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Foreword

The following notes are lecture notes for a course held in Essen in the summer
term 2016, in the context of the research training group RTG 2131. The
material presented evolves around the concept of Gibbs measures on infinite
graph-theoretic trees and the related concept of a tree-indexed Markov chain.
The presentation is self-contained, when proofs are omitted, references are
given.

In Section 1 we begin with a motivating elementary example of broadcasting
on trees, and the associated reconstruction problem. It is elementary, as it is
formulated without resorting to the infinite-volume formalism which will be
introduced later, but the relation to the Ising model, and two types of non-
trivial transitions at different critical temperatures already appear, with proofs
to be given later.

Section 2 contains relevant concepts and results of the infinite-volume Gibb-
sian theory on general countable graphs, including trees, but allowing also for
more general graphs than trees: definition of Gibbs measures, extremality, tail-
triviality, Dobrushin uniqueness, and uniqueness in one dimension. Much of
the presentation of this general material follows the exposition which can be
found in the excellent book of Georgii on Gibbs measures.

In Section 3 we narrow down the supporting graphs to trees and discuss the
concept of a boundary law, which is a useful concept very particular to trees.
We have tried to give a detailed and motivating presentation, including many
pictures. Examples presented are the Ising and the Potts model, for which we
discuss all branches of tree-invariant Markov chains.

Section 4 comes back to the reconstruction problem which was introduced
when we discussed broadcasting on trees, now formulated in terms of extremal-
ity of a given Gibbs measure. Bounds ensuring non-extremality (the Kesten-
Stigum bound in the language of multi-color branching processes), and bounds
ensuring extremality are both discussed.

Section 5 deals with tree-indexed models having non-compact local spin
space. In such a situation infinite-volume Gibbs measures may cease to exist,
but the more general concept of a gradient Gibbs measures is still meaning-
ful. We discuss without proof, with a somewhat algebraic flavor, the relation
between boundary laws with periodicity and gradient Gibbs measures.

After reading Section 2 and Section 3, Sections 4 or Sections 5 can be read
independently. I am much indebted to my coauthors Aernout van Enter, Marco
Formentin (Section 4), Utkir Rozikov (Section 3), and Philipp Schriever (Sec-



tion 5). Philipp Schriever’s Ph.D. thesis evolved around the topics covered in
the present note, and I would like to say a particular thank you for all of his
work during his Ph.D. thesis and in the preparation of the present manuscript.
I also thank Florian Henning for a critical reading of the manuscript.
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1 Introduction

1.1 Motivating Example: Broadcasting on Trees

Definition 1.1.1. A tree(-graph) is a graph (V,E), where V is a countable or
finite vertex set and E is the edge set, which has no loops and is connected.
Notation: x ∼ y ⇔ x is adapted to y :⇔ {x, y} ∈ E ⇔ {x, y} is an edge.

Note that for all vertices x, y ∈ V there exists a unique self-avoiding path
x = x0 ∼ x1 ∼ · · · ∼ xn = y of neighboring vertices x1, ..., xn ∈ V . The path
length n =: d(x, y) defines the tree metric.

Let TN = (VN , EN ) be the binary tree of depth N , rooted at 0. Define the
finite-volume state of the model to be ΩN := {−1,+1}VN . Together with the
product sigma-algebra (which is simply the power set on our finite set) this
will be our probability space.

Denote by σ ∈ ΩN a configuration. We define a probability distribution µ
on ΩN in two steps. First, the distribution of the spin at the origin is chosen
to be symmetric Bernoulli, i.e.

µ(σ0 = 1) = µ(σ0 = −1) =
1

2
.

Next we pass on information from the root to the outside of the tree by putting,
for all pairs of neighboring vertices v → w (meaning that v is the parent of w,
i.e. v is closer to the root than w),

µ(σw = −1 | σv = 1) = ε

µ(σw = 1 | σv = −1) = ε.
(1.1.1)

Here ε ∈ [0, 1
2 ] is an error parameter, and the full probability distribution is

obtained by applying this rule from the root to the outside of the tree. In this
way we have the following probability distribution on our finite-volume state
space.

Definition 1.1.2. The probability measure defined by

µ(σ) =
1

2

∏
v,w:v→w

(1− ε)1σv=σw ε1σv 6=σw

=
1

2

∏
v,w:v→w

Pσv,σw

(1.1.2)



1 Introduction

with

P =

(
1− ε ε
ε 1− ε

)
is called the symmetric channel on the binary tree.

This is a specific example of a tree-indexed Markov chain. This is an im-
portant concept which will be defined in more generality and investigated in
the next chapters. We can imagine to replace P by another transition matrix
to obtain a different distribution, and we can generalize the local state space.
Note that ε = 1/2⇔ σv’s are independent.

Using simple calculations with ±1-valued variables we can put our probabil-
ity measure in the exponential form

µ(σ) =
1

2

∏
v,w:v 7→w

(1− ε)1σv=σw ε1σv 6=σw

=
exp[β

∑
v,w:v→w σvσw]

ZN (β)

(1.1.3)

with β := 1
2 log 1−ε

ε , called the inverse temperature in statistical mechanics, or
equivalently ε = 1

e2β+1
. Here

ZN (β) =
∑
σ∈ΩN

exp

β ∑
v,w∈V,v∼w

σvσw

 (1.1.4)

is a normalizing constant, called partition function in statistical mechanics,
that makes (1.1.3) a probability measure. We have recovered here the (finite-
volume) Gibbs measure for the Ising model on a tree (with open boundary
conditions).

We would like to understand this measure. In which way is possibly in-
formation preserved over long distances? Such questions will set the tone for
subsequent investigations.

We write, for a vertex v ∈ V , |v| for the distance to the origin. For |w| = N
we define

µ(σ0σw = −1) =: F (N).

This is a meaningful quantity for all N , so we may take a limit. We start with
the following simple one-dimensional observation.

Proposition 1.1.3. We have

lim
N→∞

F (N) =
1

2
,

i.e., an observation of a single spin at the boundary at distance N does not allow
us to deduce anything about the state at the root when N tends to infinity.
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1.1 Motivating Example: Broadcasting on Trees

Proof. The problem is reduced to the the study of a Markov chain along the
path which connects the root 0 to the vertex w. Such a problem is elementary
and can be treated by diagonalization: With the transition matrix

P =

(
1− ε ε
ε 1− ε

)
.

we get

F (N) =
∑

σ1,...,σN−1

P1,σ1Pσ1,σ2 ...PσN−1,−1

= PN (1,−1).

(1.1.5)

Now diagonalize: The matrix P has eigenvalue 1, with eigenvector (1, 1)T , and
eigenvalue 1− 2ε, with eigenvector (1,−1)T . Hence we have

OTPO =

(
1 0
0 1− 2ε

)
with

O =
1√
2

(
1 1
1 −1

)
= OT ,

and we arrive at

PN = O

(
1 0
0 (1− 2ε)N

)
O

=
1

2

(
1 + (1− 2ε)N 1− (1− 2ε)N

1− (1− 2ε)N 1 + (1− 2ε)N

)
.

(1.1.6)

Hence, limN→∞ F (N) = limN→∞
1
2 (1− (1− 2ε)N ) = 1

2 .

In the proof we have seen that the rate of convergence is governed by the
second largest eigenvalue (or the spectral gap) of the transition matrix M . For
smaller second largest eigenvalue 1− 2ε we have faster convergence.

That was not surprising: In general one dimensional models have no long
range order, unless the interactions are long-range. Markov chains on finite
state spaces loose their memory exponentially fast.

A more interesting question now is the following, and this is a typical tree-
question. When does the information at all of the boundary sites allow us to de-
duce the state at the origin? The chances are much better now, as there are ex-
ponentially many sites in N , and the boundary sites constitute a non-vanishing
fraction of all sites of a tree of depth N . Write ∂TN = {v ∈ V : |v| = N} for

3



1 Introduction

the boundary of the tree of depth N . Consider the conditional probability that
the variable at the origin is 1, if we condition on any configuration at distance
N from the origin, that is

πN (ξ) = µ(σ(0) = 1|σ∂TN = ξ) (1.1.7)

Question 1.1.4. Is it always true that a conditioning of the boundary spins
to take their maximal value has no predictive power for the spin at the origin,
for large volumes? That is, do we have

lim
N↑∞

πN (+1∂TN ) =
1

2
? (1.1.8)

Does it depend on the value of the error parameter ε?

Exercise 1.1.5. Prove that taking the expectation over the boundary spins
yields Eµ πN (ξ) = 1

2 for all N .

Question 1.1.6. Is it true that

lim
N↑∞

πN (ξ) =
1

2
, (1.1.9)

for typical realizations of the boundary spins ξ? For which values of ε?

What do we mean by typicality? More precisely, let us consider the variance
of the random variable πN obtained feeding it random boundary spins ξ dis-
tributed according to the measure µ itself. The second question reformulated
reads then: When do we have

lim
N↑∞

varN (πN ) = lim
N↑∞

Eµ

[(
πN − 1

2

)2 ]
= 0 ? (1.1.10)

Exercise 1.1.7. Is this statement weaker or stronger or equivalent compared
to stochastic convergence?

The above questions have answers as follows.

Theorem 1.1.8. Let T be a regular tree where every vertex has precisely d
children. Then (1.1.8) holds iff d tanhβ ≤ 1.

Theorem 1.1.9. Let T be a regular tree where every vertex has precisely d
children. Then (1.1.10) holds iff d(tanhβ)2 ≤ 1.
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1.1 Motivating Example: Broadcasting on Trees

Note that tanhβ is the second largest eigenvalue of the transition matrix M .
This is no accident. The second largest eigenvalue will also appear in analogous
statements for more general models.

In both cases we see critial values for β (or equivalently the error probability
ε) appearing. We see examples of threshold phenomena, or phase transitions
at a finite critical value. For readers with a background of statistical mechanics
of lattice models it may seem surprising that these critical values are different.
This is particular to things happening on trees, as we shall see later. It is how-
ever in accordance with intuition that the value of the parameter β (which can
be considered as a coupling strength) needs to be bigger to ensure propagation
of a typical boundary condition.

The questions above have been formulated in a pedestrian way, in the sense
that we made statements in terms of limits of finite-volume quantities. We did
not need any measure theory yet. However, the appropriate setting to discuss
them is the formalism of infinite-volume Gibbs measures to which will come
now.
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2 Gibbsian theory on countable vertex sets: Basic
definitions and results

In this chapter we will give a short introduction to the general theory of Gibbs
measures in the infinite volume and present some basic definitions and results
that will be used throughout. We have to omit many of the proofs to keep
this course reasonably short, but they can be found in the refences below. The
theory presented incorporates lattice models and models on trees, and does
not use any particular geometric properties of the index set. Gibbs measures
in the infinite volume are commonly defined in terms of a consistency relation,
the so-called DLR relation. It expresses the invariance of the Gibbs measure
under a whole family of probability kernels. This family, often denoted by γ,
is called a specification, as it specifies the Gibbs measure, which may however
very well be non-unique. This possibility for non-uniqueness is very relevant
for the theory, when non-uniqueness occurs, we speak of a phase transition.

Specifications are often taken from physics, and in such a case they come
often in an exponential form, with a Hamiltonian which is given in terms of
an interaction potential Φ. An example for this is the Ising model. The Gibbs
measures for a given specification form a convex set, or more precisely a simplex
(in which each element has a unique representation in terms of extremals). We
will describe the connection between extremality, triviality on the tail-sigma
algebra (which contains all events that do not depend on finitely many spins),
and correlation decay. Tail-triviality will become relevant again later when we
talk about the reconstruction problem (we touched upon in the introduction)
for general finite-state space models on trees.

A more pedestrian approach to Gibbs measures which has been used histor-
ically is to look at limits of finite-volume Gibbs measures with fixed boundary
conditions. In the general theory these are nothing but the specification kernels
with fixed boundary condition. This approach is closely connected to the more
sophisticated DLR-approach: Each extremal Gibbs measure can be obtained
as a finite volume limit, for typical boundary condition.

For compact local state spaces, each quasilocal specification has at least one
Gibbs measure. To decide whether it has only one, can be difficult. Uniqueness
holds in situations of weak dependence, and a very useful method to ensure
uniqueness is provided by the so-called Dobrushin-uniqueness theory. We give
a full proof of the relevant uniqueness result. We also present and prove a use-
ful comparision theorem which allows to control the difference between Gibbs



2 Gibbsian theory on countable vertex sets: Basic definitions and results

measures for two specifications, viewed on local observables.
We conclude this section by explaining that uniqueness holds very generally

for one-dimensional models under ”finite energy condition”, including all finite
range models.

