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Abstract. We analyze the generalized mean-field q-state Potts model which
is obtained by replacing the usual quadratic interaction function in the mean-
field Hamiltonian by a higher power z. We first prove a generalization of the
known limit result for the empirical magnetization vector of Ellis and Wang [9]
which shows that in the right parameter regime, the first-order phase-transition
persists.

Next we turn to the corresponding generalized fuzzy Potts model which is
obtained by decomposing the set of the q possible spin-values into 1 < s < q
classes and identifying the spins within these classes. In extension of earlier
work [21] which treats the quadratic model we prove the following: The fuzzy
Potts model with interaction exponent bigger than four (respectively bigger than
two and smaller or equal four) is non-Gibbs if and only if its inverse temperature
β satisfies β ≥ βc(r∗, z) where βc(r∗, z) is the critical inverse temperature of the
corresponding Potts model and r∗ is the size of the smallest class which is greater
than or equal to two (respectively greater than or equal to three).

We also provide a dynamical interpretation considering sequences of fuzzy
Potts models which are obtained by increasingly collapsing classes at finitely
many times t and discuss the possibility of a multiple in- and out of Gibbsian-
ness, depending on the collapsing scheme.
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1. Introduction

Past years have seen a number of examples of measures which arise from
local transforms of Gibbs measures which turned out to be non-Gibbs, for a
general background see [10, 13, 15, 25]. Two particularly interesting types of
transformations which were considered recently are time-evolutions [11,12] and
local coarse-grainings [1, 23, 28], both without geometry (mean-field) and with
geometry. Very recently in [17] there is even been considered a system of Ising
spins on a large discrete torus with a Kac-type interaction subject to an inde-
pendent spin-flip dynamics, using large deviation techniques (usually applied in
the mean-field setting) for the empirical density allowing for a spatial structure
with geometry.

In the present paper we pick up a line of a mean-field analysis which was
begun in [21] in the special volume [13]. The extension to exponents z ≥ 2
is natural since it amounts to considering energies given by the number of
z-cliques of equal color in the case of integer z, see Subsection 7.2. In [21]
the mean-field Potts model was considered under a local coarse-graining. Here
the local spin-space {1, . . . , q} is decomposed into 1 < s < q classes of sizes
r1, . . . , rs. This map, performed at each site simultaneously, defines a coarse-
graining map T : {1, . . . , q}N → {1, . . . , s}N . The measures arising as images
of the Potts mean-field measures for N spins under T constitute the so-called
fuzzy-Potts model first introduced in [30] for the lattice case. In [21] it was
shown that non-Gibbsian behavior occurs if the temperature of the Potts model
is small enough and precise transition-values between Gibbsian and non-Gibbs
images were given. We remark that the notion of a Gibbsian mean-field model
is employed which considers as a defining property the existence and continu-
ity of single-site probabilities. This notion is standard by now (see for exam-
ple [16, 22, 24, 26, 27]) and provides the natural counterpart of Gibbsianness for
lattice systems for mean-field measures.

Aim one of the paper is to generalize the mean-field Potts Hamiltonian,
and analyse phase-transitions for the generalized mean-field Potts measures. Is
there an analogue of the Ellis –Wang theorem [9] and persistence of the first-
order phase-transition? We show that this is indeed the case for q > 2. In case
of the Curie –Weiss – Ising model (q = 2) there is a threshold for the exponent
such that for 2 ≤ z ≤ 4 there is a phase-transition of second order, for z > 4
the phase-transition is of first order. In other words, for z > 4 the generalized
mean-field Potts model has a first-order phase-transition, even for Ising spins.
For 2 ≤ z ≤ 4 this is not true anymore for Ising spins (where the phase-transition
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is of second order), but it remains true in case q > 2 (as one would expect based
on symmetry considerations).

Aim two of the paper is to look at the Gibbsian properties of the resulting
fuzzy model, obtained by application of the same map T to the generalized
mean-field Potts measure. Do we obtain the same characterization as for the
standard mean-field Potts model? The answer is yes, but with changes, which
are inherited by the changed behavior of the Potts – Curie – Weiss model when
the interaction exponent changes.

The third aim is to reinterpret our results and introduce a dynamical point of
view. In this view we consider decreasing finite sequences of decompositions At,
of the local state-space {1, . . . , q}, labelled by a discrete time t = 0, 1, . . . , T . We
call these sequences collapsing schemes. As we move along t we are interested in
whole trajectories of fuzzy measures and what can be said about Gibbsianness
here. Similar questions have been studied for time-evolved Gibbs measures
arising from stochastic spin dynamics and usually there is no multiple in- and
out of Gibbsianness in these models. An important difference though is the fact
that under the spin dynamics the state space stays unaltered. In our dynamical
model this is not the case and as we will see there may very well be multiple in-
and out of Gibbsianness here, depending on the collapsing scheme.

Technically the paper rests on a detailed bifurcation analysis of the free
energy, the first step being a reduction to a one-dimensional problem using an
extension of the proof of [9]. We find here the somewhat surprising fact that
there is a triple point for q = 2, z = 4, with a transition from second-order to
first-order phase-transition.

2. The generalized Potts model

For a positive integer q and a real number z ≥ 2, the Gibbs measure πN
β,q,z for

the q-state generalized Potts model on the complete graph with N ∈ N vertices
at inverse temperature β ≥ 0, is the probability measure on {1, . . . , q}N which
to each ξ ∈ {1, . . . , q}N assigns probability

πN
β,q,z(ξ) =

1
ZN

β,q,z

exp(−NFβ,q,z(L
ξ
N )) (2.1)

where Lξ
N = (1/N)

∑N
i=1 1ξi is the empirical distribution of the configuration

ξ = (ξi)i∈N , Fβ,q,z : P({1, . . . , q}) → R, Fβ,q,z(ν) := −β
∑q

i=1 νz
i /z is the mean-

field Hamiltonian of the generalized Potts model and ZN
β,q,z is the normalizing

constant. Notice that the case z = 2 is the standard Potts model, in particular
the case z = 2, q = 2 refers to the Curie – Weiss – Ising model. We call the case
q = 2, z ≥ 2 the generalized Curie –Weiss – Ising model for which the mean-field
Hamiltonian can be written in the form Fβ,2,z(ν) := −β/z[(1 + m)/2)z + ((1−
m)/2)z] with m := 2ν1 − 1.
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The Ellis – Wang Theorem [9] describes the limiting behaviour of the stan-
dard Potts model as the system size grows to infinity. Here we give a generalized
version for interactions with z ≥ 2.

Theorem 2.1 (Generalized Ellis – Wang Theorem). Assume that q ≥ 2
and z ≥ 2 then there exists a critical temperature βc(q, z) > 0 such that in
the thermodynamic limit N ↑ ∞ we have the following weak convergence of
measures

lim
N↑∞

πN
β,q,z(LN ∈ ·) =





δ1/q(1,...,1) if β < βc(q, z),
1
q

q∑

i=1

δu(β,q,z)ei+(1−u(β,q,z))/q(1,...,1) if β > βc(q, z),

(2.2)
where ei is the unit vector in the i-th coordinate of Rq and u(β, q, z) is the
largest solution of the so-called mean-field equation

u =
1− exp

(
∆β,q,z(u)

)

1 + (q − 1) exp
(
∆β,q,z(u)

) (2.3)

with

∆β,q,z(u) := − β

qz−1

[(
1 + (q − 1)u

)z−1 − (
1− u

)z−1
]
.

Further, for q = 2 and 2 ≤ z ≤ 4 the function β 7→ u(β, q, z) is continuous. In
the complementary case the function β 7→ u(β, q, z) is discontinuous at βc(q, z).

For q > 2 the above result is in complete analogy to the standard Potts
model. For the generalized Curie – Weiss – Ising model (q = 2) there is an im-
portant difference. It is a known fact that the standard Curie – Weiss – Ising
model (z = 2) has a second order phase-transition. This is still true as long as
2 ≤ z ≤ 4. But in case of the generalized Curie – Weiss – Ising model with z > 4
the phase-transition is of first order.

In the analysis of the fuzzy Potts model the following result is useful.

Proposition 2.1. For the generalized Potts model the function q 7→ βc(q, z) is
increasing.

