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Abstract. We consider the soft-core Widom–Rowlinson model for particles with spins and holes, on a Cayley tree of order d (which
has d +1 nearest neighbours), depending on repulsion strength β between particles of different signs and on an activity parameter λ for
particles. We analyse Gibbsian properties of the time-evolved intermediate Gibbs measure of the static model, under a spin-flip time
evolution, in a regime of large repulsion strength β.

We first show that there is a dynamical transition, in which the measure becomes non-Gibbsian at large times, independently of the
particle activity, for any d ≥ 2. In our second and main result, we also show that for large β and at large times, the measure of the set of
bad configurations (discontinuity points) changes from zero to one as the particle activity λ increases, assuming that d ≥ 4. Our proof
relies on a general zero-one law for bad configurations on the tree, and the introduction of a set of uniformly bad configurations given
in terms of subtree percolation, which we show to become typical at high particle activity.

Résumé. Nous considérons le modèle de Widom–Rowlinson à contraintes molles constitué des particules de spins et de trous, sur un
arbre de Cayley d’ordre d (à d + 1 plus proches voisins), dépendant d’une force répulsive β entre particules de signes différents et d’un
paramètre d’activité λ sur les particules. Nous analysons les propriétés gibbsiennes de l’évolution temporelle de la mesure de Gibbs
intermédiaire du modèle statique, au cours d’une dynamique de renversement des spins, dans le régime de forte répulsion β.

Nous mettons d’abord en évidence l’existence d’une transition dynamique, au cours de laquelle la mesure devient non-gibbsienne
en temps long, indépendamment de l’activité particulaire, pour tout d ≥ 2. Dans notre second et principal résultat, nous montrons
également que pour les grandes valeurs de β, en temps long, la mesure de l’ensemble des mauvaises configurations (points de disconti-
nuités) passe de zéro à un lorsque l’activité des particules λ croît, en supposant d ≥ 4. Notre preuve repose sur une loi du 0-1 générale
pour les mauvaises configurations sur l’arbre, et sur l’introduction d’un ensemble de configurations uniformément mauvaises exprimé
en terme de percolation sur un sous-arbre, que nous montrons être typique à haute activité particulaire.
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1. Introduction

Dynamical Gibbs–non-Gibbs transitions for spin models can be analysed on various types of graphs. A prototypical
example is the low-temperature Ising model on the integer lattice in two or more dimensions, under stochastic independent
spin-flip dynamics [29]. The authors showed in particular that the time-evolved model, started from the initial plus Gibbs
measure in zero external field, fails to be Gibbsian for all large enough finite times, while the Gibbs property is preserved
for small times.

This study of the Ising model has been extended to mean-field and Kac-models, where the appropriate notion of
sequential Gibbsianness has been employed [6,9,10,24]. For studies of Gibbsian properties of the Potts model under time
evolution and also other transformations, see [13–15,25].

A famous model in the world of point particles taking positions in Rd is the Euclidean Widom–Rowlinson model. In
its original form the particles carry one of the possible signs plus or minus and are subjected to hardcore pair interactions,
which forbids inter-particle distances smaller than a fixed radius R > 0 when they carry different signs. In equilibrium
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the continuum model shows a ferromagnetic transition, see [4,5], for dynamical Gibbs–non-Gibbs transitions, see [18],
for generalities on Gibbsian point processes see [7].

In this note we turn to the soft-core Widom–Rowlinson model on trees under a spin-flip time evolution. The model has
the local state space {−1,0,1}, where the spin value 0 stands for an empty site. It has two parameters λ > 0, the activity
of particles, and β > 0 describing a soft-core repulsion between neighbouring particles of different signs.

Static and dynamical soft-core Widom–Rowlinson models have been studied on the lattice and in mean field, see [16,
20,21,23].

The static behaviour of the soft-core Widom–Rowlinson model on a Cayley tree of order d ≥ 2 is known, see [22],
where d-dependent non-uniqueness regions in the space of the parameters β , λ are described. In these regions there exist at
least three different tree-indexed Markov chain Gibbs measures (splitting Gibbs measures) which are tree-automorphism
invariant. Among these there is a unique measure which is also spin-flip invariant, the so-called intermediate measure
µ#

β,λ. In this note we focus on the corresponding time-evolved intermediate measure µ#
β,λ,t which is obtained by drawing

the initial condition w.r.t. the infinite-volume measure µ#
β,λ and applying independent stochastic spin-flips to the spins at

the occupied sites while keeping the holes fixed.
Previous study has shown that in the time-evolved Ising model in zero external field a quite unusual behaviour (com-

pared to lattices) occurs on regular trees [28]. One feature was that at large β and sufficiently large times all configurations
become bad for the time-evolved intermediate measure µ#

Ising;β,t . Bad configurations are non-removable discontinuity
points of finite-volume conditional probabilities in the sense of Definition 2.5. If there exists at least one bad point, a
Gibbsian representation with a well-behaved specification is impossible. If almost all (or even all) configurations are bad,
this signals a particularly strong internal non-locality of the system.

As for the Widom–Rowlinson model, the intermediate Ising measure can be defined to be the unique spin-flip invariant
tree-automorphism invariant Gibbs measure which is also a tree-indexed Markov chain. The full measure badness was
seen only in the time-evolved intermediate Ising measure, for different Ising measures as starting measure even recovery
of the Gibbs property for large times was proved in [28].

On the other hand, full-measure badness for time-evolved Widom–Rowlinson measures was discovered in models
with hard-core interaction, both in the continuum and on the lattice [18,21]. The mechanisms responsible for this in both
models were based on the hard-core interactions and were much different from the mechanism responsible for the result
for the Ising model on a tree. All studies of the time-evolved Widom–Rowlinson model with soft-core interactions on
discrete graphs have shown non-Gibbsian behaviour at large times, but did not reveal full measure bad configurations.

How much of this all-badness can we expect to survive in the time-evolved intermediate measure, and what is the role
of the second parameter, the activity λ?

Results and some proof ideas

Our results split into criteria for badness of the time-evolved measure given in Section 2.2 and criteria for goodness of the
time-evolved measure given in Section 2.3.

Let us explain informally our main badness result of Theorem 2.6 which we consider to be the most interesting part.
It states that on Cayley trees of order d ≥ 4 for large enough repulsion strength β , and large activity λ, at large enough
times, the time-evolved measure has bad configurations of full measure. Bad configurations are by definition discontinuity
points of conditional probabilities of the time-evolved measure in the sense of Definition 2.5.

To appreciate this result note that our starting measure is provably non-extremal in a regime of large β and large λ by
the Kesten–Stigum criterion [19], see Proposition 3.2. While bad configurations generally form a tail-event, our measure
of interest will not be extremal and therefore not tail-trivial, therefore there is a priori no reason why their probabilities
should be restricted to zero or one. However, we are able to formulate a different zero-one law in Theorem 2.7 which
holds in all parameter regimes, and does not assume tail-triviality, but from which the desired statement follows. It applies
more generally not only to the intermediate measure, but to all homogeneous tree-indexed Markov chain Gibbs measures
of our model. The proof we give uses a representation of configurations of the measure in terms of the (finite or infinite)
connected components by means of a renewal construction on the tree, starting from an arbitrary root, see Section 3.1.

Using our zero-one law of Theorem 2.7, we notice that for the proof of the full-measure badness in Theorem 2.6, it
suffices to find positive measure sets of bad configurations. It turns out that sets with this property can be given in terms
of the subtree percolation condition of Theorem 2.8. This condition on infinite-volume configurations of the Widom–
Rowlinson model looks only at the occupied sites, i.e. the sites with spin-values not equal to zero, disregarding the signs,
and asks for the existence of an infinite occupied subtree of large enough order s.