For more thorough and detailed exhibitions of the theory, see e.g., [3], [5],
[6], [11].

2.1 Gibbsian specifications

Let V be a countably infinite set and let Ω0 be a Polish space with sigma-
algebra F0. We call Ω0 the local state space, the simplest non-trivial example
we have just seen in the introduction is Ω0 = {−1, 1}.
V could appear naturally as the vertex set of some graph, e.g., V = Zd with

d ∈ N∗ (the positive integers). In subsequent chapters we will assume V to be
the vertex set of an infinite tree. For any sub-volume Λ ⊂ V (possibly infinite)
define

ΩΛ = ΩΛ
0 = {(ωx)x∈Λ : ωx ∈ Ω0 ∀x ∈ Λ}.

When Λ = V , we write Ω = ΩV . The measurable structure on ΩΛ is given by
the product sigma-algebra

BΛ =
⊗
i∈Λ

F0 =: FΛ
0 .

For any x ∈ V the projection onto the x’th coordinate will be denoted by

σx : Ω→ Ω0,

ω 7→ ωx.

The restriction of a configuration in the infinite volume, ω ∈ Ω, to a sub-volume
Λ ⊂ V , can be given by using the projection σΛ : Ω → ΩΛ with σΛ(ω) = ωΛ.
Similarly, if Λ ⊂ ∆ ⊂ V we will use the same notation σΛ for the projection

from Ω∆
0 to ΩΛ

0 . The concatenation of two configurations ω ∈ ΩΛ
0 and ρ ∈ Ω

∆\Λ
0

is denoted as ωρ ∈ Ω∆
0 and is defined by having the properties σΛ(ωρ) = ω and

σ∆\Λ(ωρ) = ρ.
Let us agree to write Λ b V if Λ is a finite subset of V . For any finite

sub-volume Λ b V we define the sigma-algebra of cylinders with base in Λ as

C(Λ) := σ−1
Λ (BΛ).

For any (possibly infinite) ∆ ⊂ V , consider the algebra of cylinders with base
in ∆, i.e.,

C∆ :=
⋃

Λb∆

C(Λ).

8



2.1 Gibbsian specifications

For each ∆ ⊂ V the sigma-algebra F∆ “of all events occurring in ∆” is then
by definition generated by C(∆), i.e.,

F∆ := σ(C∆).

When ∆ = V we simply write F = FV and we have by our previous definition
that F is the smallest sigma-algebra on Ω containing the cylinder events, i.e.,
F = σ(CV ) =

⊗
i∈V F0.

A spin model is then simply a probability measure on the product space
(Ω,F). We call Ω0 the local state space and Ω the configuration space of
the spin model. In the following we will work towards the introduction of
equilibrium states of a spin model in the infinite volume. First, we need some
more definitions and notations.

Definition 2.1.1. Let Λ b V . A probability kernel from FΛc to F is a map
πΛ : F × Ω→ [0, 1] with the properties

(i) πΛ(· | ω) is a probability measure on (Ω,F) for any ω ∈ Ω,

(ii) πΛ(A | ·) is FΛc-measurable for each A ∈ F .

If
πΛ(A | ω) = 1A(ω), ∀A ∈ FΛc

for all ω ∈ Ω, πΛ is called proper.

A probability kernel pulls functions back and pushes measures forward in the
following sense: If µ is a probability measure on the measurable space (Ω,FΛc)
and πΛ is a probability kernel from FΛc to F then

µπΛ(A) =

∫
πΛ(A | ω)µ(dω), ∀A ∈ F

defines a probability measure on (Ω,F). Also, if f : Ω → R is measurable
w.r.t. F then the function πΛf : Ω→ R given by

πΛf(ω) = πΛ(f |ω) =

∫
πΛ(dζ | ω)f(ζ), ∀ω ∈ Ω

is measurable w.r.t. FΛc .
The composition of kernels πΛ and π∆ is defined by the formula

πΛπ∆(A | ω) :=

∫
π∆(A | ρ)πΛ(dρ | ω)

for any A ∈ F and all ω ∈ Ω and is itself a kernel from FΛc to F .

9



2 Gibbsian theory on countable vertex sets: Basic definitions and results

Let us assume that we have a proper probability kernel πΛ from FΛc to F .
Then the probability measure πΛ(· | ω) will be supported on the set ΩωΛ :=
σ−1

Λc (ω) for any ω ∈ Ω as

πΛ(ΩωΛ | ω) = 1ΩωΛ
(ω) = 1

since ΩωΛ ∈ FΛc . Therefore one can interpret the configuration ω ∈ Ω as the
boundary condition of the measure πΛ(· | ω). In the following all kernels πΛ

to be considered will be proper and therefore they will be entirely determined
by all the numbers πΛ(ηΛωΛc |ω). We will sometimes use the shorter notation
πΛ(ηΛωΛc |ω) = πΛ(ηΛ|ωΛc).

As it turns out, it will be necessary to use an infinite family of probability
kernels, {πΛ}ΛbV , to describe Gibbs measures in the infinite volume directly.
The key concept in that regard is that of a (local) specification:

Definition 2.1.2. A specification is a family of proper probability kernels γ =
{γΛ}ΛbV from FΛc to F which satisfies the consistency relation, i.e.,

γ∆γΛ = γ∆

for any finite subsets Λ,∆ b V with Λ ⊂ ∆. A measure µ ∈ M1(Ω) (the
probability measures on Ω) is said to be compatible with (or specified by) γ if

µ = µγΛ ∀Λ b V.

The set of measures which are compatible with γ will be denoted by G(γ).

A first natural question that arises with regard to this definition is if there
is a way to construct specifications. Before we answer this question we want
to discuss the following lemma [6, Remark 1.20].

Lemma 2.1.3. Suppose πΛ is a proper probability kernel from FΛc to F .

(i) We have that

πΛ(A ∩B | ·) = πΛ(A | ·)1B(·)

for all A ∈ F and all B ∈ FΛc .

(ii) Let µ ∈M1(Ω). Then µπΛ = πΛ if and only if

µ(A | FΛc) = πΛ(A | ·) µ-a.s. (2.1.1)

for all A ∈ F .

10



2.1 Gibbsian specifications

Proof. (i): First assume that ω /∈ B. Then

πΛ(A ∩B | ω) ≤ πΛ(B | ω) = 1B(ω) = 0.

Now suppose ω ∈ B. We have

πΛ(A ∩B | ω) = πΛ(A | ω)− πΛ(A ∩Bc | ω) = πΛ(A | ω).

(ii): If (2.1.1) holds, then for all Λ b V and all A ∈ F ,

µπΛ(A) =

∫
πΛ(A | ω)µ(dω) =

∫
µ(A | FΛc)(ω)µ(dω) = µ(A).

Now suppose that µπΛ = µ. Hence

µ(A ∩B) = µπΛ(A ∩B) =

∫
πΛ(A ∩B | ω)µ(dω) =

∫
B

πΛ(A | ω)µ(dω)

for all A ∈ F and all B ∈ FΛc . By the definition of the conditional probability
we have

µ(A ∩B) =

∫
B

µ(A | FΛc)(ω)µ(dω) ∀B ∈ FΛc

and by the almost sure uniqueness of the conditional expectation we see that

µ(A | FΛc)(·) = πΛ(A | ·)

µ-almost surely for all A ∈ F .

The second part of Lemma 2.1.3 tells us that for a given specification (γΛ)ΛbV

the measures µ ∈ G(γ) are characterized by having a regular conditional dis-
tribution provided by γΛ, when conditioning with respect to FΛc .

The most important class of specifications are the so-called Gibbsian speci-
fications which we will introduce in the following definition.

Definition 2.1.4. Let Φ = {ΦΛ}ΛbV be a family of real-valued functions on
the configuration space Ω. We call Φ an interaction potential if it has the
following properties:

(i) The functions ΦΛ are FΛ-measurable for any Λ b V .

(ii) For all Λ b V and ω ∈ Ω, the series

HΦ
Λ (ω) =

∑
AbV,A∩Λ6=∅

ΦΛ(ω) (2.1.2)

exists.

11



2 Gibbsian theory on countable vertex sets: Basic definitions and results

We call HΦ
Λ the Hamiltonian in the finite sub-volume Λ associated to the po-

tential Φ.

By ”existence of the series” we mean that for any increasing sequence of
volumes ∆n which converges to V we have that

lim
n↑∞

∑
A⊂∆n,A∩Λ6=∅

ΦΛ(ω) (2.1.3)

exists and does not depend on the volume sequence.
Since the sum (2.1.2) contains possibly infinitely many terms there is no

guarantee that it converges. However, for an important class of interaction
potentials this is not an issue: Let dG(·, ·) denote the graph distance on V ,
which is the number of edges in the shortest path connecting two vertices. We
define the diameter of a finite set Λ by diam(Λ) := supx,y∈Λ dG(x, y). Let

r(Φ) := inf{R > 0 : ΦΛ = 0 for all Λ with diam(Λ) > R}.

If r(Φ) <∞, the interaction potential Φ is said to be of finite range and clearly
the Hamiltonian HΦ

Λ is well defined for any finite sub-volume Λ in this case.
Later in this lecture notes we will only consider potentials that are of finite
range.

In the following we will assume that the local state space is equipped with
a so-called a priori measure λ ∈ M1(Ω0) and denote for any Λ ⊂ V the
product measure on (ΩΛ

0 ,FΛ
0 ) by λΛ. The (conditional) partition function is

then defined by

ZΦ
Λ (ω) =

∫
e−H

Φ
Λ (ζΛωΛc )λΛ(dζΛ).

A potential Φ is said to be λ-admissible if the partition function ZΦ
Λ (ω) is a

finite number in the open interval (0,∞), for all Λ b V and all ω ∈ Ω.

Proposition 2.1.5. Suppose that Φ is a λ-admissible interaction potential.
Then the family of probability kernels γΦ = {γΦ

Λ}ΛbV from FΛc to F defined
by

γΦ
Λ (A | ω) =

1

ZΦ
Λ (ω)

∫
e−H

Φ
Λ (ζΛωΛc )1A(ζΛωΛc)λ

Λ(dζΛ)

constitutes a specification and it is called the Gibbs specification for Φ. A
probability measure µ ∈ G(γΦ) is called an infinite-volume Gibbs measure (or
simply a Gibbs measure) associated to the potential Φ.

To verify the specifaction properties note that the measurability properties
are evident, while the consistency is obtained by a rearrangement of sums,
see [6, Proposition 2.5]. The measures γΦ(· | ω) ∈M1(Ω) are also called finite-
volume Gibbs measures under boundary condition ω. The way we have defined

12



2.2 Extremal Gibbs measures

them they actually are measures on the infinite volume. However, recall that
they are supported on the set ΩωΛ which consists only of configurations that
are equal to ω outside the finite volume Λ.

2.2 Extremal Gibbs measures

One basic observation is that as the DLR equation is linear, G(γ) is a convex
set: If µ1, ..., µN belong to G(γ), then so does any convex combination of them.
This makes the extremal elements of this set, which we will denote by exG(γ),
especially interesting. The following questions arise naturally:

1. What properties, if any, distinguish the elements of exG(γ) from the
non-extremal ones?

2. What is the physical interpretation of these extremal points of G(γ)?

Before we answer these questions we will give a condition under which the set
of extremal Gibbs measures is non-empty. Let Cb(Ω) denote the set of bounded
real-valued functions on Ω which are continuous w.r.t. the product topology
obtained from the topology on the Polish local state space Ω0. A particular
class of specifications is given in the following definition:

Definition 2.2.1. A specification γ = (γΛ)ΛbV is said to be Feller-continuous
if, for each Λ b V , f ∈ Cb(Ω) implies γΛf ∈ Cb(Ω).

An important example of Feller-continuous specifications is provided by the
Gibbsian specifications γΦ where the interaction potential Φ is continuous and
uniformly convergent (and λ-admissible) [3]. An interaction is by definition
uniformly convergent if for every Λ b V the sum in (2.1.2) converges uniformly
in ω. Note that this is always the case if the interaction is of finite range which
will be the case for all models considered in these notes.