3. The generalized fuzzy Potts model

Consider the q-state generalized Potts model and let s < q and r1, . . . , rs be
positive integers such that

∑s
i=1 ri = q. For fixed β > 0, z ≥ 2 and N ∈ N let

X be the {1, . . . , q}N -valued random vector distributed according to the Gibbs
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measure πN
β,q,z. Then define Y as the {1, . . . , s}N -valued random vector by

Yi =





1 if Xi ∈ {1, . . . , r1},
2 if Xi ∈ {r1 + 1, . . . , r1 + r2},
...

...
s if Xi ∈ {q − rs + 1, . . . , q}

for each i ∈ {1, . . . , N}. In other words, using the coarse-graining map T :
{1, . . . , q}N 7→ {1, . . . , s}N with T (k) = l iff

∑li−1
j=1 rj < ki ≤

∑li
j=1 rj for

all i ∈ {1, . . . , N}, we have Y = T ◦ X. Let us denote by µN
β,q,z,(r1,...,rs) the

distribution of Y and call it the finite-volume fuzzy Potts measure. We call the
vector (r1, . . . , rs) the spin partition of the fuzzy Potts model.

In [21] the notion of Gibbsianness for mean-field models is introduced. It is
based on the continuity of the so-called mean-field specification as a function of
the conditioning. In analogy to the lattice situation a mean-field specification
is a probability kernel that for every measure in the conditioning is a measure
on the single-site space. If it is discontinuous w.r.t. the conditioning measure, it
cannot constitute a Gibbs measure. The mean-field specification is obtained as
the infinite-volume limit of the one-site conditional probabilities in finite volume.
To be more specific we present the statement from [21] applied to our situation
without proof.

Lemma 3.1. For µN
β,q,z,(r1,...,rs) the generalized fuzzy Potts model on {1, . . . , s}

there exists a probability kernel QN
β,q,z,(r1,...,rs) : {1, . . . , s} × P({1, . . . , s}) →

[0, 1] such that the single-site conditional expectations at any site i can be
written in the form

µN
β,q,z,(r1,...,rs)(Yi = k | Y{1,...,N}\i = η) = QN

β,q,z,(r1,...,rs)(x | η̄)

where η̄ ∈ P({1, . . . , s}) with η̄l = #(1 ≤ j ≤ N, j 6= i, ηj = l)/(N − 1) the
fraction of sites for which the spin-values of the conditioning are in the state
l ∈ {1, . . . , s}. Further µN

β,q,z,(r1,...,rs) is uniquely determined by QN
β,q,z,(r1,...,rs).

Definition 3.1. Assume that for all k ∈ {1, . . . , s} and νN → ν, the infinite-
volume limit QN

β,q,z,(r1,...,rs)(k | νN ) → Q∞
β,q,z,(r1,...,rs)(k | ν) exists. We call the

generalized fuzzy Potts model Gibbs if ν 7→ Q∞β,q,z,(r1,...,rs)(· | ν) is continuous.
Otherwise we call it non-Gibbs.

Theorem 1.2 in [21] therefore describes properties of the limiting conditional
probabilities in case of the fuzzy Potts model. Here we give a version of this
theorem for the generalized fuzzy Potts model with exponent z > 2.
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Theorem 3.1. Consider the q-state generalized fuzzy Potts model at inverse
temperature β > 0 with exponent z > 2 and spin partition (r1, . . . , rs), where
1 < s < q and

∑s
i=1 ri = q. Denote by βc(rk, z) the inverse critical temperature

of the rk-state generalized Potts model with the same exponent z > 2. Then

(i) Suppose 2 < z ≤ 4 and ri ≤ 2 for all i ∈ {1, . . . , s}, then the limiting
conditional probabilities exist and are continuous functions of empirical
distribution of the conditioning for all β ≥ 0.

Assume z > 4 or that ri ≥ 3 for some i ∈ {1, . . . , s}. Put r∗ := min{r ≥
3, r = ri for some i ∈ {1, . . . , s}} and r# := min{r ≥ 2, r = ri for some i ∈
{1, . . . , s}}, then the following holds:

(ii) If z > 4 then

(1) the limiting conditional probabilities exist and are continuous for all
β < βc(r#, z),

(2) the limiting conditional probabilities are discontinuous for all β ≥
βc(r#, z), in particular they do not exist in points of discontinuity.

(iii) If 2 < z ≤ 4 then

(1) the limiting conditional probabilities exist and are continuous for all
β < βc(r∗, z),

(2) the limiting conditional probabilities are discontinuous for all β ≥
βc(r∗, z), in particular they do not exist in points of discontinuity.

4. Dynamical Gibbs – non Gibbs transitions along collapsing schemes

Consider the set of Potts spin values {1, . . . , q} and denote byA={I1, . . . , Ir}
a spin partition. Write µN

β,q,z,A for the finite-volume fuzzy Potts Gibbs measure
on {1, . . . , r}N . With a partition A comes the σ-algebra σ(A) which is generated
by it. It consists of the unions of sets in A. Conversely a σ-algebra determines
a partition.

The set of σ-algebras over {1, . . . , q} is partially ordered by inclusion. Now
let (At)t=0,1,...,T be a strictly decreasing sequence of partitions (a collapsing
scheme) with A0 = ({1}, . . . , {q}) being the finest one (consisting of q classes),
and AT = ({1, . . . , q}) being the coarsest one. t can be considered as a time
index. Moving along t more and more classes are collapsed. Note that the finite
sequence of σ-algebras generated by these partitions, σ(AT ) ⊂ σ(AT−1) ⊂ · · · ⊂
σ(A0) is a filtration. Such a filtration can be depicted as a rooted tree with q
leaves which has T levels. A level i corresponds to a σ-algebra Fi, the vertices
at level i are the sets in the partition corresponding to Fi. A set in the partition
at level i is a parent of a set in the partition at level i − 1 iff it contains the
latter.
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We look at the corresponding sequence of increasingly coarse-grained mod-
els (µN

β,q,z,A)t=0,...,T . What can be said about in- and out-of-Gibbsianness
along such a path? For a partition A and given exponent z ≥ 2 denote
by r∗(A, z) the size of the smallest class in the non-Gibbsian region (r, z) ∈
([2,∞)× [2,∞)) \ ({2}× [2, 4]). The following corollary is a direct consequence
of our main Theorem 3.1 and Theorem 1.2 in [21].

Corollary 4.1. The model is non-Gibbs at time t ∈ {1, 2, . . . , T − 1} if and
only if β ≥ βc(r∗(At, z), z).

Even though by Proposition 2.1 r 7→ βc(r, z) is increasing, it is quite possible
to have collapsing schemes where t 7→ βc(r∗(At, z), z) is not monotone for t ∈
{1, . . . , T}. This is because t 7→ r∗(At, z) does not have to have monotonicity,
as it happens e.g. in the following example:

A0 = ({1}, {2}, {3}, {4}, {5})
A1 = ({1, 2}, {3}, {4}, {5})
A2 = ({1, 2, 3}, {4}, {5})
A3 = ({1, 2, 3}, {4, 5})
A4 = ({1, 2, 3, 4, 5})

with (r∗(At, 5))t=1,...,T−1 = (2, 3, 2). If q is a power of two, and the collapsing
scheme is chosen according to a binary tree, there is of course monotonicity, as
e.g. in the following example

A0 = ({1}, {2}, {3}, {4}, {5}, {6}, {7}, {8})
A1 = ({1, 2}, {3, 4}, {5, 6}, {7, 8})
A2 = ({1, 2, 3, 4}, {5, 6, 7, 8})
A3 = ({1, 2, 3, 4, 5, 6, 7, 8})

with (r∗(At, 5))t=1,...,T−1 = (2, 4).

Definition 4.1. Let us agree to call a collapsing scheme regular if and only
if (r∗(At, z))t=1,...,T−1 is increasing, T ≥ 2 (meaning there is no immediate
collapse.)

The following theorem is an immediate consequence of Corollary 4.1 and Propo-
sition 2.1.

Theorem 4.1. Consider the generalized q-state Potts model with interaction
exponent bigger than 2. For a regular collapsing scheme the following is true:

(i) The model stays Gibbs forever iff β < βc(r∗(A1, z), z).

(ii) It is non-Gibbs for all t ∈ {1, . . . , T − 1} iff β ≥ βc(r∗(AT−1, z), z).
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(iii) For β ∈ (βc(r∗(A1, z), z), βc(r∗(AT−1, z), z)] there is a transition time tG ∈
{2, . . . , T − 1} such that the model is non-Gibbs for t ∈ {1, . . . , tG − 1}
and Gibbs for t ∈ {tG, . . . , T}.