A glance at the result of Theorem 2.8 then also shows that for any order d ≥ 2 there is a dynamical transition, in
which the measure becomes non-Gibbsian at large times, for large β , independently of the particle activity. This is clear,
as it suffices to exhibit just one particular bad configuration, and for s = d the theorem shows that the fully occupied
configuration is always bad.
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Let us outline some of the ideas and difficulties of the proof of Theorem 2.8, i.e. explain how to ensure badness of
configurations with percolating subtrees. The detailed proof will be given in Section 3.2. Starting from a two-layer rep-
resentation of the conditional probabilities of the time-evolved model one is first led to an inhomogeneous recursion on
a subtree of occupied sites which needs to be run on the first layer (spin configurations at time zero). In this recursion
the influence of the configuration in the conditioning on the second layer (infinite-volume configurations at time t ) ap-
pears as an inhomogeneous magnetic-field term, and unoccupied sites act as a dilution on the first layer. Non-removable
discontinuities (bad points of the time-evolved measure) come from non-decaying memory on the boundary condition
in this recursion, and this is what needs to be proved to ensure badness. There are mainly two possibly counteracting
influences in this recursion, and this is what creates new difficulty for the Widom–Rowlinson model as compared to the
non-homogeneous recursion for the Ising model [2,28]. First, there are the terms coming from the infinite tree of occupied
sites attached at the origin, from we have cut off all finite parts. As for the second part, there are also contributions caused
by the non-percolating appendices of the tree. These may work in the opposite direction, depending on the choice of
the signs of the configuration. The proof then consists in showing that, not only are the percolating parts able to carry a
boundary condition to the origin regardless of the second-layer spins, but they also win against possible counteractions
from the finite parts. The proof of the all-badness result of Theorem 2.6 is then completed by ensuring typicality of
s-subtree percolation of occupied sites, see Proposition 2.10.

In Section 2.3 we give two results on goodness. The first is the small-time Gibbs property of Theorem 2.12, which
follows by the Dobrushin method. The second result of Theorem 2.14 asserts that at any possibly large β , the set of bad
configurations, while not necessarily empty, has zero measure, if the activity λ is sufficiently small. The proof is carried
out again in the two-layer picture, via comparison to extinction of a suitable Galton–Watson tree.

Finally, from Theorem 2.6 and Theorem 2.14 we conclude, that for any fixed large enough β and large enough time, a
λ-driven transition between a non-Gibbs regime with zero measure bad configurations to a regime with full measure bad
configurations occurs.

The remainder of the paper is organized as follows. In Section 2.1 we define the soft-core Widom–Rowlinson model,
review the relation between tree-indexed Markov chains and boundary laws provided by Zachary’s Theorem 2.4, and
define the time-evolved measure and notion of a bad configuration. Section 2.2 contains our results on badness, Section 2.3
contains our results on goodness, and Sections 3 and 4 contain the proofs.

2. Model and main results

2.1. Definitions and notation

2.1.1. The soft-core Widom–Rowlinson model on trees
A graph (V ,E) is a vertex set V in combination with a set of edges E ⊂ V 2. If two vertices are neighbours in the sense
that they are connected through an edge we write i ∼ j . We will denote the set of oriented edges, which is the set of
ordered pairs in E, as

!⇀
E and its elements by

!⇀
ij or in unambiguous cases ij to lighten the notation. Given a subset # ⊂ V

of the vertex set we write # ! V if it is finite and denote its boundary by ∂#, this is the set of vertices in #c directly
connected to # through an edge:

(1) ∂# :=
{
i ∈ #c|∃j ∈ #, i ∼ j

}
.

We sometimes abuse this notation and write ∂i for the neighbours of i ∈ V . A path between two vertices i, j ∈ V will be a
finite collection of vertices (k0, . . . , kN) such that k0 = i, kN = j and kn ∼ kn+1 for all n = 0, . . . ,N −1. We will call this
path non-repeating (or equivalently self-avoiding) if kn ≠ km for all n ≠ m. If at least one such path exists between every
two vertices of a subset # we will call # connected. In particular we consider trees, connected graphs where each vertex
has a finite number of neighbours and where only one unique non-repeating path between two vertices i, j ∈ V exists. We
denote this path by P(i, j), the length of the path defines a metric on the tree via d(i, j) := N if P(i, j) = (k0, . . . , kN).
A tree is called Cayley tree of order d if each vertex has exactly d + 1 ∈ N neighbours.

For the Widom–Rowlinson model we introduce a copy of the spin space {−1,0,1} on each vertex. Combined they form
the configuration space % := {−1,0,1}V which is endowed with the σ -algebra F := P({−1,0,1})⊗V . Let # ⊂ V be any
set, we denote by %# the set of configurations ω# := (ωi )i∈# restricted on #, and by σ# : % → %# the mapping with
σ#(ω) = ω# for each ω ∈ %. We write ωAηB ∈ %A∪B for the concatenation of configurations on disjoint sets A,B ⊂ V .
The σ -algebra on % generated by the projections to a subset # ⊂ V is denoted by F#. If a function f : % → R is F#-
measurable for # ! V , f is called a local function. A function f is called quasilocal on % if there exists a sequence
of local functions (fn)n∈N with limn→∞ ∥f − fn∥∞ = 0. Note that for finite state spaces quasilocality is equivalent to
continuity with respect to the product topology.
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The soft-core Widom–Rowlinson model is a natural extension of the original Widom–Rowlinson model on graphs
where neighbouring vertices are not allowed to take the same spin value. For our model this hard-core type restriction is
weakened. Here, it is allowed that vertices with +1 and −1 spins are nearest neighbours, however this will be punished
by a repulsion parameter β > 0 called the inverse temperature. The interaction of the model can be written as a potential

(2) )#(ω) =

⎧
⎪⎨

⎪⎩

β1{ωiωj =−1} if # = {i, j} ∈ E

−hωi − log(λ)ω2
i if # = {i}

0 else

where h ∈ R is an external magnetic field and λ > 0 serves as an activity parameter of occupied sites. Throughout this
paper we consider the case of h = 0.

To define Gibbs measures we need the notion of specifications. These are a families of probability kernels γ =
(γ#)#!V from F#c to F respectively, which satisfy the properness condition γ#(A|·) = 1A(·) for all A ∈ F#c , and
the consistency condition γ+γ# = γ+ for all # ⊂ +! V . A specification is called quasilocal if for each # ! V and each
quasilocal function f : % → R the function

(3) γ#(f |·) :=
∫

%
γ#(dω|·)f (ω)

is quasilocal. We say a measure µ on (%,F) is a Gibbs measure, if it satisfies the Dobrushin-Lanford-Ruelle equations
for a quasilocal specification, i.e.

(4) µ = µγ#

for each # ! V . This condition is equivalent to µ#(f |·) := µ(f |F#c)(·) = γ#(f |·) µ-almost-surely for each measurable
function f : % → R. Given a specification γ we write G(γ ) for the set of all Gibbs measures admitted by this specification.
As G(γ ) is a simplex we are particularly interested in its extremal points, the extremal Gibbs measures.

For the potential of the soft-core Widom–Rowlinson model we can define a specification through the probability
kernels defined by

(5) γ#(σ# = ω#|η#c) = 1
Z#(η#c)

exp
(
−H#(ω#η#c)

)
ω, η ∈ %,

with the finite-volume Hamiltonian H#(ω) = ∑
A∩#≠∅,A!V )A(ω) for all # ! V . The function Z# is called partition

function and is defined such that γ#(·|η#c) is a probability measure for each η in %.

2.1.2. Tree-indexed Markov chains and boundary laws
We briefly review the notion of tree-indexed Markov chains and Zachary’s theorem stating a one-to-one correspondence
between boundary laws and Markov chain Gibbs measures. We begin with the definition of a Markov specification

Definition 2.1. A specification γ = (γ#)#!V is called a Markov specification if for each region # ! V and all fixed spin
configurations ω# ∈ %# the specification density γ#(ω#|·) is F∂#-measurable.

One can easily see that the specification associated to the Widom–Rowlinson model is Markovian. To define the
stronger notion of tree-indexed Markov chains we need a concept of past. We define the set of vertices that lies in the
past of an oriented edge

!⇀
ij as those vertices whose unique path to i does not pass over the edge

!⇀
ij and thereby does not

contain j :

(6) (−∞,
!⇀
ij ) :=

{
k ∈ V |j /∈ P(i, k)

}
.

This leads to the definition of a tree-indexed Markov chain.

Definition 2.2. Let (V ,E) be a tree. A measure µ is called a tree-indexed Markov chain if

(7) µ(σj = ωj |F(−∞,
!⇀
ij )

) = µ(σj = ωj |Fi ) µ-a.s. ∀ωj ∈ %j ,

for each edge
!⇀
ij ∈!⇀E .
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There are some connections between Gibbs measures and tree-indexed Markov chains. To explain these relations we
need to introduce boundary laws and transfer operators for Markov chains.