Let (Λn)n∈N be any sequence of finite subsets of V . We say that (Λn)n∈N
exhausts V if for every v ∈ V there exists a N ∈ N such that v ∈ Λn for every
n ≥ N .

Proposition 2.2.2. [3, Proposition 2.22] Suppose γ is a Feller-continuous
specification and let (Λn)n∈N be any sequence of finite subsets of V that ex-
hausts V . Let νn ∈ M1(Ω) be any sequence of measures. If νnγΛn converges
weakly to some µ ∈M1(Ω), then µ ∈ G(γ).

We like to note the following fact: If Ω0 is compact, so is Ω = ΩV0 w.r.t. the
product topology. Also, Ω is Polish since it is the countable product of Polish
spaces. Hence, M1(Ω) is weakly compact. Therefore, in the case of a Feller-
continuous specification every sequence νnγΛn has a convergent subsequence
and hence G(γ) is not empty.

13



2 Gibbsian theory on countable vertex sets: Basic definitions and results

In general this might not be true; the question of whether or not |G(γ)| =
0 is a non-trivial one. There indeed exist physically reasonable models for
which there are no infinite-volume Gibbs measures. Examples are the massless
discrete Gaussian free field on the lattice Zd in dimensions d ≤ 2 and the solid-
on-solid model in d = 1 [6]. In both cases the local state space equals the set
of all integers.

One nice property of Feller-continuous specifications is that they allow the
identification of Gibbs measures as weak limits, at least the extremals. To be
more specific, we have the following statement [3, Proposition 2.23]:

Proposition 2.2.3. Let Ω0 be a compact metric space and let (γΛ)ΛbV be a
Feller-continuous specification. Furthermore let µ be an element of exG(γ).
Then, for µ-a.e. ω

lim
n→∞

γΛn(· | ω) = µ

in the weak limit for any sequence of finite sub-volumes (Λn)n∈N that exhausts
V .

Let us assume a Feller-continuous specification is given. Then the previ-
ous two propositions show the connection between the DLR-approach to the
Gibbs theory in infinite-volume and the classical approach using the thermo-
dynamic limit of finite-volume Gibbs measures under boundary condition (see
e.g., Chapter 3 of [5] for a detailed exhibition of this ansatz). Proposition
2.2.2 tells us that any weak limit of finite-volume Gibbs measures is in fact
an infinite-volume Gibbs measure. Conversely, Proposition 2.2.3 states that if
we have an extremal Gibbs measure µ and sample any typical configuration
from µ and use it as a boundary condition, in the infinite-volume limit we will
recover µ itself.

The following theorem follows immediately from Proposition 2.2.3 and gives
a condition for which there is a unique Gibbs measure:

Theorem 2.2.4. Let Ω0 be a compact metric space and let (γΛ)ΛbV be a Feller-
continuous specification. Suppose that for all sequences of finite sub-volumes
(Λn)n∈N exhausting V and every ω ∈ Ω all the possible weak limits of γΛn(· | ω)
are identical. Then there exists exactly one Gibbs measure.

Recall that for any Λ b V we defined FΛc as the sigma-algebra which consists
of all the events that only depend on the spins outside the finite set Λ. Now
the tail sigma-algebra (or tail field) T is defined as the sigma-algebra which
only depends on the spins outside any finite region Λ, i.e.,

T :=
⋂

ΛbV

FΛc .

14



2.2 Extremal Gibbs measures

The extremal elements of G(γ) are characterized by the following properties
[3, Proposition 2.20]:

Proposition 2.2.5. Let µ ∈ G(γ). Then the following statements are equiva-
lent:

(i) The measure µ is an extremal element of G(γ).

(ii) The measure µ is trivial on the tail sigma-algebra T , i.e.,

µ(A) ∈ {0, 1}

for every A ∈ T .

(iii) The measure µ has short-range correlations, i.e., for each A ∈ F we have

lim
Λ↑V,ΛbV

sup
B∈FΛc

|µ(A ∩B)− µ(A)µ(B)| = 0.

Let us comment on the statement of the last proposition. Physical systems
can in general have one or more possible “macrostates”, depending on the val-
ues of some internal free parameters of the system. For example water can
be in a gaseous, liquid or solid “macrostate” depending on the temperature
and pressure. While the microscopic quantities change rapidly, the macro-
scopic quantities remain constant. To turn this into a mathematical exact
statement we define the macroscopic quantities or macroscopic observables as
the functions on Ω that are measurable w.r.t. the tail field T , i.e., the func-
tions that do not depend on spins in any finite volume Λ b V . The physical
relevance of the preceding theory presented in this chapter lies in the assump-
tion that the statistical mechanical information of the physical system can be
obtained from a suitable specification γ, that is, the space of measures G(γ)
describes the “macrostates” of the system. Proposition 2.2.5 tells us that these
“macrostates” are given by the extremal elements of G(γ).

What is then the interpretation of the non-extremal elements of G(γ)? Sup-
pose that the local state space (Ω0,F0) is Polish. Then every non-extremal
measure µ ∈ G(γ) is an (integral) convex combination of extremal ones. This
decomposition is even unique, that is, G(γ) is a simplex [6, Theorem 7.26].

This means that a non-extremal Gibbs measure corresponds simply to the
preparation of randomly chosen extremal Gibbs measures. The probabilities for
this choice are given by the “coefficients” of the convex combination. This extra
randomness can be interpreted as the uncertainty in the experiment regarding
the true nature of the systems “macrostate” (for a more detailed discussion,
see Chapter 6 of [5]).

Therefore the non-extremal Gibbs measures do not lead to new physics:
Everything that we can observe under such a measure is typical for one of the

15



2 Gibbsian theory on countable vertex sets: Basic definitions and results

extremal ones that appear in its (unique) decomposition. Hence the extremal
Gibbs measures are the physically important ones, which is why they are also
called the “pure” states. This is the reason why we say that a physical system
exhibits a phase transition when there exist multiple extremal Gibbs measures
for the model.

Finally, we want to point out that the extremal Gibbs measures are suitable
to describe the different phases of the system as it is possible to distinguish
those measures by looking at macroscopic observables only. This is important
since we should be able to tell “macrostates” apart by looking at macroscopic
measurements:

Theorem 2.2.6. [6, Theorem 7.7] Let µ1, µ2 be two distinct extremal Gibbs
measures w.r.t. a specification (γΛ)ΛbV . Then there exists some tail-measurable
event A ∈ T such that µ1(A) = 1 and µ2(A) = 0, i.e., µ1 and µ2 are mutually
singular.

2.3 Uniqueness

2.3.1 Dobrushin’s condition for uniqueness

In this section we will give a criterion for the uniqueness of Gibbs measures on
any graph. To do this we will need to formulate a weak dependence requirement
on the specification γ. First, let us recall the notion of total variational distance
on the space of probability measuresM1(Ω). (For the sake of this definition we
allow Ω to be any measurable space.) The total variational distance is defined
as

dTV (α1, α2) := sup
A∈F
|α1(A)− α2(A)|, α1, α2 ∈M1(Ω).

If the state space Ω is discrete we have

dTV (α1, α2) =
1

2

∑
ω∈Ω

|α1(ω)− α2(ω)|.

Look at the single-site kernels γi and define

sup
ω{i,j}c ,ω̄j ,ω̂j

‖γi(dωi | ω{i,j}c ω̄j)− γi(dωi | ω{i,j}c ω̂j)‖TV =: Cij ∈ [0, 1].

We call (Cij)i,j∈V the Dobrushin matrix. In this definition the kernels are
compared in total variation only on the local state space at i (and not in the
whole infinite-volume). Note that Cii = 0 for all i ∈ V . The entry Cij in a
sense measures the dependence of the observation at site i when perturbing
the spin at site j.
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2.3 Uniqueness

Definition 2.3.1. A function f : Ω→ R is called local if it is FΛ-measurable
for some finite Λ ⊂ V , i.e., if f only depends on finitely many coordinates.

A function f : Ω → R is called quasilocal if there exists a sequence of local
functions fn s.t. supω∈Ω |fn(ω)− f(ω)| → 0 for n→∞.

A specification γ is called quasilocal if ω 7→ γΛ(f | ω) is quasilocal for any
finite Λ ⊂ V and any quasilocal function f .

The set of local functions is denoted by L and the set of quasilocal functions
is denoted by L̄.

For an example look at the Ising model on any graph V . If W b V is a finite
subset ω 7→

∑
i,j∈W :i∼j ωiωj is FW -measurable.

Theorem 2.3.2. Let γ = (γΛ)ΛbV be a quasilocal specification on (Ω,F).
Assume that γ satisfies the so-called Dobrushin condition:

c := sup
i∈V

∑
j∈V \{i}

Cij < 1.

Then |G(γ)| ≤ 1.

Before we turn to the proof of this uniqueness theorem we need to introduce
some more notation. The variation of f ∈ L̄ at the site i is defined by

δi(f) := sup
ωic ,ωi,ω̄i

|f(ωiωic)− f(ω̄iωic)|.

Let µ1, µ2 ∈ M1(Ω,F). An infinite vector a = (ai)i∈V ∈ [0,∞]V is called an
estimate for µ1, µ2 if

|µ1(f)− µ2(f)| ≤
∑
i∈V

aiδi(f), ∀f ∈ L̄.

Note: The constant vector a = 1 is always an estimate (small exercise).

Lemma 2.3.3 (Georgii 8.18). Suppose we have two specifications γ, γ̃ on
(Ω,F) and µ ∈ G(γ) and µ̃ ∈ G(γ̃). Furthermore, suppose the “closeness-
condition”,

‖γi(· | ωic)− γ̃i(· | ωic)‖TV ≤ bi(ωic) <∞,

holds for every ω ∈ Ω and γ is a quasilocal specification with Dobrushin matrix
(Cij(γ))i,j∈V . Then: If a = (ai)i∈V is an estimate for µ, µ̃, then also ā =
(āi)i∈V with

āi :=
∑

j∈V \{i}

Cij(γ)aj + µ̃(bi), i ∈ V,

is an estimate for µ, µ̃.

17



2 Gibbsian theory on countable vertex sets: Basic definitions and results

Proof. Take Λ b V and put

aΛ
i =

{
āi ∧ ai, if i ∈ Λ

ai, if i /∈ Λ
.

We claim that aΛ is an estimate for every Λ b V .
Proof by induction: This is clear for Λ = ∅.

Induction step: Λ → Λ ∪ {i} where i /∈ Λ. Take f ∈ L. Then we may add
crossterms to get the upper bound

|µ(f)−µ̃(f)| = |µ(γi(f))−µ̃(γ̃i(f))| ≤ |µ(γi(f))−µ̃(γi(f))|+|µ̃(γi(f))−µ̃(γ̃i(f))|

because µ ∈ G(γ) and µ̃ ∈ G(γ̃). We estimate each term on the right separately.
For the second term we look at the integrand and observe, using the single-site
closeness condition,

|γi(f)(ω)− γ̃i(f)(ω)| = |
∫
γi(dω̃i | ωic)f(ω̃iωic)−

∫
γ̃i(dω̃i | ωic)f(ω̃iωic)|

≤ ||γi(· | ωic)− γ̃i(· | ωic)||TV δi(f)

≤ bi(ω)δi(f).

(2.3.1)

Hence, after the µ̃-integration the second term is at most µ̃(bi)δi(f).
To estimate the first term we use the hypotheses that γif ∈ L̄ and aΛ is an

estimate. This gives us

|µ(γi(f))− µ̃(γif)| ≤
∑
j∈V

aΛ
j δj(γi(f)).

As γi(f) does not depend on the spin at site i we have δi(γi(f)) = 0. Hence
take any j 6= i. Then, adding cross-terms,

|γi(f | ω{i,j}cωj)− γi(f | ω{i,j}cηj)|
≤|γi(f(·iω{i,j}cωj) | ω{i,j}cωj)− γi(f(·iω{i,j}cηj) | ω{i,j}cωj)|

+ |γi(f(·iω{i,j}cηj) | ω{i,j}cωj)− γi(f(·iω{i,j}cηj) | ω{i,j}cηj)|.
(2.3.2)

The first summand on the r.h.s. is bounded from above by δj(f) and the second
summand by

δi(f(·iω{i,j}cηj))||γi(·i | ω{i,j}cωj)−γi(·i | ω{i,j}cηj)|| ≤ δi(f(·iω{i,j}cηj))Cij(γ).