Note that the second temperature-regime of non-Gibbsianness contains tem-
peratures which are strictly bigger than the critical temperature of the initial
q-state Potts model. In the last regime there is an immediate out of Gibbsian-
ness, then the model stays non-Gibbs for a while and becomes Gibbsian again
at the transition time tG. Also note that for general collapsing schemes there
can be temperature regions for which multiple in- and out-of-Gibbsianness will
occur.

2 4 6 8
time

1
Βc,5

1
Βc,4

1
Βc,3

1
Βc,2

1
Β

temperature

Figure 1. Collapsing scheme (r∗(At, 5))t=1,...,7 = (2, 3, 4, 2, 5, 2, 3, 5) — qualita-
tive picture. The gray area below the graph shows the non-Gibbsian temper-
ature regime. Clearly the generalized Potts model with fixed temperature 1/β
and the same exponent under fuzzification given by the collapsing scheme At

can experience in-and-out-of-Gibbsianness multiple times.

5. Proofs of statements presented in Section 2

5.1. Proof of Theorem 2.1: Mean-field analysis

The empirical distribution LN obeys a large deviation principle with the
relative entropy I(· | α) as a rate function, where α is the equidistribution on
{1, . . . , q}. Together with Varadhan’s lemma the question of finding the limiting
distribution of LN under πN

β,q,z is equivalent to finding the global minimizers of
the so-called free energy Γβ,q,z : P({1, . . . , q}) 7→ R,

Γβ,q,z(ν) = Fβ,q,z(ν) + I(ν | α) =
β

z

q∑

i=1

νz
i +

q∑

i=1

νi log(qνi). (5.1)

For details on large deviation theory check [5]. The proof of Theorem 2.1 thus
rests completely on the following theorem.
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Theorem 5.1.

(i) Any global minimizer of Γβ,q,z with z ≥ 2 and q ≥ 2 must have the form

ν̄ =




1
q

(
1 + (q − 1) u

)
1
q (1− u)

...
1
q (1− u)


 with u ∈ [0, 1) (5.2)

or a point obtained from such a ν̄ by permutating the coordinates.

(ii) There exists a critical temperature βc(q, z) > 0 such that for β < βc(q, z),
ν̄ is given in the above form with u = 0, in other words ν̄T = (1/q, . . . , 1/q).
If β > βc(q, z), then ν̄ is given in the above form with u = u(β, q, z), where
u(β, q, z) is the largest solution of the mean-field equation

u =
1− exp

(
∆β,q,z(u)

)

1 + (q − 1) exp
(
∆β,q,z(u)

) (5.3)

with

∆β,q,z(u) := − β

qz−1

[(
1 + (q − 1)u

)z−1 − (
1− u

)z−1
]
.

(iii) The function β 7→ u(β, q, z) is discontinuous at βc(q, z) for all z ≥ 2 and
q ≥ 2 except for the case (q, z) ∈ {2} × [2, 4].

For the proof of part (i) of Theorem 5.1 we use the following remark and
lemma.

Remark 5.1. Due to the permutation invariance of the model it suffices to con-
sider minimizers of Γβ,q,n with ν̄k ≥ ν̄k+1 for all k ∈ {1, . . . , q − 1}.
Lemma 5.1. Let ν̄ ∈ P({1, . . . , q}) be a minimizer of Γβ,q,z with z ≥ 2, q ≥ 2
and define the auxiliary function

g(x) := βxz−1 − log(qx)

with x ∈ (0, 1]. Let ũ be the minimizer of g, given by

ũ :=
1

z−1
√

β(z − 1)
, (5.4)

then the coordinates of ν̄ satisfy the following conditions:

(i) If ν̄1 ≤ ũ, then ν̄k = ν̄1 for all k ∈ {2, . . . , q} and any minimizer of Γβ,q,z

has the form

ν̄ =
(1

q
, . . . ,

1
q

)T

.



610 B. Jahnel, C. Külske, E. Rudelli and J. Wegener

(ii) If ν̄1 > ũ, then ν̄k ∈ {ν̄0, ν̄1} for all k ∈ {2, . . . , q} with ν̄1 > ν̄0 and
g(ν̄0) = g(ν̄1). In this case any minimizer of Γβ,q,z has the form

ν̄ = (ν̄1, . . . , ν̄1︸ ︷︷ ︸
l times

, ν̄0, . . . , ν̄0)T with ν̄1 =
1− (q − l)ν̄0

l
,

where 1 ≤ l ≤ q.

Proof. Since ν̄ is a minimizer∇Γβ,q,z(ν̄) = (c, . . . , c)T . In other words −βν̄z−1
k +

log(qν̄k) + 1 = c for all k ∈ {1, . . . , q} and hence

g(ν̄1) = βν̄z−1
1 − log(qν̄1) = βν̄z−1

k − log(qν̄k) = g(ν̄k)

for all k ∈ {1, . . . , q}. The function g has the following properties: limx→0 g(x) =
+∞; g(1) = β− log(q); g′(x) = β(z−1)xz−2)−1/x and thus g attains its unique
extremal point in x̃; g′′(x) = β(z−1)(z−2)xz−3+x−2 > 0 and hence g is strictly
convex with global minimum attained in x̃.

As a consequence g is injective on (0, ũ] and hence if ν̄1 ≤ ũ by Remark 5.1
ν̄k ≤ ν̄1 and thus from g(ν̄1) = g(ν̄k) for all k it follows ν̄k = ν̄1 for all k. So ν̄
must be the equidistribution.

If ν̄1 > ũ, since g is strictly convex, limx→0 g(x) = +∞ and g(ν̄1) = g(ν̄k), we
have ν̄k ∈ {ν̄0, ν̄1} for all k where ν̄0 < ν̄1 such that g(ν̄0) = g(ν̄1). Consequently,
again by Remark 5.1, ν̄ must have the following form

ν̄ = (ν̄1, . . . , ν̄1︸ ︷︷ ︸
l times

, ν̄0, . . . , ν̄0)T with 2 ≤ l ≤ q. (5.5)

Since ν̄ is a probability measure lν̄1+(q−l)ν̄0 = 1 and hence ν̄1 = (1−(q−l)ν̄0)/l.
2

Proof of Theorem 5.1 part (i). First note, for ν̄ ∈ P({1, . . . , q}) a minimizer of
Γβ,q,z, k ∈ {2, . . . , q} and

Dk
ν̄ := {ν ∈ P({1, . . . , q}) : νx = ν̄x for all x ∈ {2, . . . , q} \ {k}}

of course minν∈Dk
ν̄

Γβ,q,z(ν) = Γβ,q,z(ν̄). Using this and the above Lemma 5.1
for fixed k we can set a ∈ [0, 1] such that

∑
i 6=1,k ν̄i = 1 − a where ν̄ is a

minimizer. Hence ν1 + νk = a and for ν ∈ Dk
ν̄ , Γβ,q,z(ν) has to be minimized as

a function of the variable ν1 alone. We calculate

∂Γβ,q,z

∂ν1
= −β(νz−1

1 − (a− ν1)z−1) + log
ν1

a− ν1

and thus have to analyse the inequality

hl(x) := β(xz−1 − (a− x)z−1) ≤ log
x

a− x
=: hr(x).
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Notice hl and hr are both point symmetric at x = a/2 and hl(a/2) = 0 =
hr(a/2). In particular a/2 is a candidate for the minimum of

ν1 7→ Γβ,q,z(ν1, ν̄2, . . . , ν̄k−1, a− ν1, ν̄k+1, . . . , ν̄q)

and if it is ν1 = νk. By point symmetry is suffices to look at hl and hr on the
set [a/2, a]. Requiring h′l(a/2) = h′r(a/2) is equivalent to

a

2
=

1
z−1

√
β(z − 1)

= ũ.

Let us collect some further properties of hl and hr: Both functions are convex
on [a/2, a); limx→a hr(x) = ∞ and hl(a) = βaz−1 < ∞; h′′l (a/2) = 0 = h′′r (a/2).
Also

h′′′l (a/2) = 2β(z − 1)(z − 2)(z − 3)(a/2)z−4 and h′′′r (a/2) = 4(a/2)−3

so if a/2 = ũ some minor calculations show h′′′l (a/2) = h′′′r (a/2) iff z = 4. In
particular for z < 4, h′′′l (a/2) < h′′′r (a/2) and for z = 4 higher orders show the
graph of hl close to a/2 is lower than the one of hr. That is why we have to
distinguish two cases with several subcases each.

