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Universitätsplatz 2, 38106 Braunschweig, Germany and Weierstrass Institute for Applied
Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany.
E-mail: Benedikt.Jahnel@wias-berlin.de

3 Ruhr-Universität Bochum, Fakultät für Mathematik, 44801 Bochum, Germany.
E-mail: Christof.Kuelske@ruhr-uni-bochum.de

Received January 7, 2022

Abstract. We consider the locally thinned Bernoulli field on Zd, which is the
lattice version of the Type-I Matérn hardcore process in Euclidean space. It
is given as the lattice field of occupation variables, obtained as image of an
i.i.d. Bernoulli lattice field with occupation probability p, under the map which
removes all particles with neighbors, while keeping the isolated particles.

We prove that the thinned measure has a Gibbsian representation and pro-
vide control on its quasilocal dependence, both in the regime of small p, but
also in the regime of large p, where the thinning transformation changes the
Bernoulli measure drastically. Our methods rely on Dobrushin uniqueness cri-
teria, disagreement percolation arguments [7], and cluster expansions.
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1. Introduction

Thinning transformations play a major role in the stochastic geometry of
systems of point particles, see [4, 5, 10, 13, 25, 26, 35, 40, 44]. In that context a
classical example is given when a point cloud is drawn according to a Poisson
point process with homogeneous intensity in Euclidean space, from which after-
wards all points are removed which have a neighbor at a distance less or equal
than 1, see [2, 3, 24,37–39,43,46].
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In this paper we consider a discrete version of such a transformation T of
removal of non-isolates, starting with the occupied sites drawn according to the
i.i.d. Bernoulli field on the integer lattice. The Bernoulli lattice field in itself and
fine properties of the percolation transition driven by the occupation density p
is the object of a large literature, and ongoing research [6, 11,22].

The Bernoulli lattice field also serves as a building block for more complex
dependent processes of statistical physics and probability, which are derived
from it. Let us mention bootstrap percolation (in which sites are added accord-
ing to local growth rules [1,16]), random walks on percolation clusters [34], and
diluted spin systems [51]. The latter two types of systems are main subjects in
the broader realm of disordered systems, see also [12,42].

Specifically the GriSing model (where an Ising model is put on the occupied
sites chosen as a realization of the Bernoulli lattice field) provides a somewhat
surprising warning example of the appearance of a non-quasilocal measure, as
the authors of [51] showed. This lack of quasilocality, which is also termed non-
Gibbsian behavior, means that the system has finite-volume conditional proba-
bilities with non-decaying dependence on variations of the boundary condition
arbitrarily far away. For precise definitions see Section 2. The non-quasilocality
in the GriSing measure was shown to appear even in the regime of subcritical
p, due to a mechanism related to Griffiths singularities [21] caused by arbitrar-
ily large occupied clusters which appear at positive density. This shows that
Gibbs properties and quasilocal dependence are subtle and may fail even in the
absence of percolation.

It was also discovered later that the GriSing measure is just example of
the more general class of measures which may become non-quasilocal, namely
the joint measures of disordered spins systems on the product space of disorder
and spin variables [31, 41, 49]. Such systems may even possess full measure
sets of discontinuity points for they specifications (that is their finite-volume
measures in dependence on boundary conditions), which is a very strong form
of singularity. This was shown in particular for the example of the joint measures
of the random-field Ising model in the phase transition region on the lattice Z3

in [33], building on [14].
For more studies of Gibbsian properties of transformed measures in proba-

bility and statistical physics under deterministic projection maps see [9, 23, 29,
45,48]. For related studies of Gibbs-non Gibbs transitions which are caused by
stochastic dynamics, see [8, 15,27,30,32,47,50].

Let us come back to our Bernoulli lattice thinning process which we con-
sider in the present paper. While the application of the thinning map T , as
it projects to isolates, does not change the Bernoulli measure very much for
small p, it changes the measure drastically for large p. So one might conjecture
that in particular the latter region is causing problems for a quasilocal Gibbsian
description.
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As main result of the analysis of our paper we are however able to show that
this is not the case, and in both regimes we have the regularity results of The-
orem 2.1 below, but for different reasons and with different proofs. Our proofs
proceed via showing absence of phase transitions and regularity of the relevant
internal systems (also known as first-layer measures under constraint), see the
definition (3.2). For this we employ the suitably adopted mathematical-physics
methods to prove uniqueness of infinite-volume measures which are Dobrushin
uniqueness criteria [20], disagreement percolation arguments [7], and cluster ex-
pansions [19]. It turns out that there are some obstacles we need to overcome
on the way to make this work, e.g., will it be necessary to go from a single-site
description to a domino representation of the conditional first-layer measures,
see Section 5.1. We also provide a quantitative analysis and comparison of their
effectiveness, in terms of numerical values for the regimes they can treat, see
Section 4.1.

Finally, let us note that our thinning map T , which is the projection to iso-
lates, is accompanied by a natural companion map, namely the projection to
non-isolates T ∗, see Section 2. Observe that the joint information of the images
of both maps provides a natural decomposition of the underlying i.i.d. Bernoulli
field. Since the latter Bernoulli field is trivially Gibbs as it even has no interac-
tion, this suggests as a first naive conjecture, that quasilocality of the projection
map to isolates implies quasilocality of the projection map to non-isolates, too.
We warn the reader that such a conclusion would be far too naive. On the
contrary, our investigations in [28] show that, indeed Gibbsianness of the pro-
jection to non-isolates fails for sufficiently large p. We highlight our findings in
the following Table 1.

Table 1: Bernoulli p-projections: decomposition into isolates and non-isolates

first-layer Gibbs property

image constraint range of image

measure model of p measure Reference

Tµp non-isolation small Gibbsianness Thm. 2.1

supported on model on large Gibbsianness Thm. 2.1

isolated sites unfixed mid Gibbs? Sec. 4.2

region

T ∗µp isolation small Gibbsianness [28, Thm. 2.2]

supported on model on large non-Gibbsianness [28, Thm. 2.1]

non-isolated unfixed mid sharp transition?

sites region
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The present paper is organized as follows. We present the setting and main
results in Section 2. In Section 3 we present the strategy of the proofs. In
Section 4 we elaborate on alternative strategies for parts of the proofs and
evaluate their potential benefits for certain bounds in the parameter space.
Here we also include a discussion on the intermediate regime that is not covered
by our main results. Finally, in Section 5 we present the proofs.

2. Setting and main results

We consider the configuration space Ω = {0, 1}Zd

equipped with the product
topology and the associated Borel sigma-algebra F for d ≥ 1. By µp : F →
[0, 1] we denote the Bernoulli i.i.d. product probability measure with density
parameter p ∈ [0, 1], i.e., µp(ωi = 1) = p = 1 − µp(ωi = 0) independently
for each i ∈ Zd. The event that ωi = 1 is called occupation at i ∈ Zd, the
complementary event is called vacancy at i ∈ Zd. We define the isolation event
at site i ∈ Zd by

Ii := {ω ∈ Ω: ωi = 1 and ωj = 0 for all j ∼ i},

where ∼ denotes the usual neighborhood relation on Zd.
We further consider the associated deterministic thinning transformation

T : Ω→ Ω given by

(T (ω))i := ω′i := 1{ω ∈ Ii}, i ∈ Zd.

In words, the transformation T removes all particles from the lattice, which
have at least one neighboring particle. Note that T is also a projection map
since T = T ◦ T . We further note that the complementary thinning T ∗(ω) :=
(1{ω 6∈ Ii})i∈Zd , which is also a projection, is considered in [28]. Now, any
ω ∈ Ω can be uniquely reconstructed from its joint images under the two maps
as
(
(1{ω ∈ Ii})i∈Zd , (1{ω 6∈ Ii})i∈Zd

)
. Next, let Ω′ := T (Ω) ⊂ Ω denote the

space of particle configurations that obey the isolation constraint, and denote
the image measure of µp under T by

µ′p := Tµp = µp ◦ T−1.

Note that the mapping T defines a deterministic renormalization transformation
in the sense of [48], since it is local and maps translation-invariant measures onto
translation-invariant measures.