Definition 2.3. We define the family of transfer operators (Q{i,j}){i,j}∈E of the Widom–Rowlinson model for each
{i, j} ∈ E by

(8) Q{i,j}(ωi ,ωj ) := exp
(

−){i,j}(ωi ,ωj ) − ){i}(ωi )

|∂i| − ){j}(ωj )

|∂j |

)
.

A family of vectors (lij )ij∈!⇀E with each lij in (0,∞)%i is called a boundary law consistent with the transfer operators

(Q{i,j}){i,j}∈E , if for each
!⇀
ij ∈!⇀E there exists a positive constant cij > 0 such that the consistency equation

(9) lij (ωi ) = cij

∏

k∈∂i\j

∑

ωk∈%k

Q{k,i}(ωk,ωi )lki(ωk)

holds for every ωi ∈ %i .

Note that boundary laws (lij )ij∈!⇀E are uniquely determined up to a constant only. Hence, one can choose one of the
entries of the vectors lij arbitrarily. In our case it is useful to set lij (0) = 1 for every

!⇀
ij ∈!⇀E . With the idea of transfer

operators the specification of the Widom–Rowlinson can be rewritten as

(10) γ#(σ# = ω#|ω#c ) = 1
Z′

#(ω#c)

∏

{i,j}∈E
{i,j}∩#≠∅

Q{i,j}(ωi ,ωj )

which leads to the following theorem, firstly proven by Zachary:

Theorem 2.4 (Zachary [30]). Let γ = (γ#)#!V be a Markov specification on (%,F) with transfer operators
(Q{i,j}){i,j}∈E . Then each boundary law (lij )ij∈!⇀E consistent with these transfer operators defines a unique tree-indexed
Markov chain µ ∈ G(γ ) via the equation

(11) µ(σ#∪∂# = ω#∪∂#) = 1
Z′′

#

∏

{i,j}∈E
{i,j}∩#≠∅

Q{i,j}(ωi ,ωj )
∏

k∈∂#

lkk#(ωk)

where # ! V is a connected set and Z′′
# ∈ (0,∞) a suitable normalizing constant. Here k# denotes the unique nearest

neighbour vertex of k ∈ ∂# that lies inside of #.
Conversely, every tree-indexed Markov chain µ ∈ G(γ ) has the above representation through a boundary law (lij )ij∈!⇀E

which is uniquely defined up to a positive factor.

In [22] the authors find solutions of the above recursion problem (11) for the soft-core model depending on the values of
β and λ. One of the results is that there always exists a solution with the property lij (1) = lij (−1) which via Theorem 2.4
defines a tree-indexed Markov chain and Gibbs measure µ# which we call intermediate measure. It is the only Gibbs
measure if β is small enough.

2.1.3. Time evolution, good and bad configurations
As Gibbs measures describe the equilibrium states of physical systems at constant temperatures, to investigate the be-
haviour of systems for variable temperatures we need to introduce a suitable transformation. In our case we use a Marko-
vian semigroup (πt )t∈[0,∞) describing a site-independent spin-flip dynamics whose single-site marginals are given by

(12) pt (ω,η) = 1
2

(
1 + e−2t

)
1{ω=η≠0} + 1

2

(
1 − e−2t

)
1{ωη=−1} + 1{ω=η=0} ∀ω,η ∈ {−1,0,1}.

This time evolution acts like a heating of the system where the distribution and quantity of occupied sites does not change.
For a given initial Gibbs measure µ on (%,F) at time t = 0, we then define the time-evolved measure as the action of
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this semigroup on the initial measure µt := µπt . The expectation of a local function f under the time-evolved measure
is thus given by

(13) µt(f ) =
∫

ω#∈%#

∫

η#∈%#

f (η)
∏

i∈#

pt (ωi , dηi )µ(dω)

where # is the support of f . We are interested in the properties of this time-evolved measure, specifically to what extent
it still admits to a Gibbsian description. By definition µt would be a Gibbs measure if it is compatible with a quasilocal
non-null specification. To contradict this property it therefore suffices to show the existence of a non-removable point
of discontinuity for the expected value µt(f |F#c) of one local function f , as this discontinuity would persist in each
specification admitting the measure µt , thereby showing the non-quasilocality of all compatible specifications. Such
points of non-removable discontinuity will be called bad configurations, configurations which are not bad are called
good configurations. A configuration η is a bad configuration if the measure is essentially-discontinuous at η (cp. [8]):

Definition 2.5. The measure µt is essentially-discontinuous at η ∈ % if there exists a local function f and a region
#0 ! V such that

(14) lim sup
#↗V

sup
ξ1,ξ2∈%

+:#⊂+!V

∣∣µt

(
f |η#\#0ξ

1
+\#

)
− µt

(
f |η#\#0ξ

2
+\#

)∣∣ > 0.

If η is an essential discontinuity in the sense of Definition 2.5, it must be a discontinuity point in the product topology
for every specification γ for which µ is a compatible measure, which can be quickly seen as follows: Take an arbitrary
compatible specification γ . Then, one may write the terms with finite-volume conditionings of the form µt(f |η+\#0)

appearing in Definition 2.5 as an integral of γ#0(f |η+\#0ζ+c ) over the variables ζ+c with respect to some conditional
measure which is not important for the argument. Using uniform upper and lower bounds on ζ+c , this shows that the left
hand side in (14) is a lower bound for the analogous expression involving the kernel γ#0 , namely

(15) lim sup
#↗V

sup
ξ1,ξ2∈%

(
γ#0

(
f |η#\#0ξ

1
V \#

)
− γ#0

(
f |η#\#0ξ

2
V \#

))
,

which therefore is strictly positive, too.

2.2. Results: Badness

Theorem 2.6. Let (V ,E) be the Cayley tree of order d ≥ 4. Then there exist finite positive constants βb(d) > 0, λb(d) > 0
such that for all β > βb(d) there exists a finite time tb(β, d) so that the set of bad configurations for µ#

β,λ,t has full measure
for all t ≥ tb(β, d) and all λ ≥ λb(d).

The proof of the theorem relies on a general zero-one law, Theorem 2.7, together with two ingredients about the set of
a bad configurations which are interesting in themselves. A subtree condition for bad configurations, Theorem 2.8, and
the typicality of this condition at large activities, Proposition 2.10.

Zero-one law
First we give a general zero-one theorem for the set of bad configurations on trees, for possibly non-extremal measures.
Note that for extremal Gibbs measures on any countable graph, it is well known that the set of bad configurations has
probability zero or one. This is clear, as the set of bad configurations form a tail-event, and extremality of a Gibbs measure
implies its triviality on the tail-sigma algebra. In our case however, the intermediate measure under consideration is
provably non-extremal in the interesting regime of large repulsion β , and large activity λ, as we show in Lemma 3.2, and
so the following theorem is necessary:

Theorem 2.7 (Zero-one law). Assume that µ is a tree-indexed Markov chain on the Cayley tree with state space
{−1,0,1}V , which is invariant under tree-automorphisms, and whose transition matrix P has strictly positive matrix
elements. Denote by µt the corresponding time-evolved measure with starting measure µ, obtained under the spin-flip
dynamics (12). Then, for each time t , the set of bad configurations Bt for the time-evolved measure µt satisfies the
zero-one law µt(Bt ) ∈ {0,1}.
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Subtree condition on badness
The following theorem gives a sufficient condition for bad configurations of the time-evolved measure, uniformly in the
choice of signs.

Theorem 2.8. Let (V ,E) be the Cayley tree of order d and η ∈ % any configuration such that the set of occupied sites
O(η) := {i ∈ V ||ηi | = 1} contains a rooted tree of order s, where s satisfies

(16) s >
d + 1

2
.

Then there exists a critical repulsion strength βc(d, s) ∈ (0,∞) so that for all β > βc(d, s) there exists a time
tc(β, d, s) ∈ (0,∞) such that the time-evolved intermediate measure µ#

β,λ,t is essentially-discontinuous at η for all times
t ≥ tc(β, d, s) and all activities λ > 0.

Remark 2.9. Applying Theorem 2.8 for d = s ≥ 2 we immediately obtain that the time-evolved intermediate measure
is non-Gibbs at large β for all sufficiently large times for any d ≥ 2. This is clear as we are provided with the bad
configurations constructed from s-subtrees (which in general may however have zero measure).