This shows that
δj(γi(f)) ≤ δj(f) + Cij(γ)δi(f).
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2.3 Uniqueness

Combining all preceding inequalities leads to

|µ(f)− µ̃(f)| ≤
∑
j(6=i)

aΛ
j [δj(f) + Cij(γ)δi(f)] + µ̃(bi)δi(f)

=
∑
j 6=i

aΛ
j δj(f) + δi(f)

∑
j 6=i

aΛ
j Cij(γ) + µ̃(bi)


≤
∑
j 6=i

aΛ
j δj(f) + δi(f)

∑
j 6=i

ajCij(γ) + µ̃(bi)


=
∑
j 6=i

aΛ
j δj(f) + āiδi(f).

(2.3.3)

In the second inequality we have used that aΛ
j ≤ aj and in the third that

Cii(γ) = 0 for all i ∈ V and the definition of āi. As aΛ is an estimate the last
inequality also holds when we replace āi by ai and so we may also replace it
by āi ∧ ai. This shows that aΛ∪{i} is an estimate. This finishes the proof.

For a given specification γ and any integer n ≥ 0 we let

Cn(γ) = (Cnij(γ))i,j∈V

denote the n’th matrix power of the interaction matrix C(γ). We put

D(γ) = (Dij(γ))i,j∈V =
∑
n≥0

Cn(γ).

Theorem 2.3.4. Let γ and γ̃ be two specifications. Suppose γ satisfies Do-
brushin’s condition. For each i ∈ V we let bi be a measurable function on Ω
s.t.

||γi(·i | ω)− γ̃i(·i | ω)|| ≤ bi(ω)

for all ω ∈ Ω. If µ ∈ G(γ) and µ̃ ∈ G(γ̃) then

|µ(f)− µ̃(f)| ≤
∑
i,j∈V

δi(f)Dij(γ)µ̃(bj)

for all f ∈ L̄.

Proof. We write C = C(γ), D = D(γ), and b̃ = (µ̃(bi))i∈V . Replacing bi by
1 ∧ bi if necessary we may assume that b̃i ≤ 1 for all i ∈ V . We need to show
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2 Gibbsian theory on countable vertex sets: Basic definitions and results

that the vector Db̃ is an estimate for µ and µ̃. Consider the estimate ai = 1
for all i. A repeated application of Lemma 2.3.3 shows that

a(n) = Cna+

n−1∑
k=0

Ck b̃

is an estimate for every n ∈ N. In the following we will show that a(n) → Db̃
coordinatewise as n→∞.

Dobrushin’s condition for γ implies that, with the Dobrushin constant de-
noted by c = supi

∑
j Cij , we have

||C(γ)n||∞ ≤ ||C(γ)||n∞ = cn → 0, with the matrix norm ||A||∞ = sup
i∈V
|
∑
j∈V

Aij |

and therefore

||
n−1∑
k=0

C(γ)k||∞ ≤
n−1∑
k=0

ck ≤ 1

1− c
.

Hence, the row sums of D are at most 1/(1 − c). In particular, D has finite
entries and Db̃ exists. Also,

(Cna)i =
∑
j∈V

(Cn)ij → 0

coordinatewise as n → ∞. Thus a(n) → Db̃. As the coordinatewise limit
of estimates is also an estimate (see [6, Remark 8.17 (3)]), this finishes the
proof.

The proof of Theorem 2.3.2 is a consequence of Theorem 2.3.4, since we can
put γ = γ̃ and bi = 0 for all i ∈ V . This gives us that µ(f) = µ̃(f) for all
f ∈ L and thus µ = µ̃ whenever µ, µ̃ ∈ G(γ).

2.3.2 Uniqueness in one dimension

Proposition 2.3.5. Let γ be a specification on (Ω,F). Suppose there exists a
constant c > 0 s.t. for all cylinder sets A there exists a finite Λ b V s.t.

γΛ(A | ωΛc) ≥ cγΛ(A | ω̄Λc)

for all ω, ω̄ ∈ Ω. Then |G(γ)| ≤ 1.

Note that we ask the constant to be uniform in A. The constant should
be the same for arbitrarily large but finite number of coordinates the event A
may depend on. This is not to be expected for spatial models in more than
one dimension, but it is very appropriate in one dimension, as the following
example illustrates.
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Example 2.3.6 (Ising model on Z). The state space is given as Ω = {−1,+1}Z.
Take any cylinder A ∈ F{−k,−k+1,...,l}. We choose Λ = {−k,−k + 1, ..., l}.
Then

γΛ(A | ωΛc) =

∑
σΛ∈A exp[β

∑
i,j∈Λ:i∼j σiσj + βσ−kω−k−1 + βσlωl+1]∑

σΛ∈ΩΛ
0

exp[β
∑
i,j∈Λ:i∼j σiσj + βσ−kω−k−1 + βσlωl+1]

≥ e−4β

∑
σΛ∈A exp[β

∑
i,j∈Λ:i∼j σiσj ]∑

σΛ∈ΩΛ
0

exp[β
∑
i,j∈Λ:i∼j σiσj ]

(2.3.4)

and we get a similar upper bound. Hence,

γΛ(A | ωΛc) ≥ e−8βγΛ(A | ω̄Λc)

for all ω, ω̄ ∈ Ω and the proposition applies. Similar computations can be done
to show uniqueness for many one-dimensional models.

Proof of Proposition 2.3.5. Let the Gibbs measure µ ∈ G(γ) be arbitrary and
B ∈ T =

⋂
ΛbV FΛc a tail event. We want to show that under µ the event

B has either probability 0 or 1. This means that µ is trivial on T which is
equivalent to µ being extremal (Proposition 2.2.5).

Assume that µ(B) > 0 and define ν := µ(· | B) = µ(·∩B)
µ(B) . Observe that

ν ∈ G(γ) as we have for any event A that

ν(γΛ(1A)) =
µ(1BγΛ(1A))

µ(1B)
=
µ(γΛ(1A1B))

µ(1B)
=
µ(1A1B)

µ(1B)
= ν(1A).

Here we have used the properness of the specification in the second step and
the DLR equation in the third.

Further, take in particular a local event A ∈ FΛ. Then

ν(A) =

∫
ν(dω)γΛ(A | ω) =

∫
ν(dω)

∫
µ(dω̃)γΛ(A | ω)

≥ c
∫
ν(dω)

∫
µ(dω̃)γΛ(A | ω̃) ≥ cµ(A).

(2.3.5)

Hence, ν(A) ≥ cµ(A) also holds for all A ∈ F by the monotone class theorem.
This implies 0 = ν(Bc) ≥ cµ(Bc) and therefore µ(B) = 1.
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3 Gibbs measures on trees

We specialize the index set to be the vertex set of a countably infinite tree. We
discuss several Markov properties. There is the notion of a (spatially) Markov
specification which means that the finite-volume Gibbs measures depend on
their boundary condition only via a boundary layer of thickness one. This
notion is meaningful on any graph. Similarly, an infinite-volume measure is
called a (spatially) Markov field if its finite-volume conditional probabilities
depend on the boundary condition only via the boundary layer of thickness
one.

To be distinguished from the above notion, there is the notion of a tree-
indexed Markov chain. This is meaningful only on trees. It relies on the defi-
nition of past and future vertices relative to a given oriented edge. While each
tree-indexed Markov chain is a (spatially) Markov field, the converse statement
is ensured only for extremal Gibbs measures. Indeed, the non-trivial part is
that any extremal Gibbs measure for a Markov specification is a tree-indexed
Markov chain. We will explain in detail why this is true, using conditioning
arguments involving ”future-tail triviality”.

Then we come to describe the one-to-one correspondence between boundary
laws and tree-indexed Markov chains. Boundary laws are families of positive
measures on the local state space, indexed by the set of oriented edges which
satisfy a consistency equation (tree-recursion). There is also a one-to-one corre-
spondence between boundary laws and transition matrices of the tree-indexed
Markov chain, given the specification.

We conclude with a discussion of all homogeneous boundary laws on the
Cayley tree for concrete examples of the Ising model and the Potts model in
zero magnetic field.

3.1 Construction of Gibbs measures via boundary laws

One of the most important classes of stochastic processes are Markov chains.
A Markov chain in its most elementary form is a sequence of random variables
indexed by N (which is usually interpreted as time) which has the property
that future events are independent of the past given the information about its
present state, i.e.,

µ(Xn+1 = xn+1 | Xn = xn, Xn−1 = xn−1, ..., X0 = x0)

=µ(Xn+1 = xn+1 | Xn = xn) for all xn+1, ..., x0 ∈ Ω0.



3 Gibbs measures on trees

x y

Figure 3.1: The set of oriented edges (−∞, xy).

There is a natural way to generalize this definition to the situation where
the stochastic process is no longer indexed by N but by the vertices V of a tree.
To formulate this we need some more notation. For any vertex w ∈ V the set
of the directed edges pointing away from w is given by

~Ew = {〈x, y〉 ∈ E : d(w, y) = d(w, x) + 1}.

This is an orientation of the set of edges induced by the vertex w. Furthermore
we define the “past” of any oriented edge 〈x, y〉 ∈ ~E by

(−∞, xy) = {w ∈ V | 〈x, y〉 ∈ ~Ew}.

This is the set of sites w from which the oriented edge 〈x, y〉 is pointing away.
The definition of the future of an oriented edge is analogous. Note that the
tree property, i.e., the absence of loops, is clearly needed to give a meaningful
definition of the “past” and “future” of an oriented edge.

In the following we will always restrict ourselves to the case where the lo-
cal state space Ω0 is finite. This simplifies the analysis but still allows the
occurrence of phase transitions on trees.

Definition 3.1.1. Let Ω0 be the local state space and Ω = ΩV0 . A measure
µ ∈M1(Ω) is called a tree-indexed Markov chain if

µ(σy = ωy | F(−∞,xy)) = µ(σy = ωy | F{x}) (3.1.1)

µ-a.s. for any 〈x, y〉 ∈ ~E and any ωy ∈ Ω0. Any stochastic matrix Pij on Ω0

with

µ(σj = y | F{i}) = Pij(σi, y) µ-a.s.

for all y ∈ Ω0 will then be called a transition matrix from i to j for µ.
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3.1 Construction of Gibbs measures via boundary laws

A Markov chain is said to be completely homogeneous with transition matrix
P if

µ(σj = y | F{i}) = P (σi, y) µ-a.s.

for all y ∈ Ω0 and all 〈i, j〉 ∈ ~E.

Remark 3.1.2. Every tree-indexed Markov chain µ with transition matrices
(Pij)〈i,j〉∈~E and marginal distribution αk at vertex k ∈ V has the following
representation

µ(σΛ = ζ) = αk(ζk)
∏

〈i,j〉∈ ~Ek:i,j∈Λ

Pij(ζi, ζj) (3.1.2)

for alle finite connected sets Λ b V and all ζ ∈ ΩΛ
0 and k ∈ Λ. This can be seen

by induction on the number of vertices in Λ. If µ is completely homogeneous
it follows from equation (3.1.2) that µ is invariant under the group I(E) of all
graph automorphisms of V . I(E) is the set of all transformations τ : Ω → Ω
s.t. τω = (ωτ−1

∗ i)i∈V where τ∗ : V → V is a bijection with the property that
{τ∗i, τ∗j} ∈ E if and only if {i, j} ∈ E.

Besides the one-sided Markov property there is also the notion of a spatial
Markov property:

Definition 3.1.3. Let γ be a specification for Ω0 and V . The specification is
said to be a Markov specification if γΛ(σΛ = ζ | ·) is F∂Λ-measurable for all
ζ ∈ ΩΛ

0 and every Λ b V .

Here ∂Λ = {i ∈ V : d(i,Λ) = 1} is the outer boundary layer of thickness
one. If γ is a Markov specification, then every µ ∈ G(γ) is a Markov field, in
that µ satisfies the spatial Markov property

µ(σΛ = ζ | FΛc) = µ(σΛ = ζ | F∂Λ) µ-a.s.

for all ζ ∈ ΩΛ
0 and every Λ b V . Note that every Gibbsian specification which

is defined by a nearest-neighbor potential is Markov.

Remark 3.1.4. Every tree-indexed Markov chain is a Markov field.