In this manuscript, we give answers to the question if the measure µ′p is a
Gibbs measure in the sense of existence of a quasilocal specification γ′ for µ′p.
Recall that a specification γ = (γΛ)ΛbZd is a consistent and proper family of
probability kernels, i.e., for all Λ ⊂ ∆ b Zd, ωΛ ∈ ΩΛ := {0, 1}Λ and ω̂ ∈ Ω,
we have that

∫
Ω
γ∆(dω̃|ω̂)γΛ(ωΛ|ω̃) = γ∆(ωΛ|ω̂), and for all ωΛc ∈ ΩΛc we
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have γΛ(ωΛc |ω̂) = 1{ωΛc = ω̂Λc} where ω̂Λc denotes the restriction of ω̂ to the
volume Λc. A specification is called quasilocal, if for all volumes Λ b Zd and
local configurations ω̂Λ ∈ ΩΛ, the mapping ω 7→ γΛ(ω̂Λ|ω) is continuous with
respect to the product topology on Ω. We say that γ is a specification for some
random field µ on Ω, if µ satisfies the DLR equations, i.e., for all Λ b Zd and
ωΛ ∈ ΩΛ, we have that

∫
Ω
µ(dω̃)γΛ(ωΛ|ω̃) = µ(ωΛ). Here is our main result.

Theorem 2.1 (Gibbsianness for small and large p). For all d ≥ 1, there
exist 0 < p1 < p2 < 1 such that µ′p is a Gibbs measure for p ∈ [0, 1] \ [p1, p2].

The proofs for the different regimes require very different methods. We treat
the small-p case via cluster expansion and do not aim for explicit bounds on p1.
The cluster-expansion ansatz would also work for the large-p case, however, this
case, after some reformulations, can be treated via the less technical Dobrushin-
uniqueness criterion. Using this, in particular, we can provide the following
explicit lower bound on p2.

Proposition 2.2. Theorem 2.1 holds for p2 ≤ pd
c (d), where

pd
c (d) = sup{p ∈ (0, 1) : 2(d− 1)(d− 2)(1− p2) + 4(d− 1)p(1− p)

+ 2
1− p

1− p(1− p)
+ 6(d− 1)(1− p) < 1}.

In the following section we give an overview of the strategies for the proofs.
Note that, before we present the proofs in Section 5, we present some further
results on the intermediate regime for p and the optimality of the bound pd

c (d)
in Section 4.

3. Strategy of proof

The proofs depend on a two-layer approach. The second-layer model is given
by µ′p, the thinned Bernoulli model with the hardcore constraint banning non-
isolated sites as described above. Note that under the transformation T , an
occupied site in the thinned model determines its own value (occupied) and the
values of all neighboring sites (unoccupied) of possible preimage configurations
on the Bernoulli i.i.d. field. Meanwhile, an unoccupied site after the thinning
grants freedom in the choice of preimages in its neighborhood, as long as all
occupied sites have at least one occupied neighbor. Given a thinned configura-
tion, this observation allows to examine the i.i.d. field only on the unfixed part of
the lattice, where it is equipped with a hardcore non-isolation constraint. This
is what we denote the first-layer constraint model. The main theorem, Theo-
rem 2.1, is then proved in two steps. First, we construct regular versions of
the conditional probabilities which are well-defined due to Gibbs-uniqueness in
the first-layer constraint model. Here, the uniqueness can be guaranteed using
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Dobrushin-uniqueness bounds, disagreement-percolation thresholds and cluster-
expansion techniques. Using this, it remains a small step to prove quasilocality
of the constructed specification.

3.1. Transformations into first-layer constraint models

For any set of sites Λ ⊂ Zd we denote by Λc := Zd \Λ its complement and by
∂−Λ := {x ∈ Λ: there exists y ∈ Λc with y ∼ x} its inner boundary. Moreover,
we denote by Λo := Λ \ ∂−Λ the interior and by Λ̄ := ((Λc)o)c the extension
of Λ. Finally, ∂+Λ := Λ̄ \ Λ denotes the outer boundary and ∂Λ := ∂−Λ ∪ ∂+Λ
denotes the thick boundary of Λ.

For any finite volume Λ b Zd, we wish to construct a candidate for the
regular conditional probability γ′Λ(ω′Λ|ω′Λc) as a pointwise limit as ∆ ↑ Zd of
the conditional probabilities of the transformed local configuration ω′Λ given
the event of some transformed annulus ω′∆\Λ and some legitimate exterior non-
transformed configuration ω∆c beyond the annulus. Legitimacy here means
that ω′∆ω∆c ∈ T−1(ω′). Here and in the sequel we will often make identifica-
tions of the form ω = ωΛωΛc . Then, we define for Λ ⊂ ∆ and such boundary
configurations,

γ′ω,Λ(ω′Λ|ω′∆\Λ) :=

∑
ω∆

µp(ω∆)1{T∆(ω∆ω∆c) = ω′∆}∑
ω∆\Λo

µp(ω∆\Λo)1{T∆\Λ(ω∆\Λoω∆c) = ω′∆\Λ}

=

∑
ω∆\Λo

µp(ω∆\Λo)1{T∆\Λ(ω∆\Λoω∆c) = ω′∆\Λ}F [ω′Λ](ω∂Λ)∑
ω∆\Λo

µp(ω∆\Λo)1{T∆\Λ(ω∆\Λoω∆c) = ω′∆\Λ}
,

(3.1)

where µp(ωΛ) =
∏
i∈Λ p

ωi(1− p)1−ωi is the Bernoulli measure in the volume Λ,
we wrote TΛ(ω) instead of (T (ω))Λ, and

F [ω′Λ](ω∂Λ) :=
∑
ωΛo

µp(ωΛo)1{TΛ(ωΛoω∂Λ) = ω′Λ}

is a local function. Let us recall the following general result about the specifi-
cation property, whose proof is based on martingale-convergence arguments.

Lemma 3.1 ([28, Lemma 3.3]). Assume that, given Λ b Zd and ω′ ∈ Ω′, we
have that the limit γ′(ω′Λ|ω′Λc) := lim∆↑Zd γ′ω,∆(ω′Λ|ω′∆\Λ) exists and is indepen-

dent of ω ∈ T−1(ω′). Then, γ′ is a specification for µ′p.

Hence, we need to guarantee the existence of a limiting object γ′Λ(ω′Λ|ω′Λc)
that is independent of the external boundary condition ω. For this, our strategy
is to invoke Gibbs-uniqueness criteria. In order to do this, first note that we
can uniquely identify ω′ with the subset of its occupied sites in Zd. With a slide
abuse of notation, we can then see that the extension ω̄′ := ω′ of ω′ is a fixed
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region for the first-layer constraint model as defined below, in the sense that,
under the transformation, there is no choice for the Bernoulli field in how to
realize ω′.

In view of this, we consider a general choice S ⊂ Zd for the unfixed region
(the complement of ω̄′) and introduce the following specification associated to
the first-layer constraint model on {0, 1}S ,

γS∆(ω∆|ω∆c) :=
µp(ω∆∩S)1{ω∆∩Sω∆c∩S is T -feasible on ∆ ∩ S}∑

ω̃∆∩S
µp(ω̃∆∩S)1{ω̃∆∩Sω∆c∩S is T -feasible on ∆ ∩ S}

,

∆ ⊂ Zd. (3.2)

Here, a configuration ω ∈ Ω is called T -feasible on a set ∆ ∩ S if all occupied
sites of ω in ∆∩S have at least one occupied neighbor, which may lie in ∆̄∩S.
In particular, with this definition,

γ′ω,Λ(ω′Λ|ω′∆\Λ) = γ
(ω̄′)c

∆ (F [ω′Λ]|ω∆c), ∆ b Zd,

where we used that in the fixed area we see cancellations. Then, we have the
following propositions that we prove in Section 5.

Proposition 3.2 (Low-density Gibbsianness). There exist 0 < p1 < 1 such

that for all 0 ≤ p ≤ p1 and ω′ ∈ Ω′ the limit lim∆↑Zd γ
(ω̄′)c

∆ (F [ω′Λ]|ω∆c) =:
γ′(ω′Λ|ω′Λc) exists independently of ω ∈ T−1(ω′). Moreover, γ′ is a quasilocal
specification for µ′p.