Subtree percolation
When is the set of provably bad configurations from Theorem 2.8 typical, i.e. when is subtree-percolation ensured? The
measure of occupied sites drawn from µ#

β,λ,t turns out to be a tree-indexed Markov chain again, see Lemma 3.3, with an
explicit transition matrix depending on β , λ but independent of t – which should not be expected from the other Gibbs
measures. Hence the connected clusters of occupied sites of the intermediate measure (growing away from the origin, see
proof of zero-one law) form Galton–Watson processes that do not depend on t .

Let ps(β,λ, d) denote the time-independent probability that a fixed occupied site on the Cayley tree of order d , whose
sites are occupied according to the time-evolved intermediate measure µ#

β,λ,t , is the root of an outward growing occupied
subtree where each vertex has at least s children.

Proposition 2.10. For d ≥ 2 there exists a critical activity λb(d) ∈ (0,∞) such that

(17) ps(β,λ, d) > 0

holds for all λ ≥ λb(d) uniformly for all β > 0 and any s ≤ d − 1.

In [26] probabilities for occupied subtrees have already been studied, also [1] investigates the probability for the
existence of so-called k-forts which implies the existence of an occupied subtree of order d − k. However, both of these
more general works do not immediately give the bounds for our special case, thus we give a self-contained proof in
Section 3.3.

Remark 2.11. One may ask if the full-measure badness of Theorem 2.6 could persist on the ternary (d = 3) or even on a
binary tree (d = 2), and try to improve the badness condition in Theorem 2.8. A more refined approach for the recursion
might allow better estimates by using typical influences of spins on the occupied subtree and the non-percolating branches,
instead of estimating uniformly by the worst possible cases (cp. Section 3.2). Furthermore we might obtain badness results
for occupied subtrees closer to full occupation than the subtree of order d − 1, yet still typical in a region of very large
activity, thereby improving the current proof of Theorem 2.6. This remains an open problem which needs a finer analysis.

2.3. Results: Goodness

General result: Short-time goodness via Dobrushin
As we have seen the time-evolved measure µ#

β,λ,t is not Gibbs for large enough times t and activities λ. However, there
are regimes of parameters where µ#

β,λ,t is Gibbs or at least almost surely Gibbs. First we state that the intermediate
dynamical measure satisfies the so-called short-time Gibbs property, i.e. µ#

β,λ,t is Gibbs for small times t .

Theorem 2.12. For every β > 0 and λ > 0 there exists a time tg(β,λ, d) ∈ (0,∞] such that for all t < tg(β,λ, d) the
time-evolved measure µ#

β,λ,t is Gibbs.

Remark 2.13. By this theorem and Remark 2.9 we found a Gibbs–non-Gibbs transition for the time-evolved intermediate
measure on the Cayley tree of order d at large repulsion strength β . For all activities λ the measure is Gibbs for small
times and non-Gibbs for large times.
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Almost sure goodness for small density via extinction
In contrast to Theorem 2.6 the set of bad configurations has zero measure, since it is empty, for small times and every
activity. In the following theorem we handle the case for small λ. Here we prove only an almost-sure result, i.e. the set
of bad configurations has zero measure. The idea to rewrite the model to use extinction probabilities for Galton–Watson
trees.

Theorem 2.14. Let β > 0. Then there exists λg(β, d) ∈ (0,∞) such that for every λ < λg(β, d) the time-evolved measure
µ#

β,λ,t is almost surely Gibbs for every time t > 0.

Remark 2.15. From Theorems 2.6 and 2.14 we get an λ-dependent transition for the set of bad configurations of the
time-evolved intermediate measure on Cayley trees of order d ≥ 4 from measure zero to measure one. For β > βb(d) and
t ≥ tb(β, d) the set of bad configurations has measure zero for activities λ < λg(β, d) and measure one for large activities
λ ≥ λb(d).

3. Proofs: Badness

3.1. Renewal subtree construction and zero-one law for bad configurations

We now give the proof of the zero-one law for bad configurations.

Proof of Theorem 2.7. The main idea is to describe a configuration drawn from the tree-indexed Markov chain µ in
terms of i.i.d. building blocks which are given by the connected components of occupied sites, along with their signs,
anchored at the site on the cluster closest to an origin. Using only the tree-indexed Markov chain property of µ, the
clusters will be grown by means of a recursive algorithm described below. Here the anchoring sites of the clusters will
appear as so-called active sites. They will be determined depending on the clusters which have grown in the previous
steps. These anchored clusters can be viewed as geometric generalizations to the excursions of a stationary Markov chain.

More precisely, we start by enumerating the vertices of the tree by N ∪ {0}: Choose an arbitrary root of the vertex set
of the tree and label it by 0. Then label the d + 1 sites at distance 1 to the root by the integers 1, . . . , d + 1, in otherwise
arbitrary order. Next label the sites at distance 2 to the root by the (d + 1)d next integers, in otherwise arbitrary order.
Next label the sites at distance 3 to the root by the next integers, in otherwise arbitrary order. Proceed in this way for all
finite distances.

Spiralling renewal
We construct a configuration of µ according to the following spiralling renewal-construction, based on the tree-indexed

Markov chain property:
Step 0 – Initialisation: Choose the value σ0 at the root according to the single-site distribution ρ, which is the invari-

ant distribution for the transition matrix P of the Markov-chain Gibbs measure, i.e. it satisfies ρ = ρP . Note that our
assumption on P implies strict positivity of the entries of ρ. In the case σ0 = s where s ∈ {−1,1}, choose the active site
as v = 0 and turn to the next step, Step 1. In the case σ0 = 0 choose the value of σ1 = s1 with probability P(0, s1) > 0. In
the case σ1 ≠ 0, call 1 the active site and turn to the next step. Otherwise carry on this procedure, i.e. continue according
to the enumeration of sites in this way until the first vertex v is reached for which σv ≠ 0. Call this vertex v the active site
for Step 1.

Step 1 – Grow partial trees from an active site v, with stopping symbol 0: In the case σv = s where s ∈ {−1,1}, grow
random partial configurations σ s

Vv
on the random subset Vv , which contains v and points to the outside, in the following

way. Here Vv by definition should contain the active site v as its smallest site according to the enumeration. Apply the
transition matrix P , from inside to outside, away from the root, starting with initial condition σv = s. Stop to grow the
branches to the outside when a first zero appears in the branch, and keep these first zeros together with the configurations
of zeros and signs obtained so far. This has filled a (finite or infinite) part Vv of the tree emerging from site v, where the
value 0 plays the role of a stopping symbol which marks the boundary of the connected component.

We note that for v ≠ 0 the distribution of σ s
Vv

is tree-invariant, and describes the connected component attached at
the site v. For the particular case v = 0, maximally d + 1 such components come together to form the component at the
origin.

Step 2 – Filling more zeros to get to the next active site: Determine the smallest site z according to the spiralling
enumeration whose spin value has not yet been determined. By construction the spin value of the parent site of z on
the tree was already determined to be zero. Choose the value σz = sz with probability according to P(0, sz). In the case
σz = 0 repeat Step 2. In the case σz = s for s ∈ {−1,1} go to Step 1 with new active site z.
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Fig. 1. The vertices of a tree can be enumerated along a spiral emanating from an arbitrary root index. The occupied vertices, here coloured in grey and
black for plus and minus spins, can be seen as active sites growing an outward pointing (away from the root) tree with stopping symbol 0 provided they
are not the child of another occupied vertex. Enumerating these active sites along the spiral we obtain an almost surely infinite sequence of active sites
(vi )i∈N . The partial trees growing from these active sites are i.i.d..

This procedure produces a sequence of active sites (vi)i∈N, as shown in Figure 1, along with their signs si . As the
transition matrix P has strictly positive matrix elements, this sequence is almost surely infinite. We then obtain a config-
uration σV on the full vertex set of the tree which is distributed according to µ as the concatenation of (σ

si
Vvi

)i∈N with the

empty configuration 0 on the remaining sites (
⋃

i∈N Vvi )
c . We note that (up to the component of the root) the components

σ
si
Vvi

are (tree-isomorphic to) i.i.d. random objects.
Now we come to the proof of the zero-one property of bad configurations. A configuration σV on the full tree is

a bad configuration if and only if there is at least one connected component of its occupied sites which acts as a bad
configuration (when the configuration is continued by zero outside). This follows as the first-layer model decouples over
the connected components of occupied sites in the conditioning.