Case 1: Let 2 ≤ z ≤ 4. We show that there is either one or no additional
point x ∈ (a/2, a] such that h′l(x) = h′r(x). Let us write the temperature as a
function of solutions of h′l(x) = h′r(x),

βz,a(x) =
a

(z − 1)((a− x)xz−1 + x(a− x)z−1)
. (5.6)

This function is strictly increasing, indeed β′z,a > 0 is equivalent to

a(z − 1)− zx− (xz − a)
(a− x

x

)z−2

< 0. (5.7)

Setting y = (a− x)/x we can write this equivalently as

a(z − 1)− z
a

y + 1
−

( a

y + 1
z − a

)
yz−2 < 0,

(z − 1)y − 1− ((z − 1)− y)yz−2 < 0
(5.8)

where x 7→ y, (a/2, a] 7→ [0, 1) is bijective. Notice z − 1 > y and yz−2 ≥ y2,
hence

(z − 1)y − 1− ((z − 1)− y)yz−2 < (z − 1)y − 1− ((z − 1)− y)y2

= y3 − (z − 1)(y2 − y)− 1 < y3 − 3(y2 − y)− 1 = (y − 1)3 < 0.
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But this is true and thus β′z,a > 0 and for every

β ≤ βz,a(a/2) =
1

z − 1

(a

2

)1−z

there is no x ∈ (a/2, a] with h′l(x) = h′r(x), for every

β >
1

z − 1

(a

2

)1−z

there is exactly one x ∈ (a/2, a] with h′l(x) = h′r(x).

Subcase 1a: Let a/2 ≤ ũ. This is equivalent to

β ≤ 1
z − 1

(a

2

)1−z

and hence h′r > h′l on [a/2, a), in particular there can not be a x ∈ [a/2, a) such
that hl(x) = hr(x) and hr > hl on [a/2, a). Due to point symmetry a/2 is the
unique global minimum of the free energy as a function of the first variable ν1

on Dk
ν̄ . In particular ν1 ≤ ũ and thus by Lemma 5.1 part (i), the free energy

minimizer is the equidistribution.

Subcase 1b: Let a/2 > ũ. This is equivalent to

β >
1

z − 1

(a

2

)1−z

and hence there is exactly one x1 ∈ (a/2, a) such that h′l(x1) = h′r(x1). Since
limx→a hl(x) < limx→a hr(x) there must be at least x+ ∈ (a/2, a) such that
hl(x+) = hr(x+). If there would be two different such points, for instance
x+ < x′+ then by the generalized mean value theorem there exists ξ+ < ξ′+ such
that

1 =
hr(x′+)− hr(x+)
hl(x′+)− hl(x+)

=
h′r(ξ′+)
h′l(ξ

′
+)

and 1 =
hr(x+)− hr(a/2)
hl(x+)− hl(a/2)

=
h′r(ξ+)
h′l(ξ+)

(5.9)

in other words h′r(ξ
′
+) = h′l(ξ

′
+) and h′r(ξ+) = h′l(ξ+), a contradiction. Due to

point symmetry a/2 then is a local maximum and x+ as well as x− := a − x+

are global minima of the free energy as a function of the first variable ν1 on Dk
ν̄ .

By Remark 5.1, ν1 ≥ νk and since x+ > x− we have ν1 = x+ and νk = x−. In
particular ν1 > ũ and thus by Lemma 5.1 part (ii) the free energy minimizer
has the form

ν̄ = (x+, . . . , x+︸ ︷︷ ︸
l times

, x−, . . . , x−)T with 2 ≤ l < k.
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a

2
a

2
a

2

Figure 2. On the left side, hr and hl in the cases 2 ≤ z ≤ 4 subcase one and
z > 4 subcase two. In the middle, hr and hl in the cases 2 ≤ z ≤ 4 subcase two
and z > 4 subcase one. On the right side, hr and hl in the case z > 4 subcase
four.

Moreover if l > 1, ν1 + νl = 2x+ > a > 2ũ and hence by the same arguments as
above ν1 > νl, a contradiction.

Case 2: Let z > 4. We show that there is either one, two or no additional
points x ∈ (a/2, a] such that h′l(x) = h′r(x). Let us look again at βz,a defined
in (5.6). For z > 4, βz,a has a local maximum in a/2 since β′z,a(a/2) = 0 which
can easily be seen from equation (5.7) and

β′′z,a(a/2) = −(z − 4)
(a

2

)−(z+1)

< 0.

We show that there is only one solution β′z,q(x) = 0 on (a/2, a] which must be a
global minimizer since limx→a βz,a(x) = ∞. Indeed from (5.8) we see, requiring
β′z,q to be zero is equivalent to the fixed point equation

y =
(z − y − 1)yz−2 + 1

z − 1
=: rz(y)

having an unique solution on [0, 1). The r.h.s. has the following properties:
rz(0) = 1/(z − 1) > 0; rz(1) = 1; r′z(1) > 1 and rz is convex, since r′′z (y) =
(z2 − (3 + y)z + 2)yz−3 > 0. Combining these properties gives the uniqueness
of the fixed point and thus the uniqueness of the extremal value of βz,a which
is a minimum that we want to call β0(z, a).

Subcase 2a: Let a/2 ≥ ũ. This is equivalent to

β ≥ 1
z − 1

(a

2

)1−z

and hence by the exact same arguments as in Subcase 1b, the free energy min-
imizer has the form ν̄ = (x+, x−, . . . , x−)T with x+ > x−.
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Subcase 2b: Let a/2 < ũ and β < β0(z, a). Then we are in a situation as in
Subcase 1a. In particular the free energy minimizer is the equidistribution.

Subcase 2c: Let a/2 < ũ and

β = β0(z, a) <
1

z − 1

(a

2

)1−z

.

In this case, there is exactly one x1 ∈ (a/2, a] such that h′l(x1) = h′r(x1) and
hence by the mean value argument already presented in (5.9) there cannot
be more then one x+ ∈ (a/2, a] such that hl(x+) = hr(x+). If no such x+

exists, we are in the same situation as in Subcase 2b. If such x+ exists it must
belong to a touching point of the graphs of hl and hr since otherwise because of
limx→a hl(x) < limx→a hr(x) there must be another point (a/2, a] 3 x̄+ 6= x+

with hl(x̄+) = hr(x̄+). If it is a touching point of hl and hr, then the free energy
as a function of the first entry cannot attain a minimum in x+, instead it is a
saddle point and the minimum is attained in a/2. Consequently the minimizing
distribution of the free energy is the equidistribution.

Subcase 2d: Let a/2 < ũ and

β0(z, a) < β <
1

z − 1

(a

2

)1−z

.

In this case we have exactly two points x1 < x2 such that h′l(xi) = h′r(xi) with
i ∈ {1, 2} and again by the mean value argument (5.9) there cannot be more
than two points x+ > x′+ with hl(x+) = hr(x+) and hl(x′+) = hr(x′+). If no
such point or only one such point exists, we can apply the same arguments as in
Subcase 2c and the equidistribution is the free energy minimizer. If both points
exist and both belong to touching points of the graphs of hl and hr then again
the equidistribution must be the minimizer. The case that both points exist
and only one is a touching point is impossible.

Now if both points exist and belong to real intersections of the graphs of
hl and hr, then we have three local minima attained in x− < a/2 < x+ with
x− := a−x+. Hence for ν1 the local minimizers a/2 and x+ are competing to be
the global minimizers. If a/2 is the global minimizer then by Lemma 5.1 the free
energy is minimized by the equidistribution. If x+ is the global minimizer, then
notice if x+ ≤ ũ again by Lemma 5.1 x+ = a/2 which contradicts x+ > a/2.
Hence x+ > ũ and the free energy minimizer has the form

ν̄ = (x+, . . . , x+︸ ︷︷ ︸
l times

, x−, . . . , x−)T with 2 ≤ l < k.

Moreover if l > 1, ν1 + νl = 2x+ > 2ũ and hence by Subcase 2a ν1 > νl, a
contradiction.
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Finally, in order to have the minimizers in the format given in the theorem,
define u ∈ [0, 1) such that (1 − u)/q = x−. This is always possible since 0 <
x− ≤ 1/q. Of course x+ = (1 + (q − 1)u)/q. 2

For the proof of part (ii) of Theorem 5.1 we need the following lemmata.