The proof of Proposition 3.2 is based on cluster-expansion techniques as the
specification kernel of the first-layer constraint model fails to satisfy Dobrushin’s
condition of weak dependence, due to the non-isolation constraint, and will be
presented in Section 5.1.

Proposition 3.3 (High-density Gibbsianness). There exist 0 < p2 < 1

such that for all p2 ≤ p ≤ 1 and ω′ ∈ Ω′ the limit lim∆↑Zd γ
(ω̄′)c

∆ (F [ω′Λ]|ω∆c) =:
γ′(ω′Λ|ω′Λc) exists independently of ω ∈ T−1(ω′). Moreover, γ′ is a quasilocal
specification for µ′p.

The proof of Proposition 3.3 is based on Dobrushin-uniqueness techniques
and will be presented in Section 5.2. Before we exhibit the proofs, in the fol-
lowing Section 4, we present some supplementary results.

4. Alternative bounds and intermediate regimes

In this section we present further results on the bounds for p2 as well as on
the behavior of the system for intermediate values of p.
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Figure 1: Comparison of d 7→ pd
c (d) (green) and d 7→ pp

c (d) (red).

4.1. Disagreement-percolation bounds

The lower bound pd
c (d) of Proposition 2.2 for the high-density Gibbsian

regime, is a consequence of the Dobrushin-uniquness criterion for the first-layer
constraint model (3.2). It guarantees unique existence of the infinite-volume
Gibbs measure for (3.2), uniformly over the unfixed area S. However, there
are alternative approaches in order to establish the unique existence of this
infinite-volume first-layer constraint model, e.g., disagreement-percolation cri-
teria. Let us next present a corresponding bound and discuss the relation to
the Dobrushin-uniqueness bound.

Proposition 4.1. Let d ≥ 2, then, for p > pp
c (d), with

pp
c (d) =

√
2d2 + 2d− 4

2d2 + 2d− 3
,

the first-layer constraint model γS , as defined in (3.2), admits a unique infinite-
volume Gibbs measure, for all unfixed areas S.

Let us note that pp
c (2) =

√
8/3 ≈ 0.9428 and pp

c (3) =
√

20/
√

21 ≈ 0.9759.
On the other hand, pd

c (2) ≈ 0.9155 and pd
c (3) ≈ 0.9663 and this trend, that the

Dobrushin criterion provides better bounds with a decreasing difference, as the
dimension grows, can also be observed by further simulations, see Figure 1.
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However, let us note that the bound used to derive pp
c , is also certainly not

optimal since it is based on a general criterion (5.22) for percolation via maximal
graph degrees, see Section 5.3 for details. Indeed, incorporating Monte–Carlo
simulation results from [36, Table 1] for critical values for percolation in the in-
teraction graph of the dimer representation of our model, lead for example to the
smaller value pp

c (2) =
√

8/3 ≈ 0.8438. We present the proof of Proposition 4.1
in Section 5.3.

4.2. Some computations for the intermediate regime

An open question is whether Gibbsianness holds in the intermediate regime,
that is, e.g., for p ≈ 1/2. The standard way of proving non-Gibbsianness is
to determine points of essential discontinuity, i.e., certain configurations ω′,
such that alterations of spins arbitrarily far away from Λ change the value of
γ′Λ(ω′Λ|ω′Λc) by an amount greater than some fixed ε > 0. We are hence looking
for thinned configurations, such that the Bernoulli i.i.d. measure with non-
isolation constraint on the unfixed part (ω̄′)c is most likely to exhibit a phase
transition. One special candidate is given by the checkerboard (or alternating)

configuration ω′alt, where each site (ω′alt)i is occupied if and only if
∑d
k=1 ik is

odd. Note that we have ω′alt ∈ Ω′. However, since (ω̄′alt)
c = ∅, there cannot be

transport of information through the annulus ∆ \ Λ in this case since there are
no internal spins allowing for a phase transition to occur. We note that such
transport of information gets more likely, the larger the unfixed area becomes.
Hence, it seems reasonable to study the completely unoccupied configuration
ω′zero ∈ Ω′ with (ω̄′zero)c = Zd as a potential point of essential discontinuity.

Figure 2: Computation of the conditional probability in (3.1) for d = 2 with
Λ = {0}, ∆ = B3, B4, B5 (cubes around the origin with sidelength i = 3, 4, 5),
occupied origin, and unoccupied surrounding on ∆\Λ. The red lines correspond
to the unoccupied boundary condition ω on ∆c, the blue lines to the occupied
boundary, while the green lines represent the difference of the two. It can be
observed that the difference of the conditional probabilities of different boundary
conditions appears to decrease uniformly in p with increasing ∆.
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For this purpose, we have written a script in order to compute the exact
values of the conditional probabilities in (3.1) in dimension d = 2 for Λ = {0}
(origin), ∆ = Bk, k = 3, 4, 5 (cubes around the origin of side length k), a fully
unoccupied annulus ω′∆\Λ = (ω′zero)∆\Λ and either a fully occupied, or fully
unoccupied boundary condition off the annulus. We present the resulting exact
calculations in Figure 2 and note that they seem to suggest that, at least in
two dimensions, there is no phase transition even in the intermediate density
regime. The code for the computations can be found at [17]. Let us finally note
that, in order to prove or disprove that the Gibbs property persists for all p,
different methods have to be developed and more research is necessary.

5. Proofs

We will often suppress the dependence on p in the remainder of the paper,
whenever there is no risk for ambiguity.

5.1. Proof of Proposition 3.2

Let S ⊂ Zd be an unfixed area that will be fixed for the most part of
the section. We consider subsets Λ ⊂ ∆ b S. In order to ease notation in
the remainder of this section, any operation such as Λc, or ∂−Λ should be
understood with respect to S. For example Λc = {x ∈ S : x /∈ Λ} or ∂−Λ =
{x ∈ Λ: there exists y ∈ Λc with y ∼ x}.

5.1.1. Cluster expansion

The proof proceeds via cluster expansion on the annulus ∆\ Λ̄. Assuming ∆
to be sufficiently large, we can split the outer boundary of ∆ \ Λ̄ into an inner
and an outer part, i.e., for any ω ∈ Ω, ω∂+(∆\Λ̄) = ω∂+Λω∂+∆. We like to stress

that boundary sites are never in Zd \ S. The idea is to derive an expansion for
the partition function

Z∆\Λ̄(ω∂Λω∂+∆) :=
∑
ω∆\Λ̄

µ(ω∆\Λ̄)1{ω∂Λω∆\Λ̄ω∂+∆ is T -feasible on ∆ \ Λ},

(5.1)
where we want to highlight the fact that the inner and the outer part of the
boundary are treated differently. The reason for this is that the quantities in
(3.1) and (3.2), whose limit we would like to investigate, require feasibility only
on ∆. By taking advantage of cancellations, we then show that for any two
ω∂Λ, ω̃∂Λ

lim
∆↑Zd

Z∆\Λ̄(ω∂Λω∂+∆)

Z∆\Λ̄(ω̃∂Λω∂+∆)
(5.2)

exists and is independent of ω∂+∆.
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Setting up the cluster expansion: To start, we define the set Ji(ω∂Λω∂+∆)
of configurations in ∆ \ Λ̄, such that the site i ∈ ∆ \ Λ̄ has an isolated occupied
neighbor in ∆ \ Λ, i.e.,

Ji(ω∂Λω∂+∆) := {ω∆\Λ̄ : there exists j ∼ i, j ∈ ∆ \ Λ,

such that ωj = 1 and ωk = 0 for all k ∼ j}.

In particular, ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆) implies ωi = 0. The partition function (5.1)
now becomes ∑

ω∆\Λ̄

µ(ω∆\Λ̄)
∏

i∈∆\Λ̄

(1− 1{ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆)}),

where the product replaces the constraint that each site is not allowed to have
an isolated neighbor. Then, we can rewrite∏
i∈∆\Λ̄

(1−1{ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆)}) =
∑

W⊂∆\Λ̄

∏
i∈W

(−1{ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆)}).