We can therefore check badness of the time-evolved measure on the connected components grown from vi ≠ 0 with
sign s ∈ {−1,1}. We note for this purpose that the probabilities

(18) pbad(s) := µ̄
(
σ s

Vvi
0(Vvi

)c is bad at time t |si = s
)

do not depend on i for i ≥ 2, where the measure µ̄ is obtained as the representation of the measure µ via the above renewal
construction, together with the semi-group of the time evolution. This is clear by the invariance of the construction of Vvi ,
and the tree-automorphism invariance of the property to be a bad configuration.

Case 1: pbad(s
′) > 0 for at least one spin value s′ ∈ {−1,1}. As the sequence of active sites takes the value vi = s′ for

infinitely many i ≥ 2 with probability one, we conclude that µ-almost surely there are even infinitely many connected
components labelled by i ≥ 2 which are bad. This follows by the Borel-Cantelli Lemma applied to the situation of
independently many trials with positive probability. In particular we have µt(Bt ) = 1 for the set of bad configurations Bt .

Case 2: pbad(1) = pbad(−1) = 0. Then all the components for i ≥ 2 carry good configurations almost surely. We
remark that also for the first component we have that µ̄(σ s

Vv1
0(Vv1 )c is bad at time t |s1 = s) = 0, for both values of s, if all

connected components away from the origin are good. To see this, condition on the event that v1 = 0 is in fact the origin,
and employ a small Gibbsian computation which shows that glueing of finitely many good configurations on connected
components preserves the property to be a good configuration. Hence it follows µt(Bt ) = 0. "
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3.2. Subtree condition on badness

First, we introduce a sufficient criterion for essential discontinuity of the time-evolved intermediate measure. We treat
the time evolution kernels as additional fields on the first-layer model, the percolation of information in the time-evolved
model can then be expressed as a recursion depending on these fields.

Lemma 3.1. The measure µ#
β,λ,t is essentially-discontinuous at configuration η ∈ % if there exists a vertex 0 ∈ V , an

ϵ > 0, and cofinal sequences (#n)n∈N ↗ V , (+n)n∈N ↗ V with 0 ∈ #n ⊂ +n ! V such that

(19) lim
n→∞

∣∣fk0[η#n\0++n\#n] − fk0[η#n\0−+n\#n]
∣∣ ≥ ϵ,

for at least one occupied vertex k ∈ ∂0. The fij [ξA\0] are boundary fields depending on the configuration ξ in A \ 0
calculated for edges pointing towards 0 through the recursion

(20) fij [ξA\0] =
∑

k∈∂i\j
|ξk |=1

ϕβ/2
(
fki[ξA\0] + htξk

)

with

ϕβ(x) := 1
2

log
(

cosh(x + β)

cosh(x − β)

)
(21)

ht := 1
2

log
1 + e−2t

1 − e−2t
(22)

and homogeneous starting values fij [ξA\0] = 0 at the boundary of A, i.e. for all edges
!⇀
ij pointing towards 0 with i ∈ ∂A,

independent of the configuration ξ .

Using the definition of essential discontinuity (14), this lemma will be proved by representing the single-site proba-
bilities of the time-evolved measure µ#

β,λ,t conditioned on a finite neighbourhood as a sum over compatible first-layer
configurations, i.e. those configurations at time t = 0 which could eventually evolve to the second-layer configuration
in the conditioning. These first-layer configurations have a closed representation through boundary laws, as the initial
measure µ#

β,λ,0 at time t = 0 is a tree-indexed Markov chain. Each summand is weighted by a modified Hamiltonian
that includes field-like terms originating from the time evolution. Executing the sum then leads to the recursion relation
above and a representation of the conditioned single-site probabilities through a first-layer Hamiltonian with the addi-
tional boundary fields that globally depend on the second-layer configuration. Therefore a discontinuity in these fields
translates to essential discontinuity of the measure.

Proof of Lemma 3.1. First note that we can naturally write the conditional probability of the time-evolved intermedi-
ate measure µ#

β,λ,t at a fixed but arbitrary root index 0 conditioned on a second-layer spin configuration η in a finite
neighbourhood # \ 0 as

(23) µ#
β,λ,t (σ0 = η0|η#\0) =

∫
µ̂#

β,λ,t [η#\0](dω0)pt (ω0,η0),

where µ̂#
β,λ,t is the probability of the first-layer spin value at 0 conditioned on the given second-layer configuration η,

which by (13) has the representation

(24) µ̂#
β,λ,t [η#\0](ω0) := 1

Zβ,λ,t [η#\0]
∑

ω′
#\0∈%#\0

µ#
β,λ,0

(
σ# = ω0ω

′
#\0

) ∏

i∈#\0

pt

(
ω′

i ,ηi

)
.

Here µ#
β,λ,0 denotes the intermediate measure at time t = 0 and Zβ,λ,t [η#\0] is a suitable normalisation – we will use this

notation for normalisations of different expressions without further apology.
Since pt interpreted as a matrix is bijective, from Equation (23) follows, that we can infer essential discontinuity of

µ#
β,λ,t by proving that the family of measures (µ̂#

β,λ,t [η#\0])η∈%,#!% fulfils the condition

(25) lim
n→∞

∣∣µ̂#
β,λ,t [η#n\0++n\#n](ω0) − µ̂#

β,λ,t [η#n\0−+n\#n](ω0)
∣∣ ≥ ϵ′
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for a fixed ϵ′ > 0 and cofinal sequences (#n)n∈N ↗ V , (+n)n∈N ↗ V with 0 ∈ #n ⊂ +n ! V and some ω0 ∈ S. Here we
have chosen 1{ω0} as local function and +, − denote the fixed configurations that are plus and minus everywhere on the
whole tree respectively.

To rewrite µ#
β,λ,t in terms of boundary fields we first note that the single-site time evolution (12) can be rewritten in

an exponential form

(26) pt(ωi ,ηi ) = ct (ωi ,ηi ) exp
(
htωiηi

)

using ht defined in (22) and

(27) ct (ωi ,ηi ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(
1 − e−4t

) 1
2 if |ωi | = |ηi | = 1

1 if |ωi | = |ηi | = 0
0 else

.

This time evolution prohibits first-layer configurations in the sum of Equation (24) whose set of occupied sites differs
from that of the prescribed second-layer configuration η#\0. We therefore introduce for each second-layer configuration
η the space of its compatible configurations in the first-layer %η by

(28) %η :=
{
ω ∈ %||ωi | = |ηi | ∀i ∈ V

}

and can restrict the sum to finite-volume configurations of %η. Replacing the single-site kernels through their exponential
notation then leads to

(29) µ̂#
β,λ,t [η#\0](ω0) = 1

Zβ,λ,t [η#\0]
∑

ω′
#\0∈%

η
#\0

µ#
β,λ,0

(
σ# = ω0ω

′
#\0

) ∏

i∈#\0

exp
(
htω′

iηi

)
.

Here we were allowed to include the factors ct of the time evolution in the normalisation as they are identical for all
compatible configurations in %

η
#\0.

Since the initial measure µ#
β,λ,0 is a tree-indexed Markov chain, it has a representation through boundary laws (cp.

Theorem 2.4)

(30) µ#
β,λ,0(σ#∪∂# = ω#∪∂#) = 1

Z′′
#;β,λ

∏

{i,j}∈E
{i,j}∩#≠∅

Q{i,j}(ωi ,ωj )
∏

k∈∂#

lkk#(ωk).

Replacing µ#
β,λ,0 in (29) through its boundary law representation (30) yields an expression that just consists of func-

tions for spin-values of at most two neighbouring vertices. As trees do not contain loops this means that the sum over
configurations on # can be split into multiple sums over configurations on disjoint connected components of #, which
just communicate through one unique path. If this path contains a vertex with a fixed spin-value, as is the case for every
compatible first-layer configuration if the second-layer configuration η has spin-value zero at one of the paths sites, these
components are fully independent. In particular this implies that Equation (29) only depends on spin-values of sites which
have a direct connection to the root through a path that is occupied in the second-layer configuration η. We therefore define
the set of vertices connected to the root with regard to occupation in η

(31) Cη(A) :=
{
i ∈ A||ηj | = 1 ∀j ∈ P(0, i)

}
,

and can restrict Equation (29) to configurations on this connected component

µ̂#
β,λ,t [η#\0](ω0) = 1

Zβ,λ,t [η#\0]
∑

ωCη(#\0)∈%Cη(#\0)

∏

{i,j}∈E
{i,j}⊂Cη(#)

Q{i,j}(ωi ,ωj )

×
∏

k∈Cη(∂#)

lkk#(ωk)
∏

l∈Cη(#\0)

exp
(
htωlηl

)
.

