) are controlled in terms of (6.3). Collecting terms Theorem 3 follows.

A different (although less natural) way to prove the “total concentration result” of
Theorem 3 would be to prove that the joint distribution can be represented as a Gibbs-
measure for the joint variables ξx = (ηxωx), estimate its joint constants c, ct , and then
apply Theorem 4. Note in this context that it won’t be true in general that the resulting
measure is a Gibbs measure, even for independent Xx’s, when one allows for conditional
Gibbsian distributions of the Y -variables having phase transitions (which is however
excluded here). For more on this, see the research in [K99, K01a].

Appendix

Lemma A.1. Suppose that (�, T0, µ) is a probability space. Suppose that (Ti )i=0,1,2,...

is a decreasing sequence of σ -algebras such that µ is trivial on the tail-σ=algebra
F∞ := ⋂

i=0,1,2,... Ti . Suppose that Z is a real random variable on � such that
µ (exp(tZ)) < ∞ for all real t . Assume that Z has uniformly bounded martingale
differences

‖µ(Z|Ti )− µ(Z|Ti+1)‖∞ ≤ Mi. (A.1)

Then we have the exponential concentration estimate

µ
(
Z − µ(Z) ≥ a

)
≤ exp

(

− a2

2
∑∞

i=0 M2
i

)

. (A.2)

Remark. Tail triviality is needed! Otherwise µ(Z) must be replaced by µ(Z|T∞) in the
l.h.s. of the estimate.

Remark. If the sum in the denominator of the argument of the exponential does not
converge, the statement is empty, obviously. In the case of a finite filtration (Ti )i=0,1,...,n

the statement is applied by putting Ti := Tn for i ≥ n.

Lemma A.2. Suppose that (�(1), T (1)
0 ) and (�(2), T (2)

0 ) are measurable spaces. Denote
by (�, F0, µ) the corresponding product space with the product σ -algebra where the
distribution µ has the form µ(dω(1)dω(2)) = µ(1)(dω(1))µ(2)(dω(2)|ω(1)) with a prob-
ability measure on the first space and a probability kernel from the first to the second
space.

Suppose that (T (k)
i )i=0,1,2,... are two decreasing sequences of σ -algebras on the

spaces �(k) such that (a) the measure µ(1) is trivial on the tail-σ=algebra F (1)
∞ :=⋂

i=0,1,2,... T
(1)

i and (b) the measureµ(2)( · |ω(1)) is trivial on the tail-σ=algebraF (2)
∞ :=

⋂
i=0,1,2,... T

(2)
i for any µ(1)-a.e. ω(1).
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Suppose that Z is a real random variable on � such that µ (exp(tZ)) < ∞ for all
real t . Assume that Z has uniformly bounded martingale differences

‖µ(Z|T (1)
0 ⊗ T (2)

i )− µ(Z|T (1)
0 ⊗ T (2)

i+1)‖∞ ≤ Mi, ∀i = 0, 1, . . . ,
(A.3)

‖µ(Z|T (1)
j ⊗ T (2)

∞ )− µ(Z|T (1)
j+1 ⊗ T (2)

∞ )‖∞ ≤ Lj , ∀j = 0, 1, . . . .

Then we have the exponential concentration estimate

µ
(
Z − µ(Z) ≥ a

)
≤ exp

(

− a2

2
∑∞

i=0(M
2
i + L2

i )

)

. (A.4)

Proof of Lemma A.1. We will show that

µ
(
et(Z−µ(Z))

)
≤ e

t2
2

∑∞
i=0 M2

i . (A.5)

From this the estimate on the probabilities follows in the standard way from the expo-
nential Markov inequality saying that for all t ≥ 0 in the form µ (Z − µ(Z) ≥ a) ≤
e−taµ

(
et(Z−µ(Z|T∞))

)
by optimizing the bound (A.5) over t .

Now, to show (A.5) one puts t ≡ 1 without loss and estimates the Laplace transform

µ
(
eZ−µ(Z|T1)eµ(Z|T1)−µ(Z)

)
= µ

(
µ[eZ−µ(Z|T1)|T1]× eµ(Z|T1)−µ(Z)

)

≤
∥∥∥µ[eZ−µ(Z|T1)|T1]

∥∥∥∞
µ
(
eµ(Z|T1)−µ(Z|T )

)
. (A.6)

The supremum over the conditional Laplace transform of the first martingale difference
is estimated in terms of the uniform bound M0. Since the expectation vanishes one gets
that

∥∥∥µ[eZ−µ(Z|T1)|T1]
∥∥∥∞
≤ e

M2
0

2 . (A.7)

(This follows from the inequality eλz ≤ e
λ2
2 + z sinh λ for |z| ≤ 1.)

From that we get by iteration

µ
(
eZ−µ(Z)

)
≤ e

1
2

∑N−1
i=0 M2

i µ
(
eYN

)
, (A.8)

where YN = µ(Z|TN)− µ(Z). To show (A.5) we show that limN↑∞ µ
(
eYN

)
= 1 . To

see this, note at first that, by the backwards Martingale theorem (see e.g. Bauer Theorem
60.8) we know that, µ-a.s. limN↑∞ µ(Z|TN) = µ(Z|T∞). But since we assumed that µ

is trivial on T∞ this means limN↑∞ YN = 0 µ-a.s. So one has limN↑∞ µ(eYN 1YN≤λ) = 0
for all fixed λ. But from this follows the convergence of the full integrals because of the
uniform estimate

sup
N=0,1,...

µ
(
eYN 1YN≥λ

)
≤ e−λ sup

N=0,1,...

µ
(
e2YN

)

≤ e−λµ
(
e2µ(Z|TN)

) 1
2
µ
(
e−2µ(Z|T∞)

) 1
2

≤ e−λµ
(
e2Z

) 1
2
µ
(
e−2Z

) 1
2

<∞, (A.9)

where the last inequality is Jensen’s inequality.
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Proof of Lemma 3. We need to show that µ
(
et(Z−µ(Z))

)
≤ e

t2
2

∑∞
i=0(M

2
i +L2

i ).

Now, we write the Laplace transform as

µ
(
et(Z−µ(Z))

)
= µ

(
eZ−µ(Z|T (1)

0 ⊗T (2)∞ )eU
)

(A.10)

with U = µ(Z|T (1)
0 ⊗ T (2)

∞ ) − µ(Z). With the same arguments as the ones leading to
(A.8) one gets that

µ
(
eZ−µ(Z)

)
≤ e

1
2

∑N−1
i=0 M2

i µ
(
eVN eU

)

≤ e
1
2

∑∞
i=0 M2

i

[
µ
(
eU

)
+ µ

(
(eVN − 1)eU

)]
, (A.11)

where VN = µ(Z|T (1)
0 ⊗ T (2)

N ) − µ(Z|T (1)
0 ⊗ T (2)

∞ ). We can apply the martingale

decomposition for µ
(
eU

)
from which follows that µ

(
eU

) ≤ e
1
2

∑∞
i=0 L2

i , using tail-trivi-
ality. So, we need to show that the second term in the last parenthesis converges to zero
with N ↑ ∞. But this follows from the backwards martingale convergence theorem,
tail triviality and existence of all exponential moments in an analogous fashion as in the
proof of Lemma A.1.
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