Let us define a notion of distance on S. We define dS(i, j) to be the length of the
shortest path in S, which starts in i and ends in j. We then denote by BSn (i) the
associated ball of radius n centered at i ∈ S. Using this, we can decompose each
subset W into its maximally connected components W1, . . . ,Wn with respect
to the graph on ∆ \ Λ̄ in which i, j ∈W are connected if and only if i ∈ BS4 (j).
For this, we define the dependence set of Wi to be W i :=

⋃
j∈Wi

BS2 (j). We call

Wi,Wj compatible if and only if W i ∩W j = ∅. The sets W1, . . . ,Wn play the
role of polymers with a hardcore interaction given by compatibility.

Due to the construction, the random variables
∏
i∈Wk

(−1Ji(ω∂Λω∂+∆)), k =

1, . . . , n are independent with respect to µ, and hence

Z∆\Λ̄(ω∂Λω∂+∆) =
∑

W1,...,Wn
pw. comp.

n∏
k=1

∑
ω∆\Λ̄

µ(ω∆\Λ̄)
∏
i∈Wk

(−1{ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆)})

=:
∑

W1,...,Wn
pw. comp.

n∏
k=1

zpWk
(ω∂Λω∂+∆),

where the first sum runs over all possible families of pairwise-compatible subsets
of ∆ \ Λ̄.

Next, we define the set of polymers by

Γ∆\Λ̄(ω∂Λω∂+∆) := {Wk ⊂ ∆ \ Λ̄ : there exists W ⊂ ∆ \ Λ̄ and ω∆\Λ̄

such that Wk is a maximallyconnected component of

W and
∏
i∈W

1{ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆)} = 1},
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where the connectedness is in the above sense. We need to treat polymers whose
dependence sets intersect ∂Λ separately and thus define

Q∆\Λ̄(ω∂Λω∂+∆) := {Q ∈ Γ∆\Λ̄(ω∂Λω∂+∆) : Q ∩ ∂Λ 6= ∅},

the set of such intersecting polymers. The reason for doing this is that these
polymers are not exponentially suppressed in their full volume, which is why
their corresponding cluster expansion does not necessarily converge, see the es-
timates around the display (5.9) below. Now, in order to maintain compatibility
of all polymers, we define for a given collection of pairwise-compatible polymers
Q1, . . . , Qn ∈ Q∆\Λ̄(ω∂Λω∂+∆) the set

WQ1,...,Qn,∆\Λ̄(ω∂+∆) := {W ∈ W∆\Λ̄(ω∂+∆) : W ∩Qi = ∅ for all i = 1, . . . , n},

of polymers compatible with that collection, where

W∆\Λ̄(ω∂+∆) := Γ∆\Λ̄(ω∂Λω∂+∆) \ Q∆\Λ̄(ω∂Λω∂+∆).

Then, we can write

Z∆\Λ̄(ω∂Λω∂+∆) =
∑

Q1,...,Qn∈Q∆\Λ̄(ω∂Λω∂+∆)
pw. comp.

n∏
k=1

zpQk
(ω∂Λω∂+∆)

×
∑

W1,...,Wm∈WQ1,...,Qn,∆\Λ̄(ω∂+∆)
pw. comp.

m∏
j=1

zpWj
(ω∂+∆)

and derive a convergent cluster representation for the polymers inWQ1,...,Qn,∆\Λ̄
(ω∂+∆) for sufficiently small p.

Convergence of the cluster expansion: Let us suppress the dependence on
Q1, . . . , Qn for notational convenience in this part. In order to derive the cluster
representation, let us define for any cluster C = {W1, . . . ,Wn}ms, i.e., a multi-
set of pairwise-compatible polymers in W∆\Λ̄(ω∂+∆), and boundary condition
ω∂+∆, the cluster potential

Φp
∆\Λ̄,ω∂+∆

(C) :=

( ∏
W∈W∆\Λ̄(ω∂+∆)

1

nC(W )!

)( ∑
G⊂Gn

connected

∏
{i,j}∈G

ζ(Wi,Wj)

)

×
( n∏
k=1

zpWk
(ω∂+∆)

)
, (5.3)

where, nC : Γ→ N0 denotes a map that assigns to each polymer the number of
occurrences in the cluster C. The function ζ(Wi,Wj) equals 0 if Wi and Wj are
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Figure 3: Given thinned configurations ω′Λ, ω
′
∆\Λ and unthinned outer boundary

configuration ω∆c , the fixed area ω̄′∆\Λ is given by the crosses hatched in blue.

There are three polymers (green). W3 at the top is due to isolations on the set
∂+Λ.

compatible and −1 otherwise, while the sum is over all connected subgraphs of
the complete graph Gn = (Vn, En) on n vertices. Here, the notion subgraph
refers to a graph G = (V, E), for which V = Vn and E ⊂ En.

We want to employ the criterion [19, Theorem 5.4] in order to establish con-
vergence of the cluster potentials. For this, the main ingredient is the following
estimate for the polymer weights Wi ∈ W∆\Λ̄(ω∂+∆),

|zpWk
(ω∂+∆)| ≤ p|LWk

| ≤ p|Wk|/(2d),

where

LWk
:= {j ∈W k : for all i ∼ j either i ∈Wk or i ∈ (∆ \ Λ̄)c with ωi = 0}

denotes the set of sites completely surrounded by Wi or by zeros on the bound-
ary. As an example, consider the four sites enclosed by the polymer W1 in
Figure 3. We verify the condition of [19, Theorem 5.4.] for the volume function
a(W ) = |W |. Indeed, for any polymer W ∗ ∈ W∆\Λ̄(ω∂+∆), we find that∑

W∈W∆\Λ̄(ω∂+∆):

W∩W∗ 6=∅

zpW (ω∂+∆)e|W |

≤
∑

W∈W∆\Λ̄(ω∂+∆):

W∩W∗ 6=∅

p|W |/(2d)e|W |
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≤ |W ∗|
∑
k≥1

ek(1+log(p)/2d)|{W : 0 ∈W, |W | = k}|

≤ ((2d)2 + 1)|W ∗|
∑
k≥1

ek(1+log(p)/2d))(9d)(k+1)9d

= ((2d)2 + 1)(9d)9d

|W ∗|
∑
k≥1

(e1+log(p)/2d(9d)9d

)k ≤ |W ∗| (5.4)

for all p ≤ q1, with 0 < q1 chosen sufficiently small. In the third inequality,
we have bounded the number of polymers W of size k that contain o in its
dependence set by the number of connected graphs H = (W ∪ {0}, L) on k + 1

nodes, where {i, j} ∈ L if and only if j ∈ B4(i), where Bn = BZd

n like above.
We note that the possible number of incident edges for each node is bounded
by |B4(o)| ≤ 9d. Since each edge is shared by two nodes, we can bound the
number of edges |L| by (k + 1)9d/2. Moreover, since for each connected graph
and each starting node, there exists a path visiting each edge exactly twice, we
can bound the number of graphs by (9d)2|L|.

At this point we also see that there is monotonicity in the sense that when
removing sites from the grid, i.e., if we consider a subset S̃ ⊂ S, the number of
polymers of a given size that are also incompatible with W ∗ decreases, which is
why convergence is ensured for p ≤ q1 uniformly in S.

Finally, an application of [19, Theorem 5.4.] ensures that the representation

Z∆\Λ̄(ω∂Λω∂+∆) =
∑

Q1,...,Qn∈Q(ω∂Λω∂+∆)
pw. comp.

n∏
k=1

zpQk
(ω∂Λω∂+∆)

× exp
( ∑
C∈P (WQ1,...,Qn,∆\Λ̄(ω∂+∆))

Φp
∆\Λ̄,ω∂+∆

(C)
) (5.5)

is well defined, where P (W) denotes the set of all clusters in W.