Lemma 5.2. For q > 2 and z ≥ 2 there exist two temperatures 0 < β0(q, z) <
β1(q, z) such that for 0 < β < β0 the mean-field equation only has the trivial
solution u = 0. For β0 < β < β1 the mean-field equation has two additional
solutions 0 < u1 < u2 < 1. Finally for β = β0 or β ≥ β1 there is only one
additional solution 0 < u2 < 1.

Proof. Let us write the temperature as a function of positive solutions of the
mean-field equation

βq,z(u) := qz−1 log(1 + (q − 1)u)− log(1− u)
(1 + (q − 1)u)z−1 − (1− u)z−1

. (5.10)

1
u

Βq,z

1
u

Βq,z

Figure 3. On the left side, βq,z for q = 3 and z = 3, . . . , 7. The
cup shape of the graphs is a common feature for the parameter regimes
(q, z) ∈ ([2,∞) × [2,∞]) \ ({2} × [2, 4]). On the right side, βq,z for q = 2
and z = 2, . . . , 4. Here βq,z is strictly increasing and this is a common feature
for the parameter regimes (q, z) ∈ {2} × [2, 4].

Let us define

lim
u→0

βq,z(u) =
qz−1

z − 1
=: β1.

Notice
lim
u→0

β′q,z(u) = −1
2
(q − 2)qz−1 < 0

and
lim
u→1

βq,z(u) = ∞ = lim
u→1

β′q,z(u).
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We will show that βq,z has exactly one extremal point attained in u0 ∈ (0, 1).
This must be a local and hence global minimum that we want to call β0. Let
us calculate

0 = β′q,z(u) = qz−1
( q

(1 + (q − 1)u)(1− u)[(1 + (q − 1)u)z−1 − (1− u)z−1]
− [(1 + (q − 1)u)z−1 − (1− u)z−1]−2 [log(1 + (q − 1)u)− log(1− u)]

× (z − 1)[(1 + (q − 1)u)z−2(q − 1) + (1− u)z−2]
)
.

Replacing

v :=
(
1 +

qu

1− u

)z−1

we can write equivalently

q − 1 = v1/(z−1) log v − v + 1
v − 1− v log v

=: Fz(v).

Notice u 7→ v, (0, 1) 7→ (1,∞) is strictly increasing and bijective. It suffices to
show, that Fz is bijective on F−1

z (1,∞). First we have limv→1 Fz(v) = 1 and
limv→∞ Fz(v) = ∞. We show that Fz is strictly increasing on F−1

z (1,∞) and
calculate

0 = F ′z(v) = v(2−z)/(z−1) (z − 2)v log2 v + (v2 − 1) log v − (v − 1)2

(z − 1)(1− v + v log v)2

which is equivalent to

z =
(v2 − 1) log v − 2v log2 v

(v − 1)2 − v log2 v
=: G(v).

Since G(v) > 4 on (1,∞) (which we will see right below) for 2 ≤ z ≤ 4 there
are no extremal points of Fz and in particular Fz is bijective on F−1

z (1,∞).
Since G(v) is also strictly increasing (which we will also see right below) and
for z > 4,

lim
v→1

F ′z(v) =
4− z

3(z − 1)
< 0

there is exactly one extremal point of Fz which must be a minimum. In partic-
ular that minimum is smaller than one and hence Fz is bijective on F−1

z (1,∞).
To see that G(v) > 4 and strictly increasing, use limv→1 G(v) = 4 and show

0 < G′ which is equivalent to

G1(v) := (v − 1)3(v + 1)− 6v(v − 1)2 log v

+ 3v(v2 − 1) log2 v − v(v2 + 1) log3 v > 0.
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One way to see that this is true is to show strict convexity of G1 and use

lim
v→1

G1(v) = lim
v→1

G′1(v) = 0

and limv→∞G1(v) = ∞. Here G′′1 > 0 is equivalent to

G2(v) := 4(v − 1)3 − 4(v − 1)2 log v + (v2 − 1) log2 v − 2v2 log3 v > 0

and again limv→1 G2(v) = limv→1 G′2(v) = 0 and limv→∞G2(v) = ∞. Now
again we want to show strict convexity of G2, but this is equivalent to

G3(v) := 1 + 4v − 17v2 + 12v3 + log v − 7v2 log v − 8v2 log2 v − 2v2 log3 v > 0

and as before limv→1 G3(v) = limv→1 G′3(v) = 0 and limv→∞G3(v) = ∞. Now
again we want to show strict convexity of G3, but this is equivalent to

G4(v) := −1− 71v2 + 72v3 − 74v2 log v − 34v2 log2 v − 4v2 log3 v > 0

and limv→1 G4(v) = limv→1 G′4(v) = 0 and limv→∞G4(v) = ∞. Now as above
we want to show strict convexity of G4, but this is equivalent to

G5(v) := 54(v − 1)− 47 log v − 13 log2 v − log3 v > 0

and now limv→1 G5(v) = 0, limv→1 G′4(v) = 7 and limv→∞G4(v) = ∞. Finally
the strict convexity of G5 is equivalent to 21 + 20 log v + 3 log2 v > 0. But this
is true and hence the above cascade gives 0 < G′. This finishes the proof. 2

Lemma 5.3. For q = 2 and z > 4 there exist two temperatures 0 < β0(2, z) <
β1(2, z) such that for 0 < β < β0 the mean-field equation only has the trivial
solution u = 0. For β0 < β < β1 the mean-field equation has two additional
solutions 0 < u1 < u2 < 1. Finally for β = β0 or β ≥ β1 there is only one
additional solution 0 < u2 < 1.

Proof. β2,z as defined in (5.10) has the following properties: limu→0 β′2,z(u) = 0;
limu→0 β′′2,z(u) = 2z−1(4− z)/3 < 0 and limu→1 β2,z(u) = ∞ = limu→1 β′2,z(u).
Define

lim
u→0

β2,z(u) =
2z−1

z − 1
=: β1.

Using the exact same arguments as presented in the proof of Lemma 5.2 one can
again show that β2,z has exactly one extremal point β0 attained in u0 ∈ (0, 1).
As before, the indicated parameter regimes are an immediate consequence of
this fact. 2

Lemma 5.4. For q = 2 and 2 ≤ z ≤ 4 there exist only one temperature
0 < β1(2, z) such that for 0 < β ≤ β1 the mean-field equation only has the
trivial solution u = 0. For β > β1 there is one additional solution 0 < u1 < 1.
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Proof. β2,z as defined in (5.10) has the following properties: limu→0 β′2,z(u) =
0, limu→1 β2,z(u) = ∞ = limu→1 β′2,z(u); limu→0 β′′2,z(u) = 2z−1(4 − z)/3 >
0 for z < 4 and limu→0 β′′2,4(u) = 2z−1(4 − z)/3 = 0; limu→0 β′′′2,4(u) = 0;
limu→0 β′′′′2,4(u) = 64/5 > 0. As a consequence for 2 ≤ z ≤ 4, β2,z has a local
minimum in zero. We show that β2,z is strictly increasing. Indeed β′2,z > 0 is
equivalent to

Fz(v) := (v − 1)(v1/(z−1) + 1)− (v + v1/(z−1)) log v > 0

for v ∈ (1,∞) where we made the one-to-one replacement

v =
(1 + u

1− u

)z−1

.

Notice that for all v ∈ (1,∞), z 7→ Fz(v) is strictly decreasing on (2,∞) since
d/dzFz(v) < 0 is equivalent to log v < v − 1 which is of course true for all
v ∈ (1,∞). Now in order to show F4 > 0 we again use a cascade of convex
functions. First, F4(1) = 0, F ′4(1) = 0 and F ′′4 > 0 is equivalent to G(v) :=
5 − 9v2/3 + 4v + 2 log(v) > 0. Second, G(1) = 0, G′(1) = 0 and G′′ > 0 is
equivalent to v > 1, but this is true.

Consequently β1(2, z) := limu→0 β2,z(u) = 2z−1/(z − 1). 2

Proof of Theorem 5.1 part (ii). The above lemmata consider the temperature
parameter as a function of positive solutions of the mean-field equation

βq,z(u) = qz−1 log(1 + (q − 1)u)− log(1− u)
(1 + (q − 1)u)z−1 − (1− u)z−1

.

This function is positive.