Proof. Assume that µ is a Markov chain. For Λ b V let ∆ b V be some
finite connected set with Λ ∪ ∂Λ ⊂ ∆. The explicit form of the finite volume
marginals of equation (3.1.2), applied in the bigger volume ∆, shows that

µ(σ∆ = ζωη)µ(ζ ′ωη′) = µ(σ∆ = ζ ′ωη)µ(σ∆ = ζωη′)

for all ζ, ζ ′ ∈ ΩΛ
0 , ω ∈ Ω∂Λ

0 , and η, η′ ∈ Ω
∆\(Λ∪∂Λ)
0 . Summing over ζ ′ and η′ we

obtain

µ(σ∆ = ζωη)µ(σ∂Λ = ω) = µ(σ∆\Λ = ωη)µ(σΛ∪∂Λ = ζω).
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3 Gibbs measures on trees

If µ(σ∆\Λ = ωη) > 0 we have

µ(σΛ = ζ | σ∆\Λ = ωη) = µ(σΛ = ζ | σ∂Λ = ω)

which means that

µ(σΛ = ζ | F∆\Λ) = µ(σΛ = ζ | σ∂Λ = ω) µ-a.s.

Since FΛc is generated by the union of all these F∆\Λ’s, we conclude that

µ(σΛ = ζ | FΛc) = µ(σΛ = ζ | F∂Λ) µ-a.s.

Hence µ is a Markov field.

Theorem 3.1.5. Let γ be a Markov specification. Then each µ ∈ ex G(γ) is a
tree-indexed Markov chain.

Proof. Take an oriented bond 〈i, j〉 ∈ ~E and let ∆(n) be the ball of radius n
around j and Λ(n) = ∆(n) ∩ (ij,∞) be the future in this ball relative to the
oriented edge. As µ is assumed to be extremal, we know that µ is trivial on
the tail-sigma-algebra T =

⋂
n∈N F∆(n)c (see Proposition 2.2.5). Hence, µ is

also trivial on the smaller sigma-algebra⋂
n∈N
F(ij,∞)\Λ(n).

This is the future tail sigma-algebra relative to the oriented bond.
This ”future-tail triviality” implies that

F{i} =
⋂
n≥1

F{i}∪(ij,∞)\Λ(n) µ-a.s.

Indeed, the sigma-algebra on the left is clearly contained in that on the right.
Conversely, if f : Ω → R is bounded and measurable with respect the latter
sigma-algebra then f(xσV \{i}) is measurable w.r.t.

⋂
n≥1 F(ij,∞)\Λ(n) for all

x ∈ Ω0 and hence

f(xσV \{i}) =

∫
f(xωV \{i})µ(dω) µ-a.s.

Therefore f is also measurable w.r.t. F{i}.
As F{i}∪(ij,∞)\Λ(n) is a decreasing sequence of sigma-algebras we can apply

the backwards martingale convergence theorem and arrive at

µ(σj = y | F{i}) = lim
n→∞

µ(σj = y | F{i}∪(ij,∞)\Λ(n)) µ-a.s.
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3.1 Construction of Gibbs measures via boundary laws

i j

Λ(2)

Figure 3.2: The set Λ(2) in the binary tree.

Note that the term under the limit on the r.h.s. equals

µ(σj = y | F{i}∪(ij,∞)\Λ(n)) = µ
(
µ(σj = y | FΛ(n)c) | F{i}∪(ij,∞)\Λ(n)

)
(3.1.3)

by the tower property of conditional expectation, as the ”inner” sigma-algebra
on the r.h.s. is finer that the ”outer” sigma-algebra.

Since µ is a Gibbs measure, we have inside the conditional expectation on
the r.h.s.

µ(σj = y | FΛ(n)c) = γΛ(n)(σj = y | ·) (3.1.4)

which holds µ-a.s. Note that {i} ∪ (ij,∞) \ Λ(n) ⊃ ∂Λ(n). Hence, by the
Markov specification property for γ we may pull this out of the conditional
expectation and arrive at the µ-a.s. equality

µ(σj = y | F{i}∪(ij,∞)\Λ(n)) = γΛ(n)(σj = y | ·) (3.1.5)

Taking now the n-limit, we have

lim
n→∞

µ
(
σj = y | F{i}∪(ij,∞)\Λ(n)

)
= lim
n→∞

γΛ(n)(σj = y | ·)

= lim
n→∞

µ(σj = y | FΛ(n)c)

= µ

σj = y |
⋂
n≥1

FΛ(n)c

 (3.1.6)

where the second equality follows from the DLR-equation and where the last
equation follows again from the backward martingale convergence theorem.
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3 Gibbs measures on trees

So we find that

µ(σj = y | F{i}) = µ

σj = y |
⋂
n≥1

FΛ(n)c


and by the inclusion

⋂
n≥1 FΛ(n)c ⊃ F(−∞,ij) ⊃ F{i} follows from the tower

property that

µ(σj = y | F(−∞,ij)) = µ(σj = y | F{i}) µ-a.s.

Hence µ is a Markov chain.

Let Φ be some nearest-neighbor interaction potential which may contain also
single-site terms. Recall that the corresponding Gibbsian specification γΦ is
then given by

γΦ
Λ (σΛ = ωΛ | ω) = ZΛ(ω)−1 exp[−HΛ(ω)]

= ZΛ(ω)−1 exp[−
∑
b∩Λ6=∅

Φb(ωb)].
(3.1.7)

where the sum runs over all non-oriented edges b touching the finite volume Λ.
When we define transfer operators (or transfer matrices) by

Qb(ωb) = exp[−Φb(ωb)− |∂i|−1Φ{i}(ωi)− |∂j|−1Φ{j}(ωj)] (3.1.8)

where b = {i, j} ∈ E and ωb ∈ Ωb0, we can rewrite the specification kernel
(3.1.7) as

γΦ
Λ (σΛ = ωΛ | ω) = ZΛ(ω)−1

∏
b∩Λ6=∅

Qb(ωb). (3.1.9)

Note that by definition the transfer matrices are symmetric, i.e.,

Qij(x, y) = Qji(y, x)

whenever {i, j} ∈ E and y, x ∈ Ω0.
In the following we will work towards a representation of tree-indexed Gibbs

measures via the notion of so-called boundary laws [1], [6], [14]:

Definition 3.1.6. A family of vectors {lij}〈i,j〉∈~E with lij ∈ (0,∞)Ω0 is called

a boundary law for the transfer operators {Qb}b∈E if for each 〈i, j〉 ∈ ~E there
exists a constant cij > 0 such that the consistency equation

lij(ωi) = cij
∏

k∈∂i\{j}

∑
ωk∈Ω0

Qki(ωi, ωk)lki(ωk) (3.1.10)

holds for every ωi ∈ Ω0.
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3.1 Construction of Gibbs measures via boundary laws

k1

k2

k3

j i

lk1i

lk2i

lk3i

lij

Figure 3.3: For the boundary law l the value of lij(ωi) along the oriented edge
〈i, j〉 can be recursively determined by the values of {lkmi}m=1,2,3

along the oriented edges pointing towards i via equation (3.1.10).

Boundary laws are maps from the oriented edges 〈k, i〉 to the positive mea-
sures on the single-site spin space at the site k.

For any boundary law, the family {αij lij}〈i,j〉∈~E for any fixed choice of

strictly positive numbers αij is also a boundary law (simple exercise).
We will now give the main theorem of this chapter which shows the equiva-

lence of boundary laws and tree-indexed Markov chains which are Gibbs mea-
sures for the given set of transfer operators.

Theorem 3.1.7. Let a Markov specification of the form (3.1.9) be given, and
let {Qb, b ∈ E} be its associated family of transfer matrices.

(a) Each boundary law {lij}〈i,j〉∈~E for {Qb, b ∈ E} defines a unique tree-

indexed Markov chain µ ∈ G(γ) via the equation

µ(σΛ∪∂Λ = ωΛ∪∂Λ) = Z−1
Λ

∏
y∈∂Λ

lyyΛ
(ωy)

∏
b∩Λ6=∅

Qb(ωb) (3.1.11)

where Λ ⊂ V is any finite connected set, ωΛ∪∂Λ ∈ ΩΛ∪∂Λ
0 , and ZΛ is

a suitable normalizing constant. yΛ is the unique nearest neighbor of y
which lies inside Λ.

(b) Conversely, every tree-indexed Markov chain µ ∈ G(γ) admits a represen-
tation of the form (3.1.11) in terms of a boundary law. This representation
is unique in the sense that every boundary law is unique up to a positive
factor.

Proof. (a) In the first step we will use Kolmogorov’s extension theorem to show
that the expressions on the r.h.s. of (3.1.11) describe the marginals of a unique

29



3 Gibbs measures on trees

k1

k2

k3

iΛ i

V

Λ

Λ ∪ ∂Λ

Figure 3.4: The boundary law property guarantees the consistency of the family
of marginals given by equation (3.1.11).

measure µ ∈M(Ω). This is true if the expressions are consistent, i.e.,∑
ωV ∈ΩV0

Z−1
∆

∏
k∈∂∆

lkk∆
(ωk)

∏
b∩∆ 6=∅

Qb(ωb) = Z−1
Λ

∏
k∈∂Λ

lkkΛ
(ωk)

∏
b∩Λ6=∅

Qb(ωb)

(3.1.12)
whenever Λ,∆ b V are any finite connected sets with Λ ⊂ ∆, V = (∆ ∪
∂∆) \ (Λ ∪ ∂Λ), and ωΛ∪∂Λ ∈ ΩΛ∪∂Λ

0 . (Here we deviate inside the proof from
the previous use of the symbol V to denote the infinite vertex set of the tree
graph.) By induction it is enough to check this when ∆ = Λ ∪ {i} for any
i ∈ ∂Λ.

In this case we have that V = ∂i \ {iΛ} and we find for the l.h.s. of (3.1.11)∑
ωV ∈ΩV0

Z−1
∆

∏
k∈∂∆

lkk∆
(ωk)

∏
b∩∆ 6=∅

Qb(ωb)

=Z−1
∆

∏
k∈∂Λ\{i}

lkkΛ
(ωk)

∏
b∩Λ6=∅

Qb(ωb)×
∑

ωV ∈ΩV0

(∏
k∈V

lki(ωk)Qki(ωk, ωi)

)
︸ ︷︷ ︸
=
∏
k∈V

(∑
ωk∈Ω0

lki(ωk)Qki(ωk,ωi)
)

=
1

Z∆ciiΛ

∏
k∈∂Λ

lkkΛ
(ωk)

∏
b∩Λ6=∅

Qb(ωb)

(3.1.13)

where we have used the boundary law property in the last line. Summing over
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3.1 Construction of Gibbs measures via boundary laws

i j

Λ

Figure 3.5: The finite connected set Λ lies in the past of the directed edge 〈i, j〉.

ωΛ∪∂Λ shows that Z∆ciiΛ = ZΛ. This establishes the consistency.

In the next step we will see that every measure constructed in this way
is a tree-indexed Markov chain. Let 〈i, j〉 ∈ ~E be any directed edge and
Λ b (−∞, ij) be any finite connected set in the past of this edge with j ∈ ∂Λ.

Furthermore, let x, y ∈ Ω0 and ω(Λ∪∂Λ)\{j} ∈ Ω
(Λ∪∂Λ)\{j}
0 . Substituting the

finite-volume representation formula in terms of the boundary law we find

µ(σj = y | σ(Λ∪∂Λ)\{j} = ω(Λ∪∂Λ)\{j})

µ(σj = x | σ(Λ∪∂Λ)\{j} = ω(Λ∪∂Λ)\{j})
=
lji(y)Qji(y, ωi)

lji(x)Qji(x, ωi)
. (3.1.14)

Summing over y ∈ Ω0 gives us

µ(σj = x | σ(Λ∪∂Λ)\{j} = ω(Λ∪∂Λ)\{j}) =
lji(x)Qji(x, ωi)∑
y lji(y)Qji(y, ωi)

. (3.1.15)

The expression on the r.h.s. of (3.1.15) depends on ω via ωi only. Taking a
limit of a sequence of finite sets Λn ↑ V gives us that

µ(σj = x | F(−∞,ij)) = µ(σj = x | F{i}) µ-a.s.

and therefore µ is indeed a Markov chain.