Suppression of large clusters: We now work towards our goal (5.2), the
convergence of the fraction of partition functions for different interior boundary
conditions. For this purpose, we wish to bound the contribution of large clusters
in the expansion (5.5). Let C =

⋃n
i=1Wi denote the support of the cluster C =

{W1, . . . ,Wn}ms, fix x ∈ ∆ \ Λ̄ and write ϕ(C) for the first two combinatorial
factors in (5.3). We then get∑

C∈P (W∆\Λ̄(ω∂+∆)) : x∈C

|Φp
∆\Λ̄,ω∂+∆

(C)|p−|C|/(4d)

≤
∑

C∈P (W∆\Λ̄(ω∂+∆)) : x∈C

|ϕ(C)|
n∏
i=1

p|Wi|/(2d)
n∏
i=1

p−|Wi|/(4d)
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=
∑

C∈P (W∆\Λ̄(ω∂+∆)) : x∈C

|ϕ(C)|
n∏
i=1

p
|Wi|
2d (1− 1

2 )

=
∑

C∈P (W∆\Λ̄(ω∂+∆)) : x∈C

|ϕ(C)|
n∏
i=1

√
p
|Wi|
2d

=
∑

C∈P (W∆\Λ̄(ω∂+∆)) : x∈C

|Φ̃
√
p

∆\Λ̄,ω∂+∆
(C)| ≤ 1, (5.6)

where Φ̃
√
p

∆\Λ̄,ω∂+∆
(C) denotes the potential of a cluster with weights given by

z̃
√
p

Wk
(ω∂+∆) =

√
p
|Wk|/(2d)

.

The first inequality in (5.6) is due to

|C| ≤
n∑
i=1

|Wi|.

Moreover, assuming that
√
p ≤ q1, the convergence criterion [19, Theorem

5.4.] is satisfied for these adjusted weights (compare the argument in (5.4)).
As a consequence, by [19, Statement (5.29)], the contribution of all clusters
containing a fixed site can be bounded by one, which gives the last inequality
in (5.6). This gives that for any R > 0 and p ≤ q2

1 ,∑
C∈P (W∆\Λ̄(ω∂+∆)) :

x∈C, |C|≥R

|Φp
∆\Λ̄,ω∂+∆

(C)|p−R/(4d)

≤
∑

C∈P (W∆\Λ̄(ω∂+∆)) :

x∈C, |C|≥R

|Φp
∆\Λ̄,ω∂+∆

(C)|p−|C|/(4d) ≤ 1

or equivalently ∑
C∈P (W∆\Λ̄(ω∂+∆)) : x∈C, |C|≥R

|Φp
∆\Λ̄,ω∂+∆

(C)| ≤ pR/(4d). (5.7)

In words, we have achieved exponential suppression of the cluster potentials for
large clusters that do not interact with the inner boundary.

Convergence of the fraction of partition functions: After having bounded
the contribution of large clusters, we need to bound the non-suppressed poly-
mers’ weights in (5.5). For this, note that for Qk ∈ Q∆\Λ̄(ω∂Λω∂+∆), we do
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not necessarily have |zpQk
(ω∂Λω∂+∆)| ≤ p|Qk|/(2d) like for the Wk, since the oc-

cupied sites leading to isolations may lie on ∂+Λ, i.e., are part of the boundary
condition. However, we have

|zpQk
(ω∂Λω∂+∆)| =

∑
ω∆\Λ̄

µ(ω∆\Λ̄)
∏
i∈Qk

1{ω∆\Λ̄ ∈ Ji(ω∂Λω∂+∆)}

≤ p|LQk
∩∆\Λ̄| ≤ p|LQk

|p−|∂+Λ∩LQk
|,

(5.8)

and since the Qk are pairwise disjoint and
⋃n
k=1(∂+Λ∩LQk

) ⊂ ∂+Λ and |LQk
| ≥

|Qk|/(2d), we get

n∏
k=1

|zpQk
(ω∂Λω∂+∆)| ≤ p

∑n
k=1 |Qk|/(2d)p−|∂+Λ|. (5.9)

Next, let us denote by

CQ := {C ∈ P
(
W∆\Λ̄(ω∂+∆)

)
: C ∩

n⋃
k=1

Qk 6= ∅}

the set of clusters interacting with the (non-suppressed) polymers Q = {Q1, . . . ,
Qn}. Then,

P
(
W∆\Λ̄(ω∂+∆)

)
\ CQ = P

(
WQ1,...,Qn,∆\Λ̄(ω∂+∆)

)
,

and we can now exploit cancellations by writing the fraction (5.2) as

∑
Q1,...,Qn∈Q∆\Λ̄(ω∂Λω∂+∆)

n∏
k=1

zpQk
(ω∂Λω∂+∆) exp

( ∑
C∈P (WQ1,...,Qn,∆\Λ̄(ω∂+∆))

Φp(C)
)

∑
Q1,...,Qn∈Q∆\Λ̄(ω̃∂Λω∂+∆)

n∏
k=1

zpQk
(ω̃∂Λω∂+∆) exp

( ∑
C∈P (WQ1,...,Qn,∆\Λ̄(ω∂+∆))

Φp(C)
)

=

∑
Q1,...,Qn

∈Q∆\Λ̄(ω∂Λω∂+∆)

n∏
k=1

zpQk
(ω∂Λω∂+∆) exp

( ∑
C∈P (W∆\Λ̄(ω∂+∆))

Φp(C)−
∑

C∈CQ
Φp(C)

)
∑

Q1,...,Qn

∈Q∆\Λ̄(ω̃∂Λω∂+∆)

n∏
k=1

zpQk
(ω̃∂Λω∂+∆) exp

( ∑
C∈P (W∆\Λ̄(ω∂+∆))

Φp(C)−
∑

C∈CQ
Φp(C)

)

=

∑
Q1,...,Qn∈Q∆\Λ̄(ω∂Λω∂+∆)

n∏
k=1

zpQk
(ω∂Λω∂+∆) exp

(
−

∑
C∈CQ

Φp(C)
)

∑
Q1,...,Qn∈Q∆\Λ̄(ω̃∂Λω∂+∆)

n∏
k=1

zpQk
(ω̃∂Λω∂+∆) exp

(
−

∑
C∈CQ

Φp(C)
) . (5.10)

For the sake of readability, we have omitted the indices of the cluster poten-
tials. The next step is to verify convergence of the numerator and denominator
respectively. For this, we can bound,∑
C∈CQ

|Φp
∆\Λ̄,ω∂+∆

(C)| ≤
∣∣ n⋃
k=1

Qk
∣∣ ≤ ((2d)2 + 1)

n∑
k=1

|Qk| =: ((2d)2 + 1)m, (5.11)
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where the absolute contribution of all clusters containing a fixed site can be
bounded by one (cf. the argument in (5.6)), and hence, the absolute contribution
of clusters in CQ can be bounded by |

⋃n
k=1Qk|, which is the first inequality

in (5.11). Plugging in (5.9) and (5.11), we can bound the numerator of the last
line in (5.10) by

p−|∂+Λ|
∞∑
m=0

∑
Q1,...,Qn∈Q∆\Λ̄(ω̃∂Λω∂+∆) : |

⋃
Qk|=m

pm/(2d)em((2d)2+1). (5.12)

Given m ∈ N0, we need to count the number of sets of polymers {Q1, . . . , Qn}
with

∑
k |Qk| = m and such that for each k, Qk ∩ ∂+Λ 6= ∅. There are(

m+ (|∂+Λ| − 1)

m

)
≤ (m+ (|∂+Λ| − 1))

(|∂+Λ|−1)

ways to distribute polymers of different sizes to disjoint starting nodes on
∂+Λ such that the total size is given by m. For each such distribution with

n1, . . . , n|∂+Λ| ∈ N0,
∑|∂+Λ|
l=1 nl = m, there are at most (9d)m different polymers

(compare the argument following (5.4)). Therefore, we can bound (5.12) from
above by

p−|∂+Λ|
∞∑
m=0

(
m+ (|∂+Λ| − 1)

)(|∂+Λ|−1)
(
p1/(2d)e((2d)2+1)9d

)m
, (5.13)

which is finite for sufficiently small p ≤ q′1 independently of ∆ and S.