In the parameter regimes considered in Lemma 5.2 and Lemma 5.3 β0 is the
unique global minimum of βq,z and

β1 = lim
u→0

βq,z(u) =
qz−1

z − 1
.

Let us connect this with the free energy as a function of u.

Γβ,q,z(ν̄) =− β

z
ν̄z
1 + ν̄1 log(qν̄1) + (q − 1)

(
−β

z
ν̄z
2 + ν̄2 log(qν̄2)

)

=
1
q
[(1 + (q − 1)u) log(1 + (q − 1)u) + (q − 1)(1− u) log(1− u)]

− β

z
q−z[(1 + (q − 1)u)z + (q − 1)(1− u)z] =: kβ,q,z(u)

(5.11)

and its derivatives
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1
u

kΒ,q,z

1
u

kΒ,q,z

Figure 4. On the left side, kβ,q,z for q = 3, z = 4 and β = 3.8, . . . , 9.
The fact that the shape of the graph changes from a single local minimum
attained away from zero, to two local minima and back again to one lo-
cal minimum attained in zero is a common feature in the parameter regimes
(q, z) ∈ ([2,∞) × [2,∞]) \ ({2} × [2, 4]). One can clearly see the first-order
nature of the phase-transition. On the right side, kβ,q,z for q = 2, z = 4 and
β = 2.4, 2.5, . . . , 3.3. The fact that the point where the global minimum is at-
tained moves into zero from the right is a common feature for the parameter
regimes (q, z) ∈ {2} × [2, 4]. This indicates a second-order phase-transition.

k′β,q,z(u) =− q − 1
qz

β[(1 + (q − 1)u)z−1 − (1− u)z−1]− q − 1
q

log
1− u

1 + (q − 1)u
,

k′′β,q,z(u) =− q − 1
qz

β(z − 1)[(q − 1)(1 + (q − 1)u)z−2) + (1− u)z−2)]

+
q − 1

(1− u)(1 + (q − 1)u)
.

(5.12)

Notice k′β,q,z(0) = 0 and k has a local minimum in zero iff

β <
qz−1

z − 1
= β1.

Since also limu→1 k′β,q,z(u) = +∞ we can assert the following:

1. If β < β0 < β1 then in u = 0 the free energy must attain its global
minimum.

2. If β ≥ β1 then in zero there is a local maximum and according to Lemma
5.2 and Lemma 5.3 there is exactly one more extremal point, but this
must be a global minimum.

3. If β = β0 < β1 the additional extremal point must be a saddle point
since if it would be a local maximum, then there must be another local
minimum and hence another extremal point, but the additional extremal
point is the only one.
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4. If β0 < β < β1 then the two additional extremal points u1 < u2 are
either two saddle points or a local maximum (attained in u1) and a local
minimum (attained in u2.)

Since

d

dβ
kβ,q,z(u) = −q−z

z
[(1 + (q − 1)u)z + (q − 1)(1− u)z] < 0,

the free energy decreases for every u if β increases. Since

d

du

d

dβ
kβ,q,z(u) = −q − 1

qz
[(1 + (q − 1)u)z−1 − (1− u)z−1] < 0,

for larger u this decrease is also strictly larger and hence for β moving up from
β0 to β1, kβ,q,z(u2) is going down faster than kβ,q,z(0). Since for β ≥ β1, u2

becomes the global minimum, and k is continuous w.r.t. every parameter, there
must be a β0 < βc ≤ β1 where kβ,q,z(0) = kβ,q,z(u2) and indeed for β > βc

the minimizer of the free energy Γβ,q,z is defined by the largest solution of the
mean-field equation.

In the parameter regime considered in Lemma 5.4 the situation is simpler
and we can set β0 = β1 = βc. In particular

1. If β < βc then in u = 0 the free energy must attain its global minimum.

2. If β > βc then in zero there is a local maximum and according to Lemma
5.4 there is exactly one more extremal point, but this must be a global
minimum.

2

Proof of Theorem 5.1 part (iii). In the cases z ≥ 2, q ≥ 2 and z > 4, q = 2 we
have β0 < βc ≤ β1 and

lim
β↘βc

u(β, q, z) = u2(q, z) > 0 = lim
β↗βc

u(β, q, z)

where we used notation from the proof of part 2 of 5.1 with u2(q, z) = u2. Hence
β 7→ u(β, q, z) is discontinuous in βc.

In the case 2 ≤ z ≤ 4, q = 2 we have

lim
β↘βc

u(β, q, z) = 0 = lim
β↗βc

u(β, q, z)

by the monotonicity of u 7→ βq,z(u) and hence β 7→ u(β, q, z) is continuous in
βc. 2
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5.2. Proof of Proposition 2.1

It suffice to show that ∂qβc(q, z) ≥ 0, where ∂qβc stands for the partial
derivative of βc in the direction q. Without restriction we consider 3 ≤ q ∈ R.
We know that βc > 0 and the corresponding value uc ∈ (0, 1) are solutions of
the equations:

kβ,q,z(u) = kβ,q,z(0) = −β

z
q1−z and k′β,q,z(u) = 0, (5.13)

where kβ,q,z is given in (5.11). The first condition is equivalent to

F (β, q, u) := βf(q, u) + g(q, u)

:= −β

z
q−z[(1 + (q − 1)u)z + (q − 1)(1− u)z − q]

+
1
q
[(1 + (q − 1)u) log(1 + (q − 1)u) + (q − 1)(1− u) log(1− u)]

= 0. (5.14)

The second condition is equivalent to

G(β, q, u) := ∂uF (β, q, u) =: β∂uf(q, u) + ∂ug(q, u) = 0.

Taking the derivative along a path of solutions we get a two-dimensional system
of equations

d

dq
F (β(q), q, u(q)) = ∂βF (β, q, u)∂qβ(q) + ∂qF (β, q, u)

+ ∂uF (β, q, u)∂qu(q) = 0
d

dq
G(β(q), q, u(q)) = ∂βG(β, q, u)∂qβ(q) + ∂qG(β, q, u)

+ ∂uG(β, q, u)∂qu(q) = 0,

where we wrote for simplicity βc(q) = βc(q, z). This is equivalent to
(

∂qβ(q)
∂qu(q)

)
= −

(
∂βF (β, q, u) ∂uF (β, q, u)
∂βG(β, q, u) ∂uG(β, q, u)

)−1 (
∂qF (β, q, u)
∂qG(β, q, u)

)

which leads to

∂qβ(q) = − ∂uG(β, q, u)∂qF (β, q, u)− ∂uF (β, q, u)∂qG(β, q, u)
∂βF (β, q, u)∂uG(β, q, u)− ∂βG(β, q, u)∂uF (β, q, u)

.

Now we can use that for our solutions G(β, q, u) = ∂uF (β, q, u) = 0 and thus
we have

∂qβc(q) = − ∂qF (β, q, u)
∂βF (β, q, u)

= −∂qF (β, q, u)
f(q, u)

.
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Notice f(q, u) < 0 since f(q, 0) = 0 and

∂uf(q, u) = q−z(q − 1)[(1− u)z−1 − (1 + (q − 1)u)z−1] < 0.

where we used 1− u < 1 + (q − 1)u. Hence it suffices to show

∂qF (β, q, u) = β∂qf(q, u) + ∂qg(q, u) ≥ 0. (5.15)

A solution of (5.14) satisfies β = −g(q, u)/f(q, u). Thus we can eliminate β in
(5.15) and show instead

∂qf(q, u)g(q, u)− ∂qg(q, u)f(q, u) ≥ 0. (5.16)

It would be sufficient to show that (5.16) is true for solutions of (5.13). Never-
theless, we will prove (5.16) for all q ∈ R+, z ∈ R+ and u ∈ [0, 1]. Multiplying
(5.16) with zqz+2, the inequality becomes

0 ≤ zqz+1∂qf(q, u) · qg(q, u)− q2∂qg(q, u) · zqzf(q, u)

= f̄q(q, u) · g̃(q, u) + ḡq(q, u) · f̃(q, u), (5.17)

with

f̄q(q, u) := zqz+1∂qf(q, u)

= z(1− u)(1 + (q − 1)u)z−1

+ (q(z − 1)− z)(1− u)z − q(z − 1),
g̃(q, u) := qg(q, u)

= (1 + (q − 1)u) log(1 + (q − 1)u) + (q − 1)(1− u) log(1− u),

ḡq(q, u) := q2∂qg(q, u) = qu− (1− u)[log(1 + (q − 1)u)− log(1− u)],

f̃(q, u) := −zqzf(q, u) = (1 + (q − 1)u)z + (q − 1)(1− u)z − q.