(32)

Except for the root, all sites in Equation (32) have spins that are guaranteed to be non-zero. As the boundary laws of
the intermediate measure µ#

β,λ,0 are identical for occupied vertices they can be included in the normalisation resulting
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in

(33) µ̂#
β,λ,t [η#\0](ω0) = 1

Zβ,λ,t [η#\0]
∑

ωCη(#\0)∈{−1,1}Cη(#\0)

∏

{i,j}∈E
{i,j}⊂Cη(#)

Q{i,j}(ωi ,ωj ) exp
( ∑

k∈Cη(#\0)

htηkωk

)
.

Executing the summation over the first-layer spin values in (33) can be done successively for each site, beginning at the
boundary and working inwards to the root. By defining boundary fields via the recursion

(34) fij [η#\0] :=
∑

k∈∂i\j
|ηk |=1

ϕβ/2
(
fki[η#\0] + htηk

)
,

where ϕβ has already been defined in (21), with homogeneous starting values fij [η#\0] = 0 for all i ∈ ∂#, we eventually
get the representation

(35) µ̂#
β,λ,t [η#\0](ω0) = λ|ω0|

Zβ,λ,t [η#\0]
∑

ωCη(∂0)∈{−1,1}Cη(∂0)

exp
( ∑

k∈∂0
|ηk |=1

(
β1{ωkω0=−1} + htηkωk + fk0[η#\0]ωk

))
.

We note that the activity λ plays no part in the recursion process, as all spins at vertices on Cη(# \ 0) are occupied, which
allows us to incorporate the λ-dependent parts of the transfer operators in the normalisation.

The only components of Equation (35) which are dependent on the global behaviour of η are the boundary fields
fk0[η#\0] calculated through the η-dependent recursion (34). To show that Inequality (25) holds, it suffices to look at the
difference between the boundary fields for both expressions and show

(36) lim
n→∞

∣∣∣∣
∑

k∈∂0
|ηk |=1

fk0[η#n\0++n\#n ] −
∑

k∈∂0
|ηk |=1

fk0[η#n\0−+n\#n ]
∣∣∣∣ ≥ ϵ′′

for some ϵ′′ > 0. This can be seen by an additional recursion step which results in

(37) µ̂#
β,λ,t [η#\0](ω0) = λ|ω0|

Zβ,λ,t [η#\0]
exp

(
ω0

|Cη(∂0)|
∑

k∈∂0
|ηk |=1

f0k[η#\0]
)

with new boundary fields f0k pointing away from the origin that due to the strict monotonicity of (34) retain condition
(36). The benefit of this representation lies in the fact that the influence of the boundary fields is more immediate. To see
that jumps in the boundary fields carry over to jumps in the probabilities compare now the fraction

(38)
µ̂#

β,λ,t [η#n\0++n\#n](+1)

µ̂#
β,λ,t [η#n\0++n\#n](−1)

to the corresponding fraction for η#n\0−+n\#n . As the recursion (34) also preserves monotonicity in the configurations we

get fij [η#n\0++n\#n] ≥ fij [η#n\0−+n\#n ] for each edge
!⇀
ij ∈!⇀E . To show (36) it is therefore sufficient to find just a single

occupied vertex k ∈ ∂0 such that fk0[η#n\0++n\#n] > fk0[η#n\0−+n\#n]. This concludes the proof of the lemma. "

Having developed the essential discontinuity criterion above, let us now show that it is fulfilled for large repulsion β

at large times, if the set of occupied sites O(η) = {i ∈ V ||ηi | = 1} of the configuration η contains a rooted subtree S with
s children where s satisfies

(39) s >
d + 1

2
.

The main idea of the following proof is depicted in Figure 2.
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Fig. 2. Simulation of the boundary field recursion on the Cayley tree of order d = 4 at repulsion strength β = 2.0 and time t = 0.2. Vertices are
coloured according to their second-layer spin values, here the configuration on # is such that the centre vertex is the root of an occupied subtree with
s = 3 children. Each inward pointing edge ij is coloured according to the value of the boundary field fij plus the time-dependent field htηi . The
boundary field value at ∂# is the fixed point solution F ′ > 0 of the recursion for an all plus configuration on + \ #. The boundary field values on
the inner rings are subsequently calculated from the recursion (20) with boundary fields from unoccupied sites set to zero as they do not influence the
recursion. The positive starting value, combined with a large number of occupied spins due to the subtree structure, guarantees that the boundary field
values along the edges of the subtree stay positive until they reach the centre vertex. This is true even for configurations where the subtree is completely
occupied by minus spins. For the Ising-like case where a sub-Cayley-tree is occupied, s = 2 children suffice for this result, regardless of the size of the
main tree. In the Widom–Rowlinson model however, we might get spin clusters outside of this infinite subtree that are disconnected from the positive
influences at ∂#, like those depicted in the lower half, which can develop negative boundary field values. These need to be compensated through an in
comparison sufficiently large structure of occupied spins percolating the positive boundary fields, leading to condition (39) for subtree percolation.

Proof of Theorem 2.8. Using Lemma 3.1 we choose 0 to be the root of the occupied subtree S and take #n = Dn,
+n = Dn+m, where Dk := {i ∈ V |d(i,0) ≤ k} is the disc with radius k around 0. The value of m ∈ N will be chosen later
in the proof. Using the recursion (20) we can then proceed to calculate the boundary fields on the annuli Rk := ∂Dk−1 for
k ∈ {1, . . . , n + m + 1} (beginning at Rn+m+1 working inwards toward ∂0 = R1).

We will do so for the plus configuration on + \ #, the proof for the minus condition works analogously. Since ++\#
is homogeneous, the boundary fields on each ring Rk ⊂ + \ # are also homogeneous. We denote these homogeneous
values by Fk and it holds

(40) fij [η#\0++\#] = Fk ∀!⇀ij with i ∈ Rk, j ∈ Rk−1.

From the boundary field recursion (20) we get

(41) Fk = dϕβ/2
(
Fk+1 + ht

)
∀k ∈ {n + 1, . . . , n + m}
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with starting value Fn+m+1 = 0. The function

(42) x 3→ dϕβ/2
(
x + ht

)
,

always has exactly one positive attractive fixed point F ′ > 0 and we can ensure that Fn+1 is arbitrarily close to F ′ by
choosing an appropriately large m ∈ N.

Fn+1 then provides the initial condition for the recursion on #. As the recursion on # is η-dependent, we will estimate
a lower bound for the boundary fields on each ring Rk ⊂ # for the edges that are part of the subtree S

(43) Fk := min
ij∈!⇀E ,i,j∈S
i∈Rk,j∈Rk−1

fij [η#\0++\#] ∀k ∈ {1, . . . , n},

and show that this lower bound stays positive up to the root vertex 0. Applying the boundary field recursion (20) to the
fij in Fk gives

(44) Fk = min
ij∈!⇀E ,i,j∈S
i∈Rk,j∈Rk−1

∑

l∈∂i\j
|ηl |=1

ϕβ/2
(
fli[η#\0++\#] + htηl

)
.