Independence of boundary condition ω∂+∆ as ∆ ↑ Zd: We now analyze
the fraction in (5.10) with respect to dependence on the outer boundary ω∂+∆.
For this, we further distinguish,

CQ,∩∂+∆ := {C ∈ CQ : C ∩ ∂+∆ 6= ∅},

the subset of CQ of polymers that also intersect the outer boundary and accord-
ingly let

CQ, 6∩∂+∆ := {C ∈ CQ : C ∩ ∂+∆ = ∅}
denote the clusters that do not reach the outer boundary. With this notation,
we have

CQ,∩∂+∆ ∪̇ CQ,6∩∂+∆ = CQ, (5.14)

and, by the cluster decomposition (5.14), the numerator in the last line of (5.10)
takes the form∑

Q1,...,Qn
pw. comp.

n∏
k=1

zpQk
(ω∂Λω∂+∆) exp

(
−

∑
C∈CQ,∩∂+∆

Φp
∆\Λ̄,ω∂+∆

(C)
)
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× exp
(
−

∑
C∈CQ, 6∩∂+∆

Φp
∆\Λ̄(C)

)
. (5.15)

Now, since clusters C ∈ CQ,∩∂+∆ must suffice

|C| ≥ dist
(⋃

k

Qk, ∂+∆
)
/4,

the argument of the first exponential in (5.15) can be bounded from above by∑
C∈CQ,∩∂+∆

|Φp
∆\Λ̄,ω∂+∆

(C)| ≤ pdist(
⋃

k Q̄k,∂+∆)/(16d),
(5.16)

where we also used (5.7). This in particular implies that the first exponential
term in (5.15) converges to one as ∆ ↑ Zd. Moreover, using (5.9), also the con-
tribution of

∏n
k=1 z

p
Qk

(ω∂Λω∂+∆) tends to zero, whenever it depends on ω∂+∆.
Hence, the function

H∆,ω∂+∆
(Q1, . . . , Qn)

:= 1{Q1, . . . , Qn ⊂ ∆ \ Λ̄}
n∏
k=1

zpQk
(ω∂Λω∂+∆)

× exp
(
−

∑
C∈CQ,∩∂+∆

Φp
∆\Λ̄,ω∂+∆

(C)
)

× exp
(
−

∑
C∈CQ, 6∩∂+∆

Φp
∆\Λ̄(C)

)
,

defined for any pairwise compatible set {Q1, . . . , Qn} in S, converges, as ∆ ↑ Zd,
to a function

H(Q1, . . . , Qn) :=

n∏
k=1

zpQk
(ω∂Λ) exp

(
−
∑
C∈CQ

Φp
Λ̄c(C)

)
,

independent of ω∂+∆. But, since the bounds derived in (5.13) are uniform in ∆,
we can employ the dominated-convergence theorem to conclude that∑

Q1,...,Qn
pw. comp.

H∆,ω∂+∆
(Q1, . . . , Qn)→

∑
Q1,...,Qn
pw. comp.

H(Q1, . . . , Qn) as ∆ ↑ Zd.

The same arguments also hold for the denominator in the last line of (5.10), so
we have finally arrived at our goal, the existence of the limit (5.2) independent
of the outer boundary condition.
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5.1.2. Existence of second-layer conditional expectations

Finally, we wish to show that the limit as ∆ ↑ Zd of γS∆(F [ω′Λ]|ω∂+∆) exists
and is independent of the boundary condition ω∂+∆. For this, first note that,
since the function F [ω′Λ](ω) = F [ω′Λ](ω∂Λ) is local,

γS∆(F [ω′Λ]|ω∂+∆) =
∑
ω∂Λ

F [ω′Λ](ω∂Λ)γS∆(ω∂Λ|ω∂+∆),

and it suffices to consider γS∆(ω∂Λ|ω∂+∆). But then, by the definition, we have

γS∆(ω∂Λ|ω∂+∆) =
Z∆\Λ̄(ω∂Λω∂+∆)∑

ω̃∂Λ
µ(ω̃∂Λ)Z∆\Λ̄(ω̃∂Λω∂+∆)

,

which does not depend on ω∂+∆ as ∆ ↑ Zd, by the previous step for p ≤ p1 :=
q2
1 ∧ q′1. This yields the result.

In particular, by the above, for all sufficiently small p, all Λ b Zd and ω′,

γ′(ω′Λ|ω′Λc) = lim
∆↑Zd

γ
(ω̄′)c

∆ (F [ω′Λ]|ω∆c)

exists independently of ω ∈ T−1(ω′).

5.1.3. Quasilocality of the specification

For this, note that

sup
ω′, η′ : ω′∆= η′∆

|γ′(ω′Λ|ω′Λc)− γ′(ω′Λ|η′Λc)|

≤ 2 sup
ω′, ω∈T−1(ω′)

|γ′(ω′Λ|ω′Λc)− γ′ω,∆(ω′Λ|ω′∆\Λ)|

+ sup
ω′, η′∈Ω′ : ω′∆= η′∆

ω∈T−1(ω′), η∈T−1(η′)

|γ(ω̄′)c

∆ (F [ω′Λ]|ω∂+∆)− γ(η̄′)c

∆ (F [ω′Λ]|η∂+∆)|,

where the first term on the right-hand side tends to zero as ∆ tends to Zd
for sufficiently small p, by the cluster expansion arguments as presented above,
which also gives the uniformity associated to ω′. For the second term on the
right-hand side, it suffices to consider

|γ(ω̄′)c

∆ (ω∂Λ|ω∂+∆)− γ(η̄′)c

∆ (ω∂Λ|η∂+∆)|,

which also becomes uniformly small in the boundary condition and the second-
layer configurations, as ∆ ↑ Zd using the cluster-expansion arguments. This
finishes the proof of Proposition 3.2.
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5.2. Proof of Propositions 3.3 and 2.2

The distribution of a single site i ∈ Zd depends only on finitely many spins,
namely on all sites in the l1-ball of i of radius 2 which we call the dependence
set of site i. This dependence set being finite, we are dealing with a Markov
field and we may apply Dobrushin-uniqueness techniques. However, as we see
in the following example, the first-layer constraint model as formulated above
does not directly permit applications of Dobrushin uniqueness or disagreement-
percolation arguments. Indeed, writing ηzero for the configuration without oc-
cupied sites, we have

γ0(0|ηzero) = 1 and γ0(1|ηzero) = 0,

where we put γ0 := γZ
d

{0} for the single-site specification kernel of the first-layer

constraint model. On the other hand, denoting by ηk the configuration that is
fully empty except for a single occupied neighbor at ek, the unit vector in the
direction k ∈ {1, . . . , d}, we have

γ0(0|ηk) = 0 and γ0(1|ηk) = 1.

In particular,

ρ = sup
i∈Zd

max
η,η̃∈Ω

‖γi(·|η)− γi(·|η̃)‖TV

=
1

2
max
η,η̃∈Ω

(|γ0(0|η)− γ0(0|η̃)|+ |γ0(1|η)− γ0(1|η̃)|) = 1,

independently of p, and hence the Dobrushin-uniqueness criterion or disagree-
ment-percolation bounds cannot be satisfied.

However, we can rewrite in terms of a modified model, where this problem
does not occur. Here, the idea is to form 2-by-1 pairs of sites that we think of
as horizontal dominos, whose states we encode in terms of pair-spin variables
ξi with possible values 00, 01, 10, 11. We use the shorter single-digit notation
for these pairs of symbols as 0, 1, 2, 3 in the sequel, simply reading them as two
digits in a binary expansion. The new index set for the dominos is Zd−1 × 2Z,
which is isomorphic to Zd. Let the axis alongside the dominos be denoted the
domino axis. The first-layer constraint model is then equivalently described as

a model on {0, 1, 2, 3}Zd

in terms of a translation-invariant single-site hardcore
finite-range specification kernel ϕi(ξi|ξic), where we suppress the dependence on
the unfixed area.