We have the following properties:

1. u 7→ f̃(q, u) ≥ 0 since f̃(q, 0) = 0 and

∂uf̃(q, u) = z(q − 1)[(1 + (q − 1)u)z−1 − (1− u)z−1] ≥ 0.

2. u 7→ g̃(q, u) ≥ 0 since g̃(q, 0) = 0 and

∂ug̃(q, u) = (q − 1)[log(1 + (q − 1)u)− log(1− u)] ≥ 0.

3. u 7→ ḡq(q, u) ≥ 0 since ḡq(q, 0) = 0 and

∂uḡq(q, u) = q − (q − 1)(1− u)
1 + (q − 1)u

+ log(1 + (q − 1)u)− log(1− u)− 1 ≥ 0

since q − 1− (q − 1)(1− u)/(1 + (q − 1)u) = q − q/(1 + (q − 1)u) > 0.
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The more involved function is u 7→ f̄q(q, u) since it can be positive and negative.
For the problematic case we define a set of u’s where f̄q(q, u) is negative, i.e.
[0, 1] ⊃ Aq := {u ∈ [0, 1] : f̄q(q, u) < 0}. Of course (5.17) is true on [0, 1] \ Aq.
Hence we only have to show on Aq the inequality

0 ≤ f̄q(q, u)
g̃(q, u)
ḡq(q, u)

+ f̃(q, u).

Notice, ḡq(u, q) = 0 only for u = 0, but 0 /∈ Aq since f̄q(0, q) = 0. We eliminate
the fraction by the estimate

g̃(u, q)
ḡq(u, q)

≤ (q − 1).

To see that this is true we use the following equivalent expressions:

g̃(q, u) ≤ (q − 1)ḡq(q, u),

(1 + (q − 1)u) log(1 + (q − 1)u) ≤ (q − 1)[qu− (1− u) log(1 + (q − 1)u)],

log(1 + (q − 1)u) ≤ (q − 1)u.

Since f̄q(q, u) is negative on Aq, we have

f̄q(q, u)(q − 1) ≤ f̄q(q, u)
g̃(q, u)
ḡq(q, u)

and all that is left to prove is

0 ≤ f̄q(q, u)(q − 1) + f̃(q, u).

Since f̄q(q, 0)(q − 1) + f̃(q, 0) = 0, it suffices to show

d

du
(f̄q(q, u)(q − 1) + f̃(q, u)) ≥ 0. (5.18)

For simplicity let us write A := 1− u and B := 1 + (q− 1)u, then (5.18) is true
since the last of following equivalent expressions is clearly true

∂u(f̄q(q, u)(q − 1) + f̃(q, u)) ≥ 0,

(z − q(z − 1))Az−1 −Az−1 + (q − 1)(z − 1)ABz−2 ≥ 0,

ABz−1 −Az−1B ≥ 0.

2
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6. Proof of Theorem 3.1

Please note that most of the calculations done in this section work also for
more general differentiable interaction functions. We prepare the proof by two
propositions.

Proposition 6.1. For each finite N we have the representation

QN
β,q,z,(r1,...,rs)(k | ν) =

rkA(βk, rk, Nk)∑s
l=1 rlA(βl, rl, Nl)

(6.1)

with Nl = (N − 1)νl, βl = β(Nl/N)z−1 and

A(β, r,M) = πM
β,r,z(exp(βL·M (1)z−1)).

Proof. To compute the l.h.s. of (6.1) starting from the generalized fuzzy Potts
measure, because of permutation invariance we can set i = 1 and write for a
fuzzy configuration η on {2, . . . , N}

µN
β,q,z,(r1,...,rs)(Y1 = k | Y{2,...,N} = η) =

1
Z(η)

∑

ξ:T (ξ)=(k,η)

πN
β,q,z(ξ)

where Z(η) is a normalization constant. Parallel to the proof of Proposition 5.2
in [21], it suffices to consider

∑

ξ:T (ξ)=(k,η)

exp
(βN

z

q∑

i=1

(Lξ
N (i))z

)

=
∑

ξ:T (ξ)=(k,η)

exp
( βN

zNz

q∑

i=1

( N∑

j=1

1ξj=i

)z)

=
∑

ξ:T (ξ)=(k,η)

[
exp

( βN

zNz

∑

i:T (i)=k

(
1ξ1=i +

∑

j∈Λk

1ξj=i

)z)

×
∏

l 6=k

exp
( βN

zNz

∑

i:T (i)=l

(∑

j∈Λl

1ξj=i

)z)]

where we used Λl := {j ∈ {2, . . . , N} : ηj = l}. Dividing this expression by

s∏

l=1

∑

ξΛl
:T (ξΛl

)=l

exp
( βN

zNz

∑

i:T (i)=l

(∑

j∈Λl

1ξj=i

)z)
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which is only dependent on η gives
∑

ξ1:T (ξ1)=k

∑
ξΛk

:T (ξΛk
)=k exp(βN(zNz)−1

∑
i:T (i)=k(1ξ1=i +

∑
j∈Λk

1ξj=i)z)
∑

ξΛk
:T (ξΛk

)=k exp(βN(zNz)−1
∑

i:T (i)=k(
∑

j∈Λk
1ξj=i)z)

=
∑

ξ1:T (ξ1)=k

π
|Λk|
β,rk,z

(
exp

(
βN

∑

i:T (i)=k

( |Λk|
N

L·|Λk|(i)
)z−1 1

N
1ξ1=i + o

( 1
N

)))

= rkπ
|Λk|
β,rk,z

(
exp

(
β
( |Λk|

N
L·|Λk|(1)

)z−1

+ o(1)
))

where we used Taylor expansion in the second last line. Since we are only
interested in the limiting behavior of QN as the system grows, by slight abuse
of notation we can absorb the asymptotic constant o(1) into the normalization
constant and hence the representation result follows. 2

Proposition 6.2. We have for boundary conditions ν(N) → ν,

lim
N→∞

QN
β,q,z,(r1,...,rs)(k | ν(N)) =

C(βνz−1
k , rk)∑s

l=1 C(βνz−1
l , rl)

(6.2)

whenever νz−1
k 6= βc(rk, z)/β for all rk ≥ 2 and z ≥ 2, where

C(βνz−1
k , rk) := rk exp

(
β
(νk

rk

)z−1)
, if βνz−1

k < βc(rk, z)

and

C(βνz−1
k , rk) := (rk − 1) exp

(
βνz−1

k

(1− u(βνz−1
k , rk, z)
rk

)z−1)

+ exp
(
βνz−1

k

( (rk − 1)u(βνz−1
k , rk, z) + 1
rk

)z−1)

if βνz−1
k > βc(rk, z). As a reminder, u(βνz−1

k , rk, z) is the largest solution of the
generalized mean-field equation (2.3).

Proof. The result is a direct consequence of the generalized Ellis – Wang Theo-
rem 2.1. 2

Proof of Theorem 3.1. By Proposition 6.2, for 2 < z ≤ 4 the points of dis-
continuity are precisely given by the values νz−1

k = βc(rk, z)/β for those k ∈
{1, . . . , s} with rk ≥ 3 for which βc(rk, z)/β < 1. In particular if ri ≤ 2 for
all i ∈ {1, . . . , s} no such points exist, this gives part (i). By Proposition 2.1
βc(r, z) is an increasing function of r, thus points of discontinuity can only be
present if β is at least larger or equal than the critical inverse temperature of
the smallest class that can have a second-order phase-transition. By picking
two different approximating sequences of boundary conditions ν

(N)
k ↘ νk and

ν̃
(N)
k ↗ νk it is also clear that for those points of discontinuity the limit does

not exist. This gives (ii) and (iii). 2
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7. Appendix

7.1. Bifurcation analysis

We have seen, that in different parameter regimes of the generalized Potts
model different kinds of phase-transitions can appear. This is of course related
to the appearance (and disappearance) of local minima and maxima in the free
energy as a function of u ∈ [0, 1] that we called kβ,q,z (see (5.11)). A complete
picture of possible bifurcations for general potentials is presented in [31]. In
this appendix we want to at least provide some figures showing the bifurcation
phenomena that can appear in the generalized Potts model in particular.