In the third step we show that µ is a Gibbs measure. Let Λ b V be any
finite subset of the infinite-volume vertex set V and take any two configurations
ζ, ω ∈ Ω with ζV \Λ = ωV \Λ. Let ∆ b V be any connected set with Λ ⊂ ∆.
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3 Gibbs measures on trees

Then

µ(σΛ = ζΛ | σ(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)

µ(σΛ = ωΛ | σ(∆∪∂∆)\Λ = ω(∆∪∂∆)\Λ)
=
µ(σ∆∪∂∆ = ζ∆∪∂∆)

µ(σ∆∪∂∆ = ω∆∪∂∆)

=
∏

b∩∆ 6=∅

Qb(ζb)

Qb(ωb)

=
∏

b∩Λ6=∅

Qb(ζb)

Qb(ωb)

=
γΛ(σΛ = ζΛ | ω)

γΛ(σΛ = ωΛ | ω)
.

(3.1.16)

Finally we can sum over ζΛ ∈ ΩΛ
0 and take the limit ∆ ↑ V . This way we arrive

at µ ∈ G(γ).

(b) Now we assume that some Markov chain µ ∈ G(γ) is given. On the
one hand, we can condition from the inside to the outside using the Markov
property. On the other hand we can also condition from the outside to the
inside using the Gibbs property.

For any 〈i, j〉 ∈ ~E we define transition probabilities in the usual way by
Pij(x, y) = µ(σj = y | σi = x). Let Λ b V be any finite connected set, ζ ∈ Ω,
and a ∈ Ω0 some fixed reference state. Then

µ(σΛ∪∂Λ = ζΛ∪∂Λ) = µ(A)µ(B | A)µ(C | B)/µ(A | B)

where

A = {σΛ = a}, B = {σ∂Λ = ζ∂Λ}, C = {σΛ = ζΛ}.

Using the Markov property we find that

µ(B | A) =
∏
k∈∂Λ

PkΛk(a, ζk).

On the other hand we get from the Gibbs property that

µ(C | B)

µ(A | B)
=
γΛ(C | ζ)

γΛ(A | ζ)
=

∏
b∩Λ6=∅Qb(ζb)∏

b⊂ΛQb(a, a)
∏
k∈∂ΛQkΛk(a, ζk)

.

Hence

µ(σΛ∪∂Λ = ζΛ∪∂Λ) =
µ(σΛ = a)∏
b⊂ΛQb(a, a)

∏
k∈∂Λ

PkΛk(a, ζk)

QkΛk(a, ζk)

∏
b∩Λ6=∅

Qb(ζb). (3.1.17)
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3.2 Completely homogeneous tree-indexed Markov chains on the Cayley tree: Ising and Potts models

Therefore the finite-volume representation of the marginals as in equation
(3.1.11) holds with

Z−1
Λ =

µ(σΛ = a)∏
b⊂ΛQb(a, a)

and the candidate for a boundary law

lij(x) =
Pji(a, x)

Qji(a, x)

for all 〈i, j〉 ∈ ~E and x ∈ Ω0. If we choose ∆ = Λ ∪ {i} with i ∈ ∂Λ we can
see the defining equation of the boundary by the consistency of µ, if we reread
the steps of the proof for part (a) in the opposite direction.

To prove the uniqueness of the boundary law we assume that µ admits a
second representation for the form (3.1.11) with a boundary law {l′ij : 〈i, j〉 ∈
~E} and normalizing constants z′Λ > 0. We apply (3.1.11) to a singleton Λ =
{i} and a configuration ω with ωj = x for some j ∈ ∂i and ωk = a for all
k ∈ i ∪ ∂i \ {j}. We obtain

Z ′i
Zi

=
l′ji(x)

lji(x)

∏
k∈∂i\{j}

l′ki(a)

lki(a)

and hence l′ is equal to l up to a positive pre-factor (in general depending on
the directed edge). This completes the proof of the theorem.

Remark 3.1.8. If l = 1 is a solution to the boundary law equation we find
that (3.1.9) is the marginal distribution of a Markov chain µfree ∈ G(γ). We
call µfree the free Gibbs measure. For a b.l. l 6= 1 we get a Gibbs measure that
is different from this free solution.

As every extremal Gibbs measure is a Markov chain, Theorem 3.1.7 gives us
that |G(γ)| = 1 if and only if there is exactly one solution to the b.l. equation.

3.2 Completely homogeneous tree-indexed Markov chains on
the Cayley tree: Ising and Potts models

In the following we will take a closer look at completely homogeneous Markov
chains µ ∈ G(γ) on Cayley trees. Let k ∈ N∗. A Cayley tree of order k is an
infinite tree where each vertex has k + 1 nearest neighbors.

It will be denoted by CT (k). The same object is equivalently called a k+ 1-
regular tree. In the case k = 2 one speaks of a binary tree.

A Markov specification γ on CT (k) is said to be completely homogeneous with
transfer matrix Q if γ satisfies (3.1.9) with Qb = Q for every b ∈ E. Recall that
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3 Gibbs measures on trees

Figure 3.6: An embedding of the binary Cayley tree into the plane.

in the proof of part (b) of Theorem 3.1.7 we have not only shown that every
µ ∈ G(γ) admits a representation in the form of (3.1.11) but that the boundary

law therein is given by lij(x) =
Pji(a,x)
Qji(a,x) (up to an 〈i, j〉-dependent constant).

Therefore µ is completely homogeneous if and only if lij = l (up to edge-

dependent multiplicative constants) for all 〈i, j〉 ∈ ~E and some l ∈ (0,∞)Ω0 .

As every boundary law is only unique up to a factor we may normalize at
a reference state a ∈ Ω0. We say that a boundary law {lij : 〈i, j〉 ∈ ~E} is

normalized at a if lij(a) = 1 for all 〈i, j〉 ∈ ~E. If l corresponds to a completely
homogeneous Markov chain it has to meet

l(x) =

(∑
y∈Ω0

l(y)Q(x, y)∑
y∈Ω0

l(y)Q(a, y)

)k
. (3.2.1)

3.2.1 The Ising model in zero magnetic field

In the Ising model the local state space is Ω0 = {−1,+1}. We have some
interaction strength J > 0 which is fixed and a nearest-neighbor interaction
potential Φ with Φi,j(ωi, ωj) = −Jωiωj . The corresponding Markov specifica-
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(a) J = 0.4.
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(b) J = 1.

Figure 3.7: The function fJ is odd, concave on the positive half-line and convex
on the negative half-line. The derivative f ′J(0) is increasing in J
and becomes bigger than 1 for large enough values of J .

tion γ is completely homogeneous and the transfer matrix Q is given by

Q(−,−) = Q(+,+) = exp(J), Q(−,+) = Q(+,−) = exp(−J).

According to our previous discussion there is a one-to-one correspondence be-
tween the completely homogeneous Markov chains µ ∈ G(γ) and the positive
solutions s > 0 of

s =

(
Q(−,+) + sQ(+,+)

Q(−,−) + sQ(+,−)

)k
=

(
seJ + e−J

eJ + se−J

)k
. (3.2.2)

Here, we normalize at a = −1 and hence may look for boundary laws of the
form l = (1, s). Introducing the new variable t = 1

2 log s equation (3.2.2) is
equivalent to

t =
k

2
log

cosh(J + t)

cosh(J − t)
=: fJ(t).

The r.h.s. of this equation is an odd function in t which is concave for t > 0 and
convex for t < 0. Hence, equation (3.2.2) has only the trivial solution s = 1 if
and only if f ′J(0) = k tanh(J) ≤ 1. If f ′J(0) > 1 we find two additional solutions
s∗,−s∗ to the trivial one. Hence, there is a phase transition in this case as every
solution s corresponds to a completely homogeneous Markov chain µs ∈ G(γ).
We only know that there only is one completely homogeneous Markov chain
µ ∈ G(γ) if f ′J(0) = k tanh(J) ≤ 1. It can be shown that there actually is only
one Gibbs measure overall in this case which means that J = atanh(1/k) is
the sharp threshold for phase transition in this model [6, Theorem 12.31].

This provides a proof of Theorem 1.1.8.
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3 Gibbs measures on trees

3.2.2 The Potts model

In the Potts model the local state space is given by Ω0 = {1, ..., q} ' Zq and
the nearest-neighbor potential is Φi,j(ωi, ωj) = β1ωi=ωj which gives us for the

transfer matrix Q(ωi, ωj) = eβ1ωi=ωj = θ1ωi=ωj with θ = eβ . The homogeneous
b.l. equation is

l(s) = c

(∑
s̃

l(s̃)Q(s̃, s)

)k
and hence

l(s)

l(q)
=

(
l(s)(θ − 1) +

∑q−1
s̃=1 l(s̃) + l(q)

l(q)θ +
∑q−1
s̃=1 l(s̃)

)k
, s ∈ {1, ..., q − 1}.

For zs := l(s)
l(q) ∈ (0,∞) this leads to

zs =

(
(θ − 1)zs +

∑q−1
s̃=1 zs̃ + 1

θ +
∑q−1
s̃=1 zs̃

)k
. (3.2.3)

The solutions to this (q − 1)-dimensional fixed-point equation are in a one-
to-one correspondence with the completely homogeneous tree-indexed Markov
chains µ ∈ G(γ).

Proposition 3.2.1. For any solution z = (z1, ..., zq−1) of (3.2.3) there exists
a set M ⊂ {1, ..., q − 1} and some z∗ > 0 s.t.

zs =

{
1 ,if s /∈M
z∗ ,if s ∈M

.

Proof. Assume we have a solution of the boundary law equation. Define the set
M to be the set of indices for which the entry of the boundary law is different
from 1. We will show the boundary law entries will have to be the same for all
indices in M .

Indeed, take θ 6= 1 and assume w.l.o.g. that |M | = m with M = {1, ...,m}.
Define xs := z

1/k
s . Then

xs =
(θ − 1)xks +

(∑m
j=1 x

k
j + q −m

)
∑m
j=1 x

k
j + (q −m− 1) + θ

where zs = 1 for s /∈M and zs 6= 1 if s ∈M . When we set R :=
∑m
j=1 x

k
j+q−m

we get

xs =
(θ − 1)xks +R

R+ θ − 1
⇔ (xks − xs)(θ − 1) = (xs − 1)R

⇔ xs(x
k−2
s + xk−3

s + ...+ 1)(θ − 1) = R.

(3.2.4)
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3.2 Completely homogeneous tree-indexed Markov chains on the Cayley tree: Ising and Potts models

The polynomial on the l.h.s. has positive coefficients and is monotone increas-
ing in xs, hence injective. Therefore xs = xs̃ for all s, s̃ ∈ {1, ...,m}.

Corollary 3.2.2. Any completely homogeneous tree-indexed Markov chain µ ∈
G(γ) corresponds to a solution of

z = fm(z) :=

(
(θ +m− 1)z + q −m
mz + q −m− 1 + θ

)k
for some m ∈ {1, ..., q − 1}.

In the following let us specialize to the binary tree. For x =
√
z we have

x =
(θ +m− 1)x2 + q −m
mx2 + q −m− 1 + θ

. (3.2.5)

Now divide out the root x = 1 and solve the resulting quadratic equation. Put
θm = 1 + 2

√
m(q −m), m = 1, ..., q − 1 and note that θm = θq−m. We have

θ1 < θ2 < ... < θbq/2c−1 < θbq/2c ≤ q + 1 and the boundary law solutions are
given by

x1,2(m, θ) =
θ − 1±

√
(θ − 1)2 − 4m(q −m)

2m

and they exist for θ ≥ θm.
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(b) q = 8.

Figure 3.8: The branches appearing in this figure correspond to all the possible
solutions to the homogeneous b.l. equation (3.2.5). Here the value
of θ is plotted on the horizontal axis against the corresponding
solutions x(θ). For q = 3 there only is the trivial solution and the
branch for m = 1. For q = 8 there are four branches for the cases
m = 1, 2, 3, 4. The dotted branch corresponds to m = 1, the dotted
and dashed one to m = 2, the dashed one to m = 3 and the full
branch to m = 4.
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4 Reconstruction problem and extremality

4.1 Some results and open problems

We have seen how to identify tree-indexed Markov chains µ ∈ G(γ) via bound-
ary laws. The extremal elements of G(γ) are necessarily Markov chains. How-
ever the converse statement is not always true. For the Ising model in zero
magnetic field the situation is well-understood. The situation is captured in
Figure 4.1a. There are two different critical transition temperatures. First,
there is the critical value where additional solutions to the trivial one appear.
This is where a 2nd order phase transition occurs. Secondly, there is the point
where the Gibbs measure which corresponds to the trivial b.l. solution is no
longer extremal. This is a strange behavior that only happens on trees.