We first examine the dependence set V0(d) of ϕ0, which now has a different
form than in the introductory example. V0(d) contains the 2d adjacent dominos
in its radius-1 l1-boundary. Moreover, for each such domino, it contains the
2(d−1) adjacent dominos in all directions but the domino axis minus the center
domino. Seeing the domino axis as the x-axis, we have a left and a right part
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Figure 4: The dependence sets V0(2) (plus the center domino) and V0(3) of the
domino at the origin.

which are symmetric and each contain 2(d− 1) + 1 dominos and a middle part
containing 4(d− 1) + 2(d− 1)(d− 2) dominos, see Figure 4. Altogether, we get

|V0(d)| = 2(2(d− 1) + 1) + 4(d− 1) + 2(d− 1)(d− 2) = 2d2 + 2d− 2,

i.e., V0(2) contains 10 sites of dominos and V0(3) contains 22 sites.
An important observation is that the single-site kernels ϕi(·|ξ) are completely

specified by asking which values from {0, 1, 2, 3} are assigned to non-zero prob-
abilities. For the equivalence class of boundary conditions, for which the values
0 and 3 are allowed, while 1 and 2 are forbidden as they describe isolated par-
ticles, we write +,−,−,+. For example, the all-zero boundary condition ξzero

belongs to the class +,−,−,+, since

ϕ0(1|ξzero) = ϕ0(2|ξzero) = 0

as isolated occupied sites are forbidden, while

ϕ0(0|ξzero) =
(1− p)2

p2 + (1− p)2
and ϕ0(3|ξzero) =

p2

p2 + (1− p)2

are determined as the Bernoulli measure conditioned on the allowed values 0
and 3. The corresponding probability vector for the values 0, 1, 2, 3 takes the
form

ϕ0(·|ξzero) =
1

p2 + (1− p)2
((1− p)2, 0, 0, p2).

To compare, for the fully occupied boundary ξone, all pairs inside are allowed,
which is why it belongs to the class +,+,+,+, and we have

ϕ0(·|ξone) = ((1− p)2, p(1− p), p(1− p), p2).
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We note that the value 3 is allowed for all possible boundary conditions, as it
prevents isolations both in the center and on the boundary. This implies that
for all possible boundary conditions ξ, we have that

ϕ0(·|ξ)→ (0, 0, 0, 1),

as p ↑ 1. This means that single-domino conditional measures become concen-
trated and the system enters a strong-field regime. Indeed, this feature also
makes the essential quantities (5.17) and (5.19) in the Dobrushin approach and
the percolation framework decrease for large values of p. Note further that
the last observation means that all probability vectors must be in classes of
the form ·, ·, ·,+. However, there is no boundary condition belonging to the
string −,+,+,+, independent of the dimension d. Indeed, if domino value 0
leads to an isolation on the boundary, this isolation will have to occur either for
domino values 1 or 2 contradicting the fact that both of them yield a non-zero
probability for the string −,+,+,+. The remaining 7 strings can all occur.

Thinking of the lattice as a dependence graph G = (Zd, Edep), where each i
is connected to all j ∈ Vi(d), we are dealing with a Markov field and would like
to apply uniqueness criteria.

5.2.1. Uniqueness via the Dobrushin-uniqueness criterion

Let us reintroduce the unfixed area S ⊂ Zd. We determine the Dobrushin
matrix

CSi,j(p, d) := max
ξ,ξ̃∈{0,1}S : ξjc=ξ̃jc

‖ϕSi (·|ξ)− ϕSi (·|ξ̃)‖TV (5.17)

for the domino specification in order to compute the Dobrushin constant

cS(p, d) := sup
i∈S

∑
j∈Vi(d)

CSi,j(p, d). (5.18)

Then, we are interested in the lowest threshold pd
c (d), such that c(p, d) :=

supS⊂Zd cS(p, d) < 1 for p ≥ pd
c (d). Note that this then corresponds to a uniform

bound in S. A simple but non-optimal bound is given by c(p, d) ≤ |V0(d)|ρ(p),
where

ρ(p) := max
ξ,ξ̃∈Ω

‖ϕZd

i (·|ξ)− ϕZd

i (·|ξ̃)‖TV =
1

2
max
ξ,ξ̃∈Ω

∑
a=0,1,2,3

|ϕZd

i (a|ξ),−ϕZd

i (a|ξ̃)|,

(5.19)

which is independent of i ∈ Zd due to translation invariance of the kernels. By
the above, we may determine ρ(p) by computing the total variational distances
of at most

(
7
2

)
= 21 pairs of probability vectors. A straightforward computation
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Figure 5: All possible total variational distances. The
(

7
2

)
= 21 possible pairs of

strings yield 8 distinct curves. The 4 top ones in the high-density regime (i.e.,
for p > 0.6479) are given by rational functions ρ ≥ q ≥ u ≥ v (red, grey, green,
purple) in (5.21). The code for this computation can be found in [18].

shows that for all p ∈ [0, 1], the maximum is attained by the probability vectors
corresponding to the strings −,−,−,+ and +,+,+,+, see Figure 5, and thus

ρ(p) = ‖((1− p)2, p(1− p), p(1− p), p2)− (0, 0, 0, 1)‖TV = 1− p2. (5.20)

In particular, for p ≥ pc(d), with

pc(d) :=

√
2d2 + 2d− 2

2d2 + 2d− 3
,

we are in the Dobrushin-uniqueness regime, see [20, Theorem 8.7 and Equa-

tion 8.25], and thus, the unique existence of the lim∆↑Zd ϕ
(ω̄′)c

∆ (F [ω′Λ]|ω∆c) is
guaranteed independently of ω′ and ω∆c .

5.2.2. Quasilocality of the specification

What remains to be done in order to finish the proof of Proposition 3.3 is
to establish quasilocality for the specification γ′. For this, we let s denote the
`∞ metric on Zd and define s(Λ,∆) = inf{s(i, j) : i ∈ Λ, j ∈ ∆}. Then we
have the following result, which is equivalent to the corresponding result in the
companion paper [28, Lemma 3.5].

Lemma 5.1. For p > pc(d) there exist constants C, c > 0 such that for all
Λ ⊂ ∆ b Zd and all configurations ω′ and η′ with ω′∆ = η′∆ we have that

|γ′Λ(ω′Λ|ω′Λc)− γ′Λ(ω′Λ|η′Λc)| ≤ C|Λ|e−cs(Λ,∆
c).
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In particular, the specification γ′ is quasilocal.

We briefly sketch the proof here for completeness.

Proof. Note that in the regime p > pc(d), we can represent γ′Λ(ω′Λ|ω′Λc) via

the unique infinite-volume Gibbs measure µ(ω̄′)c

(F [ω′Λ]). Now, using the crite-
rion [20, Remark 8.26] applied to [20, Theorem 8.20], we have that

|µ(ω̄′)c

(F [ω′Λ])− µ(η̄′)c

(F [ω′Λ])| ≤ D(Λ,∆),

where D(Λ,∆) =
∑
i∈Λ,j∈∆c

(∑
n≥0 C

n
)
i,j

with Cn the n-th power of the Do-

brushin matrix C = (Ci,j(p, d))i,j∈Zd as defined in (5.17). Now choose c > 0
sufficiently small such that p > ecpc(d), then, by [20, Remark 8.26],

D(Λ,∆) ≤ C|Λ|e−cd(Λ,∆c)

for some finite C > 0 and the proof is finished. 2

5.2.3. Proof of Proposition 2.2

Recall the definition of the Dobrushin constant c(p, d) from (5.18). Then, the
statement of Proposition 2.2 follows directly from the statement of the following
lemma.

Lemma 5.2. We have that

c(p, d) = (1− p2)(2(d− 1)(d− 2)) + 4(d− 1)p(1− p)

+ 2
1− p

1− p(1− p)
+ (1− p)(6(d− 1)).