We can split the sum in terms where the vertex l ∈ Rk+1 is part of the subtree S and those where l is not contained
in S. The boundary fields of the former terms, of which there are at least s, can be lower-bounded by Fk+1. Estimating
ηl ∈ {−1,1} by −1 and using the monotonicity of ϕ then gives a lower bound for the terms on the subtree. The terms for
l /∈ S, of which there are at most (d − s) can be lower-bounded by −β/2 as |ϕβ/2| is bounded by β/2. Thus we get the
estimation

Fk ≥ min
ij∈!⇀E ,i,j∈S
i∈Rk,j∈Rk−1

( ∑

l∈∂i\j
|ηl |=1,l∈S

ϕβ/2
(
Fk+1 − ht

)
−

∑

l∈∂i\j
|ηl |=1,l /∈S

β

2

)

≥ sϕβ/2
(
Fk+1 − ht

)
− (d − s)

β

2
,

(45)

which holds for all k ∈ {1, . . . , n}. A positive fixed point solution F+ > 0 of the function

(46) x 3→ sϕβ/2
(
x − ht

)
− (d − s)

β

2
,

would have to be smaller than the fixed point F ′ > 0 of the outer recursion, which can be seen through direct comparison
of the functions (42) and (46). Provided such a solution exists, we could fix m to be large enough such that F+ < Fn+1.
This would inductively imply

(47) Fk

(45)
≥ sϕβ/2

(
Fk+1 − ht

)
− (d − s)

β

2
≥ sϕβ/2

(
F+ − ht

)
− (d − s)

β

2
= F+ > 0

for all k ∈ {1, . . . , n}. Here we used the monotonicity of ϕβ/2 in the second step. In particular we would get
fj0[η#\0++\#] ≥ F+ > 0 for all j ∈ ∂0 ∩ S and arbitrarily large n ∈ N.

It remains to show the existence of the fixed point F+ > 0. From the analysis of the Ising model on Cayley trees in
[12] we know that the function

(48) x 3→ sϕβ/2(x − h)

has a positive fixed point if β > β ′(s) and h ≤ h′(β, s) where

(49) h′(β, s) = s − 1
2

β + s − 1
2

log(s − 1) − s

2
log(s) + Oβ(1).

Therefore (46) has a positive solution for parameters β > β ′(s) and t > 0 that fulfil the condition

(50) ht + (d − s)
β

2
≤ h′(β, s).
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Fig. 3. Solutions for the recursion (46) at β = 1.1 s = 7, d = 8 and t = 0.5. The left side depicts the limiting case ht = 0. Increasing the repulsion β

lowers the interception point of the function with the y-axis while increasing its slope and maximal value. If s fulfils the condition (39) for fixed d there
exists a critical value βc(d, s) such that for all β > βc(d, s) there are exactly two positive fixed points. In particular this allows a positive fixed point
to exist for small ht . As ht is decreasing in t there exists a lower bound tc(β, d, s) for the time such that at least one positive fixed point exists for all
t ≥ tc(β, d, s) and thereby ht ≤ htc .

For s > (d + 1)/2 from (49) it follows that there exists a finite βc(d, s) > β ′(s) such that (50) is a strict inequality for
the limiting case ht = 0 for each β > βc(d, s), as depicted in the left part of Figure 3. Choosing tc(β, d, s) subsequently
such that (50) is an equality for htc guarantees that it is fulfilled for all t ≥ tc(β, d, s), as ht is a decreasing function in t .
Therefore a positive fixed point F+ > 0 exists for all β > βc(d, s) and t ≥ tc(β, d, s).

An analogous argument shows that in case of the minus configuration on + \ # the boundary fields can be upper
bounded by fj0[η#\0−+\#] ≤ F− = −F+ < 0 for all j ∈ ∂0 ∩ S and all n ∈ N for identical critical values. Setting
ϵ = 2F+ concludes the proof. "

3.3. Subtree percolation

In this section we show that a fixed occupied site of the Cayley tree of order d whose spins are distributed by the time-
evolved intermediate measure has a positive probability of growing an occupied rooted subtree with s or more children
for each s ≤ d − 1 at any repulsion strength β > 0, if the activity is greater than a critical value λb(d). This leads to the
typicality of bad configurations in the regime of Theorem 2.8 for large activities.

Note that the spin-flip dynamics (12) does not change the distribution of occupied sites, therefore it suffices to inves-
tigate the intermediate measure without time-evolution. First we present a result regarding the non-extremality of this
intermediate measure, which shows the necessity of the general zero-one law 2.7 for possibly non-extremal measures for
our results.

Proposition 3.2. For d ≥ 2, large repulsion β and large activity λ the intermediate measure µ#
β,λ is non-extremal.

Proof. This result follows from the Kesten–Stigum criterion [19] as the in modulus second largest eigenvalue u2 of the
transition matrix for the intermediate measure fulfils the condition

(51) u2 >
1√
d

for large repulsion β and large activity λ if d ≥ 2 as we will show.
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To calculate the transition matrix, we use Zachary’s theorem (Theorem 2.4) and by applying the consistency condition
for boundary laws (9) we get an expression for the spin distribution of two vertices along an arbitrary edge {i, j} ∈ E:

(52) µ#
β,λ(σi = x,σj = y) = 1

Z
lβ,λ(x)Q{i,j}(x, y)lβ,λ(y) ∀x, y ∈ {−1,0,1}.

Here the transfer operator is defined by the Widom–Rowlinson potential through Equation (8). The boundary law for the
intermediate measure is the homogeneous solution of the boundary law recursion (9) with lβ,λ(−1) = lβ,λ(+1) and has
the representation

(53)
(
lβ,λ(−1), lβ,λ(0), lβ,λ(1)

)
=

(
ξβ,λλ

− 1
d+1 ,1, ξβ,λλ

− 1
d+1

)

where ξβ,λ is the unique positive solution to the equation

(54) x = λ

(
1 + (1 + e−β)x

1 + 2x

)d

,

see [22]. Note, that while the exact value of ξβ,λ is dependent on β it is always contained in the interval (2−dλ,λ)

and can therefore be controlled by the activity λ. Using the distribution of neighbouring spins (52) with an appropriate
normalisation the homogeneous matrix of transition probabilities for the intermediate measure µ#

β,λ takes the form

(55) P #
β,λ = 1

1 + (1 + e−β)ξβ,λ

⎛

⎝
ξβ,λ 1 e−βξβ,λ

αβ,λξβ,λ αβ,λ αβ,λξβ,λ

e−βξβ,λ 1 ξβ,λ

⎞

⎠

where

(56) αβ,λ := 1 + (1 + e−β)ξβ,λ

1 + 2ξβ,λ
.

The eigenvalues of P #
β,λ ordered by absolute value are:

(57) u1 = 1u2 = (1 − e−β)ξβ,λ

1 + (1 + e−β)ξβ,λ
u3 = − u2

1 + 2ξβ,λ

As ξβ,λ can be solely controlled by λ we get

(58) lim
λ→∞

u2 = 1 − e−β

1 + e−β
= tanh(β/2) ∀β > 0.

Therefore for any repulsion strength β with

(59) tanh(β/2) >
1√
d

and sufficently large λ the Kesten–Stigum criterion is fulfilled and the measure is non-extremal. "

The criterion (59) yields the critical value at which the intermediate measure for the Ising model on the Cayley tree
of order d with parameter β/2 transitions from extremal to non-extremal, for more information on this transition of
the intermediate measure for the Ising model see [3,11,17,27]. This is consistent with the observation that the Widom–
Rowlinson model of repulsion strength β conditioned on full occupation yields the Ising model with parameter β/2.

Next we briefly look at the occupation measure describing the distribution of occupied sites. For the intermediate
measure µ#

β,λ this measure proves to be a tree-indexed Markov chain: We define the mapping τ : % → {0,1}V with
τ (ω) := (|ωi |)i∈V .

Lemma 3.3. The occupation measure for the intermediate measure defined by µ#
β,λ ◦ τ−1 on ({0,1}V ,P({0,1})⊗V ) is a

tree-indexed Markov chain.



Dynamical Widom–Rowlinson models 341

Proof. For any S ⊂ V we define Foc
S := σ (|σi |, i ∈ S) the σ -algebra generated by the occupation numbers in S. Using

first the tower property for conditional probabilities and then the Markov-chain property of the intermediate measure we
get

µ#
β,λ

(
|σj | = x|Foc

(−∞,ij)

)
= µ#

β,λ

(
µ#

β,λ

(
|σj | = x|F(−∞,ij)

)
|Foc

(−∞,ij)

)

= µ#
β,λ

(
µ#

β,λ

(
|σj | = x|Fi

)
|Foc

(−∞,ij)

)
.

(60)

Due to the symmetries of the transition matrix (55) of the intermediate measure we have

(61) µ#
β,λ

(
|σj | = x|Fi

)
(+1) = µ#

β,λ

(
|σj | = x|Fi

)
(−1) ∀x ∈ {0,1}

for each edge {i, j} ∈ E, which shows that µ#
β,λ(|σj | = x|Fi ) is Foc

i -measurable. Therefore the last line of (60) is Foc
i -

measurable which yields

(62) µ#
β,λ

(
|σj | = x|Foc

(−∞,ij)

)
= µ#

β,λ

(
|σj | = x|Foc

i

)
.