0.1 0.2 0.3 0.4 0.5

1

Β

3

4

5

6

7

8
z

q � 2

0.1 0.2 0.3 0.4

1

Β

3

4

5

6

7

8
z

q � 3

0.1 0.2 0.3

1

Β

3

4

5

6

7

8
z

q � 4

0.1 0.2 0.3

1

Β

3

4

5

6

7

8
z

q � 5

Figure 5. For q = 2 the area left of the middle line is the phase-transition
region. There is a triple point at z = 4 where all extremal points fall in the
same place, namely zero. Below z = 4 there is the second-order phase-transition
boundary and the three lines lie exactly on top of each other. Above z = 4 there
is a first-order phase-transition and the two additional lines right and left of the
phase-transition boundary indicate bifurcation phenomena. To be more precise,
the left line indicates where the local minimum at u = 0 and the local maximum
at u1 ≥ 0 join. The right line indicates where the local maximum at u1 > 0 and
the local minimum at u2 ≥ u1 join. Of course the phase-transition boundary
must lie between these lines. We give a schematic picture for this in Figure 6.
For q = 3, 4, 5 the situation is simpler since no second-order phase-transition is
present.

Note that only the left bifurcation line in each image in Figure 5 and Figure
6 we can compute exactly via

( d

du

)2

kβ,q,z(u) |u=0= 0

which is equivalent to
1
β

=
z − 1
qz−1

.

The right line in each of the same images shows β0(q, z) as defined for example
in Lemma 5.2 which we computed numerically. The middle line showing βc(q, z)
we also calculated numerically.
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On a computational level there is no reason not to assume q to be continuous.
In fact all our proofs work well with R 3 q ≥ 2. We already showed that the
possibility of a second-order phase-transition disappears for q > 2. This one can
also see in the bifurcation picture as indicated in Figure 6.
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Figure 6. On the left: A schematic indication for the bifurcation phenomena
present in case of q = 2 where the small graphs are prototypical representations
of the shape of the free energy. On the right: For q > 2 the bifurcation lines do
not join and the phase-transition boundary lies in an area where there are two
local minima and one local maximum present.

7.2. Random cluster representation and z-clique variables

There is an equivalent notation for the Hamiltonian of the standard Potts
model on the complete graph, namely

Fβ,q,2(L
ξ
N ) = − β

N2

∑

1≤i<j≤N

1ξi=ξj −
β

N
.

For general integer-valued exponents z ≥ 2 an equivalent notation for the Hamil-
tonian is given by

Fβ,q,z(L
ξ
N ) = −β(z − 1)!

Nz

∑

D⊂{1,...,N},|D|=z

1ξ|D=c + O
( 1

N

)
(7.1)

where ξ|D = c means that the given configuration ξ has a constant q-coloring
on the subset D of size z. N times the additional term is bounded by a constant
as the system size grows and hence plays no role in the large deviation analysis
and for the limiting Potts measure away from βc(q, z).
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We would like to describe now an extension of the well-known random cluster
representation of the nearest-neighbor Potts model on a general graph with N
vertices to interactions between z = 2, 3, 4, . . . spins. Denote by ∆ a subset of
the set of subsets of vertices {1, . . . , N} with z sites. In other words ∆ is a
subset of the z-cliques. This defines a graph in the usual sense when we say
that there is an edge between sites i 6= j iff there exists D ∈ ∆ with i, j ∈ D.
We define the corresponding ∆-Potts-Hamiltonian by

F∆(ξ) = −β
∑

D⊂∆

1ξ|D=c (7.2)

for a spin-configuration ξ ∈ {1, . . . , N}. In the limit away from βc(q, z) this
corresponds to the generalized mean-field Potts measure for integer exponent
z when we take ∆ to be the set of all subsets of {1, . . . , N} with exactly z
elements.

Let us now describe a random cluster representation for a Gibbs measure cor-
responding to (7.2). Given ∆, define the probability measure on {1, . . . , q}N ×
{0, 1}∆ by

K(σ, ω) = C
∏

D∈∆

(
(1− p)1ω(D)=0 + p1ω(D)=11D(σ)

)
(7.3)

with 1D(σ) the indicator of the event that σ is constant on D and C the nor-
malization. For z = 2 this is the so-called Edwards – Sokal measure presented
in [7]. Summing over the “clique-variables” ω we get the marginal distribution
on {1, . . . , q}N

∑
ω

K(σ, ω) = C
∑
ω

∏

D∈∆

(
(1− p)1ω(D)=0 + p1ω(D)=11D(σ)

)

= C
∏

D∈∆

(
(1− p) + p1D(σ)

)
= C

∏

D∈∆

(1− p)1−1D(σ).

This equals the generalized Potts measure with Hamiltonian (7.2) for integer
exponent z when we put p = 1− exp{−β}. Conversely, summing over σ we get

∑
σ

K(σ, ω) = C
∑

σ

∏

D∈∆

(
(1− p)1ω(D)=0 + p1ω(D)=11D(σ)

)

= C
∏

D∈∆

(1− p)1−ω(D)pω(D)qk(ω)

where k(ω) is the number of connected components (in the sense that open z-
subsets are called connected if they share at least one vertex) of the configuration
ω ∈ {0, 1}∆ also counting isolated elements of ∆. We call this measure the
generalized random cluster measure (generalized RCM) assigning probability to
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configurations of z-cliques. More details for the case z = 2 can be found for
example in [19].

The case q = 1 is independent percolation on z-clique variables since we de-
clare each z-clique (subset of z elements) independently to be open with proba-
bility p and closed with probability 1− p. For q > 1 configurations additionally
get q-dependent weights which give bias to configurations with many connected
components.

The coupling measure (7.3) describes an intimate relation between the gen-
eralized Potts measure and the generalized RCM. For example let C1, . . . , Ck be
a partition of {1, . . . , N} given by the connected components of a configuration
distributed according to the generalized mean-field RCM with parameters q, z
and p = 1− exp{−(β(z − 1)!)/(Nz−1)}. Then the empirical distribution under
the generalized Potts measure with parameters β, z and q is given by

LN =
1
N

k∑

i=1

αi|Ci|

where the αi are independent and equidistributed random variables on {δ1, . . . ,
δq} and we suppressed the additional term in the Hamiltonian (7.1). Now let us
consider the variance of the empirical distribution w.r.t. the generalized Potts
measure

VarπN
β,q,z

[LN (1)] = EπN
β,q,z

[(
LN (1)− 1

q

)2]

= ERCM

[( k∑

i=1

αi(1)
|Ci|
N

− 1
q

)2]

= ERCM

[ k∑

j,i=1

(
αi(1)− 1

q

)(
αj(1)− 1

q

) |Ci||Cj |
N2

]

=
q − 1
q2

ERCM

[ k∑

i=1

( |Ci|
N

)2]
.

We have

ERCM

[
max

i∈{1,...,q}

( |Ci|
N

)2]
≤ ERCM

[ k∑

i=1

( |Ci|
N

)2]
≤ ERCM

[
max

i∈{1,...,q}

( |Ci|
N

)]

and hence VarπN
β,q,z

[LN (1)] → 0 iff maxi∈{1,...,q}(|Ci|/N) → 0 in probability
w.r.t. the RCM. In other words, phase-transition of the generalized Potts model
is equivalent to percolation of the generalized RCM.

The case z = 2 has been studied in great detail in [2]. Under the right scaling
p = λ/N the critical value λc for percolation of the RCM equals the critical
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inverse temperature βc for phase-transition of the Potts model. We expect the
same to be true for the generalized RCM and the generalized Potts measure (on
a computational level even for q non-integer valued) with p = λ/Nz−1.

Notice that for the generalized RCM, the assumption of q to be integer-
valued can be abandoned. In [1] again for the case z = 2 an interesting exten-
sion of the Potts measure (on the lattice) the so-called divide and color model
(DCM) is considered. The DCM is a probability measure on {1, . . . , s}Zd

cor-
responding to the following two-step procedure: First pick a random edge con-
figuration ω according to the q-biased RCM. Secondly assign spin i ∈ {1, . . . , s}
independently to every connected component of ω with probability ai where∑s

i=1 ai = 1. For integers 1 < s < q and ai = ki/q with ki ∈ N and
∑s

i=1 ki = q
the fuzzy Potts model is contained as a special case. The main result is, that
with the exception of the Potts model (q = s, ai ≡ 1/q) the DCM is Gibbs only
for large p. Notice that our result about loss of Gibbsianness of the fuzzy Potts
model in the low temperature regime is again contained.
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