Proof. Without loss of generality, let the domino axis point along the first unit
vector e1. Due to symmetries, for many dominos j ∈ V0(d), the contributions
C0,j(p) are the same. Therefore, we divide V0(d) into the 5 disjoint classes, see
Figure 4,

V1(d) := {±ei : i = 2, . . . , d}, |V1(d)| = 2(d − 1), the direct neighbors of
the center in the non-domino directions,

V2(d) := {±e1}, |V2(d)| = 2, the direct neighbors of the center in the
domino directions,

V3(d) := {±e1 ± ei : i = 2, . . . , d}, |V3(d)| = 4(d− 1), the direct neighbors
in the non-domino directions of sites in V2(d),

V4(d) := {±2ei : i = 2, . . . , d}, |V4(d)| = 2(d − 1), the distance-2 sites of
the center in the non-domino directions, and
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V5(d) := {±ei ± ej : i, j = 2, . . . , d} \ V4, |V5(d)| = 2(d − 1)(d − 2), the
direct neighbors in the non-domino directions of V1 inside the l∞-ball of
radius 2.

Next, we define the rational functions

ρ(p) := 1− p2 = TV((−,−,−,+), (+,+,+,+)),

q(p) := 2p(1− p) = TV((+,−,−,+), (+,+,+,+)),

u(p) :=
1− p

1− p(1− p)
= TV((−,−,+,+), (+,+,−,+))

= TV((−,+,−,+), (+,−,+,+)) = TV((−,−,−,+), (+,−,+,+))

= TV((−,−,−,+), (+,+,−,+)),

v(p) := 1− p = TV((−,−,−,+), (−,−,+,+))=TV((−,−,−,+), (−,+,−,+))

= TV((−,−,+,+), (−,+,−,+)) = TV((−,−,+,+), (+,−,−,+))

= TV((−,−,+,+), (+,+,+,+)) = TV((−,+,−,+), (+,−,−,+))

= TV((−,+,−,+), (+,+,+,+)), (5.21)

where TV(a, b) =
∑
i=1,...,4 |ai − bi|/2 denotes the total-variational distance of

the probability vectors a, b belonging to the classes defined by the strings. For
example, we have that

TV((−,−,−,+), (+,+,+,+))

= TV((0, 0, 0, 1), ((1− p)2, p(1− p), p(1− p), p2))

=
1

2

(
(1− p)2 + 2p(1− p) + 1− p2

)
= 1− p2.

Note that, for p > 0.6479, we have ρ(p) > q(p) > u(p) > v(p), see Figure 5. In
the following, speaking of sites refers to indices of the original lattice, i.e., we say
each domino has a left and a right site. Speaking of dominos refers to indices in
the domino lattice. Imagine the hyperplane in the original lattice orthogonal to
the domino axis and separating the center domino’s two sites. The left halfspace
or side denotes sites on the left side of this hyperplane (towards the negative
domino axis) while the right halfspace (side) refers to sites on the right side of
this hyperplane.

The strategy is to go through the polynomials (5.21) in decreasing order and
to try to construct boundary conditions such that, if subjected to a domino flip
in some Vi, i = 1, . . . , 5, the total-variational distance of that flip is given by the
polynomial.

We start by ρ and check if there is a boundary condition ξ of class −,−,−,+,
such that a single domino flip yields class +,+,+,+. Class −,−,−,+ implies
that in each halfspace there is an isolation on the boundary, while the isolations
of course occur on different dominos in V1(d)∪V2(d). For +,+,+,+ there cannot
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be isolations on the boundary. A domino whose flipping transforms −,−,−,+
into +,+,+,+ needs to be adjacent to both dominos creating the isolations.
This excludes dominos from V1(d), V2(d), V3(d) and V4(d). However, by flipping
the boundary ξ consisting only of zeros, except for values 1 and 2 at dominos e2

and e3 at domino e2 + e3 ∈ V5(d), from 0 to 3 leads to a change from −,−,−,+
to +,+,+,+. Of course, by the symmetry of V5(d), one can construct analogous
boundaries for flips at all other dominos of V5(d).

Checking for q, we find that a boundary from +,−,−,+ means that there
are no isolations on the boundary, but center domino values 1 and 2 create
isolations on the domino, meaning that there are only unoccupied sites around
each of the center domino sites. Transformation to +,+,+,+ thus requires a
domino from V1(d) to be flipped from 0 to 3 and flips on V2(d), V3(d), V4(d)
and V5(d) cannot lead to this transformation. Note that for d = 2, V5(d) = ∅.

Checking for u yields the most technical case. We start by flipping −,−,+,+
to +,+,−,+. −,−,+,+ means that there is at least one isolation on the left-
side boundary and no isolation on the right side boundary. +,+,−,+ implies
that there is no isolation on the boundary, at least one non-isolated site on
the right boundary and only unoccupied sites around the left domino site. A
change from one to the other requires the domino with the isolated site on the
left boundary to be flipped. This excludes dominos from V3(d), V4(d), V5(d),
but flips in V1(d) and V2(d) are possible. An example boundary is given by ξ
in −,−,+,+ with value zero everywhere except for a value 1 at position −e1

and a value 3 at position e1, flipped at −e1 ∈ V2(d) from value 1 to value 0.
The transformation −,+,−,+ to +,−,+,+ is symmetric with respect to the
hyperplane orthogonal to e1 and thus only yields domino flips at V1(d) or V2(d),
too.

We continue with class −,−,−,+ which demands that there is at least one
isolation on the boundary on each side. For +,−,+,+, there cannot be isolation
on the boundary, the right domino site is surrounded by unoccupied sites, while
on the left side, there is at least one pair of neighboring occupied sites on the
boundary. To transform, two things need to happen: First, the isolation on
the left side needs to get another occupied neighbor, which demands a domino
flip in V3(d) ∪ V4(d) ∪ V5(d). Second, the domino containing the isolation on
the right side which is thus of value 1 or 2 and belongs to V1(d) ∪ V2(d) needs
to be flipped to 0. It is impossible for both to happen with a single domino
flip. Due to symmetry, the same holds for the the transformation −,−,−,+ to
+,+,−,+.

Finally, checking for v yields that we do not need to go through all possible
transformations. It is enough to show that there exist boundary conditions such
that a domino flip in V3(d) and V4(d) respectively yields a variational distance
of weight v. For a flip at e1 + ei ∈ V3(d), i = 2, . . . , d, consider the change
−,−,−,+ to −,−,+,+ by the boundary ω with zeros except for value 1 at −e1,
value 2 at e1. Flipping at e1 + ei from 0 to 2 yields the desired transformation.
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The same construction can be done on the left side applying the transformation
−,−,−,+ to −,+,−,+ to reach of the remaining dominos in V3(d).

Consider again the change −,−,−,+ to −,−,+,+, this time for the bound-
ary ξ consisting of zeros except for value 1 at ei and value 2 at −ei for some
i ∈ 2, . . . , d. Flipping the domino at 2ei ∈ V4(d) from value 0 to value 1 serves
the purpose. Again, the left side dominos of V4(d) can be reached by applying
the same construction in the symmetric case −,−,−,+ to −,−,+,+.

Altogether, we get

c(p, d) = ρ(p)|V5(d)|+ q(p)|V1(d)|+ u(p)|V2(d)|+ v(p)(|V3(d)|+ |V4(d)|)
= (1− p2)(2(d− 1)(d− 2)) + 4(d− 1)p(1− p)

+ 2
1− p

1− p(1− p)
+ (1− p)(6(d− 1))

and this finishes the proof. 2

5.3. Proof of Proposition 4.1

The proof is based on disagreement-percolation bounds for general graphs.

Proof. By the main result of [7] and the site-percolation bound

pc ≥
1

supi |Ni| − 1
, (5.22)

where Ni := ∂+{i} denotes the set of neighbors of i, applied to the locally
finite dependence graph induced by the domino model, we have uniqueness
once ρ(p) < 1

|V0(d)|−1 ≤ pc, where ρ(p) is defined in (5.19). Then, plugging in

ρ(p) = 1− p2 and |V0(d)| = 2d2 + 2d− 2 yields the unique existence of infinite-
volume Gibbs measure for the domino model. By the equivalence between the
domino model and the first-layer constraint model, absence of a phase transition
also leads to convergence of γS∆(F [ω′Λ]|ω∂+∆) as ∆ ↑ Zd, independent of the
boundary condition ω and the unfixed area S. 2
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[8] S. Bergmann, S. Kissel and C. Külske (2020) Dynamical Gibbs-non-Gibbs
transitions in Widom–Rowlinson models on trees. Accepted for publication in
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