This holds for arbitrary x ∈ {0,1} and all edges {i, j} ∈ E, proving the Markov chain property for the occupation mea-
sure. "

From the explicit form of the transition matrix we can estimate the transition probabilities of the occupation measure
for large and small activities respectively.

Lemma 3.4. The transition probability between neighbouring occupied sites of the µ#
β,λ-measure can be controlled by

the activity λ, to be more precise

lim
λ→∞

inf
β>0

µ#
β,λ

(
|σj | = 1||σi | = 1

)
= 1(63)

lim
λ→0

sup
β>0

µ#
β,λ

(
|σj | = 1||σi | = 1

)
= 0(64)

for all edges {i, j} ∈ E and for arbitrary fixed d ∈ N.

Proof. The transition probabilities are given by the transition matrix P #
β,λ (55) from the proof of Lemma 3.2. Due to the

matrix symmetry we get

(65) µ#
β,λ

(
|σj | = 1||σi | = 1

)
= (1 + e−β)ξβ,λ

1 + (1 + e−β)ξβ,λ
.

Also from the previous proof we know that ξβ,λ is bounded by (2−dλ,λ), therefore we can estimate the transition proba-
bility in the following way:

(66)
2λ

1 + 2λ
>

2ξ

1 + 2ξ
> µ#

β,λ

(
|σj | = 1||σi | = 1

)
>

ξ

1 + ξ
>

2−dλ

1 + 2−dλ
∀β > 0.

Taking the limit for large and small activities respectively completes the proof. "

Finally, using the estimations for the transition probabilities in Lemma 3.4 we can prove that an active site in the sense
of the zero-one law 2.7 creates an occupied rooted tree of sufficient size with positive probability.

Proof of Proposition 2.10. Let ps(β,λ, d) denote the probability that a fixed occupied site on the Cayley tree of order
d whose sites are occupied according to the time-evolved intermediate measure µ#

β,λ,t is the root of an occupied subtree
where each vertex has at least s children. Note that the distribution of occupied sites does not depend on t , as the spin-flip
dynamics (12) does not affect the positions of occupied sites. It is therefore sufficient to work with the measure µ#

β,λ. We
show the existence of a critical activity λb(d) ∈ (0,∞) such that

(67) ps(β,λ, d) > 0

for all β > 0 and all s ≤ d − 1 if λ ≥ λb(d).
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Denote by p
(n)
s (β,λ, d) the probability that an occupied site on the Cayley tree of order d is the root of a finite subtree

of n generations where each vertex has at least s occupied children, then we get

(68) lim
n→∞p(n)

s (β,λ, d) = ps(β,λ, d).

The root site is chosen to be occupied, therefore we have p
(0)
s (β,λ, d) = 1 and as the growing of the tree follows a

binomial distribution we get the β-independent inequality

(69) p(n+1)
s (β,λ, d) ≥

d∑

k=s

(
d

k

)(
uλp

(n)
s (β,λ, d)

)k(1 − uλp
(n)
s (β,λ, d)

)d−k ∀β > 0,

with uλ := infβ>0 µoc
β,λ(|σy | = 1||σx | = 1). It suffices to show the positivity of pd−1(β,λ, d), as a subtree of size d − 1

already contains an s subtree for every s ≤ d − 1.
A fixed point pλ ∈ (0,1) for the mapping

(70) p 3→ (uλp)d + d(uλp)d−1(1 − uλp)

would be a lower bound for p
(n)
d−1(β,λ, d) for all β > 0 and all n ∈ N. We show that such a fixed point exists for large

activities λ:
The function

(71) g(x) = xd + dxd−1(1 − x)

is continuous and takes the values g(0) = 0, g(1) = 1 as well as g′(0) = g′(1) = 0 for each d ≥ 2. By the intermediate
value theorem the set of fixed points of g on (0,1) is non-empty and as g is a polynomial it is finite. Choosing xc ∈ (0,1)

to be the largest of these fixed points guarantees that g(x) > x for all x ∈ (xc,1) as g′(1) = 0. By Lemma 3.4 we can
choose a critical activity λb(d) such that for any λ ≥ λb(d) the transition probability uλ is close enough to 1 so that there
exists a fixed point xλ ∈ (xc, uλ) for

(72) x 3→ uλg(x).

Substituting pλ := xλ/uλ ∈ (0,1) in (72) shows that pλ is a fixed point for (70). Therefore we have the positive lower
bound

(73) pc := inf
λ≥λb(d)

pλ ≥ inf
λ≥λb(d)

xλ ≥ xc > 0

for p
(n)
d−1(β,λ, d) for all β > 0, λ ≥ λb(d) and all n ∈ N. Taking the limit gives

(74) ps(β,λ, d) ≥ pd−1(β,λ, d) ≥ pc > 0

for all β > 0 and all s ≤ d − 1 if λ ≥ λb(d), which proves the proposition. "

3.4. Proof of Theorem 2.6

Combining all previous results we get a proof for the main result:

Proof. First, by Theorem 2.8, for d ≥ 4 with the choice s = d − 1 we get finite critical values βb(d) > 0, tb(β, d) > 0
such that all configurations containing an occupied rooted subtree of order d − 1 are bad for β > βb(d) and all times
t ≥ tb(β, d). By Proposition 2.10 there exists a critical activity λb(d) such that these bad configurations have positive
probability for all λ ≥ λb(d). Therefore the set of all bad configurations has positive probability and using the zero-one
law 2.7 we see that the set of bad configurations is an almost sure event. "

4. Proofs: Goodness

To prove almost-sure Gibbsianness we will use the transition probability

(75) uβ,λ := µ#
β,λ

(
|σy | = 1||σx | = 1

)
.
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and Galton–Watson trees. A Galton–Watson tree is a random rooted tree constructed in the following way. Starting at the
root one chooses a random number of children according to a known distribution. Then for every child one independently
chooses according to the same distribution again the number of children. This procedure will be repeated for every new
child.

Proof of Theorem 2.14. It is known that a Galton–Watson tree has almost surely no infinite connected component
if the expected number of children is smaller than one. In our case the offspring distribution is given by a binomial
random variable with probability of success less than uβ,λ. If uβ,λ < 1/d there almost surely cannot exist an infinite
connected component of occupied sites inside the tree. Since limλ→0 supβ>0 uβ,λ = 0 by Lemma 3.4 there exists a critical
λg(β, d) ∈ (0,∞) such that uβ,λ < 1/d for all λ < λg(β, d). Only configurations with an infinite cluster of occupied sites
can be bad which implies that for all λ < λg(β, d) the measure µ#

β,λ,t is almost surely Gibbs. "

Proof of Theorem 2.12. In [21] the authors have investigated the soft-core Widom–Rowlinson models on the lattice V =
Zd . They used Dobrushin-uniqueness theory to show that the time-evolved measure is Gibbs for small times. A quasilocal
specification γ satisfies the Dobrushin condition if

(76) sup
i∈V

∑

j∈V

sup
η,ζ∈%:ηV \j =ζV \j

dTV,i

(
γ{i}(·|ηV \{i}),γ{i}(·|ζV \{i})

)
< 1

where dTV,i is the total variation distance for measures on (%{i},F{i}). In other words the Dobrushin condition is satisfied
if changing only one site in the boundary condition has not a big effect. This condition can be used to prove that there
exists a unique Gibbs measure for the specification. Furthermore, one can use the Dobrushin comparison Theorem which
is an important ingredient to prove short-time Gibbsianness. The Theorem 2.8 in [21] states that if the absolute value of
the external magnetic field h and λ are big enough the soft-core Widom–Rowlinson satisfies the Dobrushin condition.
This not only shown for the lattice but also for general locally finite graphs. As Cayley trees are in fact locally finite graphs
one can repeat the steps in [21] to prove that the time-evolved measure is Gibbs. Moreover, this result does not need that
the starting measure is µ#

β,λ. It holds for every starting Gibbs measure for the soft-core Widom–Rowlinson model. "

Remark 4.1. In [21] it is proven that the soft-core Widom–Rowlinson model satisfies the Dobrushin condition if β(d +
1) < 2. Hence for small enough β the time-evolved model is Gibbs for all times t>0.
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