For the Potts model the picture is not complete but we have some partial
information about the extremality and non-extremality of the b.l. solutions
[9], see Figure 4.1b for an example. There are parameter regions for which
extremality is proved to occur, regions where non-extremality is proved to
occur, between which there remain some gaps.

The following theorem gives a sufficient criterion for non-extremality. In the
following we will assume all measures, boundary laws etc. to be completely
homogeneous.

Theorem 4.1.1 (Kesten-Stigum bound, 1966 [8]). Let µ be a completely ho-
mogeneous tree-indexed Markov chain on the Cayley tree CT (d). Denote by λ2

the second largest in modulus eigenvalue of the transition matrix P . Assume
that dλ2

2 > 1. Then µ is not tail-trivial.

This theorem goes back to Kesten and Stigum who have formulated it in
the context of multi-colored branching processes. A multi-colored branching
process is a generalization of a Galton-Watson process to multiple types. In the
following we will discuss these results and why they give the above mentioned
criterion for non-extremality. We give no proof of the Kesten-Stigum theorem
itself here. (It relies on martingale convergence arguments.)

Kesten and Stigum define a multi-type branching process with q types in the
following way. Let U denote the set of all q-dimensional vectors whose com-
ponents are non-negative integers. Further, let (Xn)n∈N be a vector Markov
process with temporally homogeneous transition probabilities, whose states are
vectors in U . We interpret Xi

n, the i-th component of Xn, as the number of
objects of type i in the n-th generation.



4 Reconstruction problem and extremality

The vectorXn+1 in the next time-step is obtained by independently replacing
each individual of type i in the population described by Xn, by an offspring
family described by (r0, ..., rq−1), which consists precisely of rj children of type
j for all j ∈ {0, ..., q − 1}, which happens with probability pi(r0, ..., rq−1).

In particular, let X0 = ei for some i ∈ {0, ..., q − 1}, meaning that there is
initally precisely one organism of type i. Then X1 will have the generating
function

E(

q−1∏
l=0

s
Xl1
l ) =

∞∑
r1,...,rq−1=0

pi(r0, ..., rq−1)sr01 ...s
rq−1

q−1 , |s0|, ..., |sq−1| ≤ 1,

(4.1.1)

A process (Xn) of this kind is called multitype branching process [7].
For the Ising or the Potts model e.g. it is clear that all tree-indexed Markov
chain Gibbs measures µ can be interpreted as multitype branching processes.
In this picture the process Xn describes the histogramm of the vertices in a
layer of distance n to a root, over the different types. Note that the genealogy
is not contained.

Let M be the matrix whose ij-th entry gives the expected number of particles
of type j produced by a single particle of type i, i.e. Mij =

∑∞
r=0 rpij(r), where

pij(r) is the probability that a particle of type i produces r particles of type j.
For the Cayley tree CT (d), denoting by P the transition matrix of a tree-

indexed Markov chain Gibbs measure µ, we clearly have M = dP .
Now, assume that M is strictly positive with largest eigenvalue m > 1. Then
there exists a unique probability vector w such that wM = mw, by the Perron-
Frobenius theorem. Let r be the eigenvalue of M with second largest modulus.
Note that in our case we always have m = d and r = dλ2, where λ2 is again
the eigenvalue of P with second largest modulus. Let Z(n) = Xn · A, where
A is any vector orthogonal to w. Kesten and Stigum showed that if |r2| > m
then Z(n)/|r|n converges with probability one to a random variable Z, whose
distribution depends on the transition probabilities of the branching process,
but also, in a non-trivial way on the initial particle type i, [8, Theorem 2.1].

Let us assume that the tree-indexed Markov chain Gibbs measure µ was
extremal. Then it would also be tail-trivial, which would imply that the tail-
measurable random variable Z := limn→∞ Z(n)/rn would have to be µ-a.s.
constant. For |r2| < m, which is equivalent to dλ2

1 > 1, this is not the case,
as the measure on the Cayley tree is obtained by mixing the distribution ob-
tained by propagating type i from an arbitrary root, over the (non-degenerate)
invariant distribution of P . Hence µ can not be extremal under this condition.

The bound is known to be sharp for the symmetric Ising model (which can
e.g. be seen by evaluating the constant from Theorem 4.2.1 in the next section)
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4.2 A sufficient criterion for extremality

This provides a proof of Theorem 1.1.9.
It is even sharp for the asymmetric Ising model with small enough asymmetry

which is more difficult to see. In the Potts model with q = 3 the bound is sharp
at least for sufficiently large degree of the Cayley tree.

On the other hand the KS-bound is not sharp for the Ising model with
sufficiently large asymmetry and the symmetric Potts model with q ≥ 5. It is
still an open question if the KS-bound is always tight for the symmetric Potts
channel when q ≤ 4 [13].

4.2 A sufficient criterion for extremality

There are several approaches to ensure extremality. We present just one of
them.

Theorem 4.2.1 (Formentin/Külske, 2009 [4]). Let µ be a tree-indexed Markov
chain on the Cayley tree CT (d). Let α ∈ M1({1, ..., q}) be an invariant and
reversible probability vector for the transition matrix P , i.e.,

αP = α.

Define the symmetrized relative entropy by

L(p) := S(p | α) + S(α | p) =

q∑
a=1

(p(a)− α(a)) log
p(a)

α(a)
≥ 0

where p ∈M1({1, ..., q}). Denote

c(P ) := sup
p∈M1({1,...,q})

p6=α

L(pP )

L(p)
.

Assume dc(P ) < 1. Then µ is tail-trivial.

Remark 4.2.2. In the Ising model in zero magnetic field α is the equidis-
tribution and it can be shown by computations that c(P ) = λ2

2(P ). It turns
out the sup is achieved in any arbitrarily small neighborhood of the invariant
distribution, but this is a somewhat lucky case.

In general, the function L is non-negative and L(p) = 0 if and only if p = α.
Also p 7→ L(p) is convex and can be thought of as a “Lyapunov-function” for
the boundary law equation (tree recursion).

In the Potts model it turns out that the supremum can be attained at a non-
trivial value away from the invariant distribution which makes the problem
harder.
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4 Reconstruction problem and extremality

Proof. We will only discuss the main ideas. We denote by TN the tree rooted
at 0 of depth N . The notation TNv indicates the sub-tree of TN rooted at v
obtained from “looking to the outside” on the tree TN . Let (ξi)i∈∂TNv be a
boundary configuration. We define

πNv (ξ) := µ(σv = s | σ∂TNv = ξ)s=1,...,q

which is the conditional probability that the spin variable at the vertex v takes
the spin value s, conditioned on the boundary configuration ξ at distance N .
In the case of the Ising model clearly it suffices to consider only one (say the
first) component. Compare Chapter 1.

We want to show that ∫
µ(dξ)‖πNv (ξ)− α‖TV → 0 (4.2.1)

for N →∞. Then it follows that µ is tail-trivial. Indeed, if (4.2.1) holds then

lim
N→∞

∫
µ(dξ)|µ(f | F∆c

N
)− µ(f)| = 0 (4.2.2)

for all local functions f ∈ FΛ where (∆N )N∈N is any sequence of finite sets
with ∆N ↑ V . This can be shown by using tree properties. Then (4.2.2) also
holds for any bounded F-measurable function f . Take f = 1A, A ∈ T∞. Then

µ(|1A − µ(A)|) = 0

which implies µ(A) ∈ {0, 1}.
To prove (4.2.1) we make use of an invariance property of tree recursions.

We only mention without proof (see [4, Proposition 3.3]) that we have the
important (and non-obvious!) identity∫

µ(dξ)L(πNv (ξ)) =
∑

w:v→w

∫
µ(dξ)L(πNw (ξ)P ).

As a warning, note that this property fails pointwise, and in general, L(πNv (ξ)) 6=∑
w:v→w L(πNw (ξ)P ) for fixed boundary condition ξ. To control L(πNw (ξ)P ) we

bring the constant c(P ) into play. For simplicity specialize to the Cayley tree
CT (d). We find

µ(L(πNv )) = d µ(L(πNw P ))

≤ d c(P )µ(L(πNw ))

= d c(P )µ(L(πN−1
v ))

(4.2.3)
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Figure 4.1: Value of non-trivial boundary law component versus coupling pa-
rameter θ. In the Ising model there is only one branch of solutions
(m = 1) besides the trivial one. These solutions are always ex-
tremal. The trivial solution is extremal only for small values of θ
and becomes non-extremal for θ large. This change happens at the
black dot.
In the Potts model with q = 16 the branch of solutions for m = 2
is shown. The dashed part is the region where these solutions cor-
respond provably to an extremal Gibbs measure. The thick lines
indicate provable non-extremality of the corresponding measure.
We see that there are gaps between these two scenarios for which
we don’t know whether extremality or non-extremality occurs. The
situation is similar for the trivial solution. For sufficiently small val-
ues of θ the free Gibbs measure is extremal and for sufficiently large
values it becomes non-extremal.

43



4 Reconstruction problem and extremality

and this implies
lim
N→∞

µ(L(πNv )) = 0

There are also other methods ensuring extremality which in general give
different parameter regions, see for instance [9].
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5 Recent developments: Gradient Gibbs measures
on trees

We have already seen that for finite local state spaces Ω0 there is a one-to-
one correspondence between boundary laws and tree-indexed Markov chains
µ ∈ G(γ). Let us mention without proof that a similar result still holds when
Ω0 is countable, e.g. Ω0 = Z, for some but not for all boundary laws. The
additional assumption to construct Gibbs measures via boundary laws that
needs to be put on the boundary law is its normalizability which means in this
context ∑

ωx∈Z

(∏
z∈∂x

∑
ωz∈Z

Qzx(ωx, ωz)lzx(ωz)

)
<∞ (5.0.1)

for each x ∈ V [14]. What happens to non-normalizable boundary law solutions
was systematically investigated in [10] and we will report on these finding here.

5.1 Definitions

Assume that the spin variables take value in the local state space Ω0 = Z, so
we are facing the new difficulty that the state space is unbounded and hence
non-compact. This means that there is no general argument which would imply
that the set of Gibbs measures is non-empty.

For a configuration ω = (ω(x))x∈V and b = 〈v, w〉 ∈ ~E the height difference
along the edge b is given by ∇ωb = ωw − ωv. We call ∇ω the gradient field of
ω. The gradient spin variables are now defined by η〈x,y〉 = σy − σx for each

〈x, y〉 ∈ ~E, and we define the projection mappings similarly as before for the
height variables. Let us denote the state space of the gradient configurations
by Ω∇ = ZV /Z which becomes a measurable space with the sigma-algebra

F∇ = σ({ηb | b ∈ ~E}) = P(Z)
~E . This is the space of all the possible gradient

fields that can be prescribed by some height configuration ω ∈ ZV , and trivially
every gradient field ζ ∈ Ω∇ gives a height configuration ωζ,ωx for a fixed value
of ωx, x ∈ V by

ωζ,ωxy = ωx +
∑

b∈Γ(x,y)

ζb, (5.1.1)

where Γ(x, y) is the unique self-avoiding path from x to y.



5 Recent developments: Gradient Gibbs measures on trees

Let some symmetric nearest-neighbor gradient interaction potential Ub : Z→
R be given for every b = {x, y} ∈ E, i.e.

Ub(m) = Ub(−m)

for all m ∈ Z. We put

Φb(ωx, ωy) = Ub(|ωx − ωy|).

The local Gibbsian specification γΦ is then defined in the usual way as in (3.1.7)
for the case of finite local state space (assuming finite partition functions).

Boundary laws will then be defined exactly in the same way as in Definition
3.1.6 where we now put Ω0 = Z with the transfer operator

Qxy(ωx, ωy) = e−U{x,y}(|ωx−ωy|).

As the transfer-operator depends only on height-differences it can be de-
scribed by the functions

Z 3 m 7→ Rxy(m) = e−U{x,y}(m).

In the following we will take a closer look at a special class of boundary laws.

Definition 5.1.1. A boundary law is called to be q-periodic if lxy(ωx + q) =

lxy(ωx) for every oriented edge 〈x, y〉 ∈ ~E and each ωx ∈ Z.

Note that these boundary laws are not normalizable. It is now an interesting
question whether or not these objects still correspond to some well-defined
equilibrium state in some sense. The short answer is yes, but only when we
look at gradient profiles. Regular Gibbs measures will in general not exist
as the local state space is unbounded. However, there is a common way to
circumvent this problem: The gradient interaction potential is invariant under
an overall height-shift by a constant in every spin variable and this allows us
to divide out this degree of freedom. This naturally leads us to study Gibbs
measures in the space of gradient configurations.

Definition 5.1.2. The gradient Gibbs specification is defined as the family of
probability kernels (γ′Λ)ΛbV from (Ω∇, T ∇Λ ) to (Ω∇,F∇) such that∫

F (ρ)γ′Λ(dρ | ζ) =

∫
F (∇ϕ)γΛ(dϕ | ω) (5.1.2)

for all bounded F∇-measurable functions F , where ω ∈ Ω is any height-configuration
with ∇ω = ζ.
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5.2 Construction of GGMs via q-periodic boundary laws

A measure ν ∈ M1(Ω∇) is called a gradient Gibbs measure (GGM) if it
satisfies the DLR equation∫

ν(dζ)F (ζ) =

∫
ν(dζ)

∫
γ′Λ(dζ̃ | ζ)F (ζ̃) (5.1.3)

for every finite Λ ⊂ V and for all F ∈ Cb(Ω∇). The set of gradient Gibbs
measures will be denoted by G∇(γ) or G∇(R) where (Rb)b∈E are the (functions
describing the) transfer operators corresponding to Φ.

Here, T ∇Λ , the sigma-algebra of gradient configurations outside of the finite
volume Λ is generated by all gradient variables outside of Λ and the rela-
tive height-difference on the boundary of Λ. For precise definitions and more
discussion, see [10].

5.2 Construction of GGMs via q-periodic boundary laws

Definition 5.2.1. Let the mod-q fuzzy map Tq : Z → Zq be given by Tq(i) =
i mod q, where Zq = {0, ..., q − 1} for n ∈ N.

In the first step we construct gradient measures which do not have the full
Gibbs property. For this we define marginal measures in some analogy to the
boundary law representation in the case of finite spaces (3.1.11), but supple-
mented with internal information about layers.

Theorem 5.2.2. Let a vertex w ∈ Λ, where Λ ⊂ V is any finite connected
set, and a class label s ∈ Zq be given. Then any q-periodic boundary law
{lxy}〈x,y〉∈~E for {Rb}b∈E defines a consistent family of probability measures on

the gradient space Ω∇ by

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ) = cΛ(w, s)
∏
y∈∂Λ

lyyΛ

(
ϕ′y(s, ζ)

) ∏
b∩Λ6=∅

Rb(ζb), (5.2.1)

where ζΛ∪∂Λ ∈ Z~E(Λ∪∂Λ). Here

ϕ′y(s, ζ) = Tq

(
s+

∑
b∈Γ(w,y)

ζb

)
denotes the class in Zq obtained by walking from class s at the site w ∈ Λ along
the unique path Γ(w, y) to the boundary site y whose class is determined by the
gradient configuration ζ. Since the boundary law is a class function, expression
(5.2.1) is well-defined, where cΛ(w, s) is a normalization factor that turns νw,s

into a probability measure on Z~E(Λ∪∂Λ).
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5 Recent developments: Gradient Gibbs measures on trees

Let us agree to call the measures νw,s on the space of gradients Ω∇ we
have just constructed: pinned gradient measures. To prove the theorem and
verify Kolmogorov-compatibility (see [10]) is not much more difficult than the
analogous but simpler statement of Theorem 3.1.7 we proved in this course for
finite local state space models.

Given a boundary law {lxy}〈x,y〉∈~E we define an associated transition matrix

by

Pxy(ωx, ωy) =
Ryx(ωy − ωx)lyx(ωy)∑

ωy∈ZRyx(ωy − ωx)lyx(ωy)
.

Such a transition matrix describes transition probabilities for a random walk on
Z. If the boundary law has period q, then, taking into account this periodicity
we can introduce the associated transition matrices P̄xy : Zq×Z 7→ [0, 1] in the
following way:

Pxy(ωx, ωy) =: P̄xy(Tq(ωx), ωy − ωx).

In this notation P̄xy(Tq(i), j−i) denotes the probability to see an height increase
of j−i along the edge 〈x, y〉 given the class Tq(i) in the vertex x. This describes
a random walk on Z in a periodic environment. If we restrict the pinned
gradient measures from the tree to a path starting at w, they are random walk
measures in q-periodic environment.

Let us additionally assume that Rb = R for all b ∈ E. Until now T could
have been any locally finite tree. From now on we will restrict ourselves to
the case of the Cayley tree with d + 1 nearest neighbors. We call a vector
l ∈ (0,∞)Z a (spatially homogeneous) boundary law if there exists a constant
c > 0 such that the consistency equation

l(i) = c

∑
j∈Z

R(i− j)l(j)

d

(5.2.2)

is satisfied for every i ∈ Z.

Note that by assumption l(i) = 1 for every i ∈ Z is always a solution (as-
suming summability of R). Given such a homogeneous boundary law l we get
for the associated transition matrix

P (i, j) =
R(i− j)l(j)∑
k∈ZR(i− k)l(k)

.

The associated transition matrix P̄ : Zq × Z 7→ [0, 1] is then given by

P (i, j) =: P̄ (Tq(i), j − i).
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5.3 Coupling measure ν̄, Gibbsian preservation under transform of measure

Furthermore, let the fuzzy transform TqP : Zq × Zq → [0, 1] be defined by

TqP (̄i, j̄) =
∑

j:Tq(j)=j̄

P (̄i, j) =: P ′(̄i, j̄) (5.2.3)

for all layers ī, j̄ ∈ Zq.
The main result regarding GGMs on trees is stated in the following theorem.

We have already seen how to construct pinned gradient measures. For this we
have to single out a pinning site w ∈ V and pin some fuzzy layer s ∈ Zq. Such
a measure will now depend on the layer selected. We have to mix over all the
layers in an appropriate way s.t. the measure becomes spatially homogeneous.
The right mixing measure for this averaging procedure is the invariant measure
of the associated fuzzy chain P ′.

Theorem 5.2.3. Let Λ ⊂ V be any finite connected set and let w ∈ Λ be
any vertex. Let α(l) ∈ M1(Zq) denote the unique invariant distribution for
the fuzzy transform TqP

l of the transition matrix P l corresponding to the q-
periodic homogeneous boundary law l. Then the measure νl ∈ M1(Ω∇) with
marginals given by

νl(ηΛ = ζΛ) =
∑
s∈Zq

α(l)(s) νw,s(ηΛ = ζΛ) (5.2.4)

defines a (spatially) homogeneous GGM. Here νw,s are the pinned gradient
measures constructed in Theorem 5.2.2.

We don’t give a proof here, but point out that mixing is need to recover both
properties, spatial homogeneity and Gibbs property.

5.3 Coupling measure ν̄, Gibbsian preservation under
transform of measure

Let us make an additional comment on the structure which has unfolded. We
have frequently used projections of the spins to different directions: On the
one hand an infinite-volume spin-configuration ω 7→Tq ω′ maps to a mod-q
fuzzy spin ω′, via our fuzzy map Tq(i) = i mod q. On the other hand, an
infinite-volume spin-configuration ω = (ωw, ζ) 7→∇ ζ also maps to a gradi-
ent configuration. The additional information needed to recover the spin is
provided by its value ωw at a pinning site w.

Let us call an infinite-volume gradient configuration ζ and an infinite-volume
fuzzy spin configuration ω′ compatible iff there exists an infinite-volume spin-
configuration ω for which Tqω = ω′ and ∇ω = ζ. This is to say that the two
configurations have a joint lift to a proper spin configuration.
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5 Recent developments: Gradient Gibbs measures on trees

The defining function R(m) = e−U(m) of the gradient model also has a
natural mod-q-fuzzy image, namely

R′(m) := TqR(m) =
∑
j∈Z

R(qj +m)

Taking a logarithm R′ describes a renormalized Hamiltonian for a clock model
on Zq. (Commonly one speaks of a clock if it possesses a discrete rotational
Zq-symmetry.)

Suppose now we are on a regular tree and have found an (in height-direction)
q-periodic tree-automorphism invariant boundary law l. The definition of the
GGMs ν which are mixed over the fuzzy chain (see formula (5.2.4)) extends
in a natural way to a joint measure (or coupling measure) ν̄(dω′, dζ). This
coupling measure has the following properties:

1. ν̄
(
ω′and ζ are compatible

)
= 1.

2. The marginal on gradients ν̄(dζ) is a tree-automorphism invariant GGM.

3. The marginal on fuzzy spins ν̄(dω′) is a tree-automorphism invariant
finite-state Gibbs measure for R′.

The definition of ν̄ is given by spelling out its expectation ν̄(F ) on a bounded
local observable F (ζΛ, ω

′
Λ) depending both on gradient variables and layer vari-

ables in a finite volume Λ. The formula says that we need to substitute the
layer variables which are obtained by pinning the layer at one site, and the
gradient information ζ and it reads

ν̄(F ) =
∑
ζΛ

∑
s∈Zq

α(l)(s)
∏

〈x,y〉∈
−→
Ew:x,y∈Λ

P̄x,y

(
Tq
(
s+

∑
b∈Γ(w,x)

ζb
)
, ζ〈x,y〉

)
F
(
ζΛ,
(
Tq
(
s+

∑
b∈Γ(w,u)

ζb
))
u∈Λ

)
.

(5.3.1)

Here we have assumed that the pinning site w is in the finite volume Λ.
In Figure 5.1 the main result of this chapter, Theorem 5.2.3, is visualized

as the curved dashed arrow. Here we have denoted the set of q-periodic tree
invariant b.l.’s by BLq, the set of Gibbs measures on the fuzzy spins which are
tree-indexed Markov chains by G′MC(TqR), the set of tree-invariant measures
on the fuzzy spins byM1(Ω′), the set of coupling measures on (Ω∇,Ω′) which
correspond to a b.l. via (5.3.1) by ν̄·(BLq), the set of measures on the set
of compatible gradient and fuzzy configurations which are tree-invariant by
Mcp

1 (Ω∇,Ω′) and the set of tree-invariant measures on Ω∇ by M1(Ω∇).
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5.3 Coupling measure ν̄, Gibbsian preservation under transform of measure

G′MC(TqR) ⊂ M1(Ω′)

BLq ν̄·(BLq) ⊂ Mcp
1 (Ω′,Ω∇)

G∇(R) ⊂ M1(Ω∇)

BLNorm GMC(R) ⊂ M1(Ω)

ν· : l 7→ νl

⊂ ⊂

fuzzy spins ω′

compatible (ω′, η)

gradients η

spins ω

(ω′, η) 7→ ω′

(ω′, η) 7→ η

ν̄· : l 7→ ν̄l

ν·Zac : l 7→ νl

Figure 5.1: The relationship between q-periodic b.l.’s and the (gradient) Gibbs
measures is displayed above the dashed line. The classical theory by
Zachary for normalizable b.l.’s is visualized below the dashed line.
Note that ν·Zac : l 7→ νl symbolizes the mapping which sends every
normalizable b.l. to a unique tree-indexed Markov chain which is a
Gibbs measure [14]. Here all objects appearing are assumed to be
tree automorphism invariant.
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5 Recent developments: Gradient Gibbs measures on trees

Below the dashed line we have also given a visualization of the classical
theory of Zachary [14] and its correspondence to the presented GGM theory.
Every normalizable tree-invariant boundary law l ∈ BLNorm corresponds to a
Gibbs measure which is a Markov chain. This set of measures is denoted by
GMC(R). Conversely, every ν ∈ G(R) which is also a Markov chain can be
represented by a b.l. which is unique (up to a positive pre-factor). The set of
measures GMC(R) can be thought of as a subset of the gradient Gibbs measures
G∇(R), as any Gibbs measure gives rise to a gradient measure, but not vice
versa. Note that by the theory of Zachary applied to finite local state space,
there is also a one-to-one correspondence between the elements of G′MC(TqR)
and BLq. All the objects we construct above the dashed line are new. They
are not contained in the theory of Zachary, as ν·(BLq) ⊂ G∇(R) \ GMC(R),
that is our gradient Gibbs measures live in the delocalized regime and can not
be understood as projection of Gibbs measures to the gradient variables.
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