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Boolean model ﬂ(“

® /C? compact convex sets in RY
= Q probability measure on K¢
® Measure A on K9 such that

/\(-):fy/Rd/ICde—i—Ke-}Q(dK) dx

with v > 0
= 1) Poisson process on K¢ with intensity measure A

7 is stationary and any locally finite stationary Poisson process in K9 has
an intensity measure of the form of A.
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Boolean model ﬂ(“

® /C? compact convex sets in RY
= Q probability measure on K¢
® Measure A on K9 such that

/\(-):fy/Rd/ICde—i—Ke-}Q(dK) dx

with v > 0
= 1) Poisson process on K¢ with intensity measure A

7 is stationary and any locally finite stationary Poisson process in K9 has
an intensity measure of the form of A.

Let the Boolean model Z be given by Z = UK@] K.
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Geometric functionals of Boolean
AT
models

Let R? denote the convex ring and let r(K) be the inradius of K.

For W € K9 and ¢ : RY — R we are interested in 1/(Z N W) and, in
particular, in its asymptotic behaviour as r(W) — oo.
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Geometric functionals of Boolean R (“.
models =N1g

Let R? denote the convex ring and let r(K) be the inradius of K.

For W € K9 and ¢ : RY — R we are interested in 1/(Z N W) and, in
particular, in its asymptotic behaviour as r(W) — oo.

We assume that ¢ is geometric, that is
m additive, i.e. (AU B) = ¢(A) + ¢(B) — (AN B) for A, B € RY,
m translation invariant, i.e. ¢)(x + A) = ¥(A) for all x € R? and A € RY;
a |ocally bounded, i.e.

sup{|(x + K)| : K € K9, K c [0,1]%, x € R} < o0;

m measurable.
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Geometric functionals of Boolean AT

models

Examples of geometric functionals are
a volume and surface area,
m intrinsic volumes V;i(-), i € {0, ..., d}, which are given by

Va(K +eB%) = Z"‘d €97Vi(K), KeK%e>o,

and are even rigid motion invariant on R,
® mixed volumes,
m integrals of surface area measures,
- ..
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Expectation ﬂ(“

The typical grain Z; is a random set with distribution Q. We assume that

v :_EV,-(ZO)_/Kd Vi(K)Q(dK) < oo, i€ {0.....d}.
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Expectation

The typical grain Z; is a random set with distribution Q. We assume that

y EV,-(ZO)_/’Cd Vi(K)Q(dK) < o0, i€ {0

, yo..,d}
Theorem: Miles 1976, Davy 1978
Assume that Z is isotropic and let j € {0, ...,d}. Then
EVi(Zn W) —

Vi(W) = 1—P)ZVK

P/k YV, - '77Vd—1)
for any W € K9, where Pj is a polynomial of degree k — j on R9~/ and
p:=EV4(ZN[0,1]9) = P(0 € 2).

o

(=
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Expectation

Forany W € K¢,
EVg(ZN W) = pVa(W)
and

EVy_1(ZN W) = Vug(W)(1 — p)yVg—1 + Va—1(W)p.

o

(=
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Expectation

Forany W € K¢,
EVg(ZN W) = pVa(W)
and

EVy_1(ZN W) = Vug(W)(1 — p)yVg—1 + Va—1(W)p.

For any geometric functional 1 : R¢ — R the limit

Oy 1=

i Ep(Z N W)
r(W)—o0
exists.

Va(W)

o

(=
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Moment conditions ﬂ(“

In the sequel, we will use the following moment conditions:

(M2) EVi(Z)? < 0o, i€/{0,...,d}
(M3) EVi(Z%)® < 0o, i€{0,...,d}
(M3 +¢) EVi(Z)*t* < o0, i€{0,...,d}
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Covariance structure

Theorem: HLS 2013
Let 11, 1o be geometric functionals and assume (M2). Then the limit
Oipyapp =

im Cov(¥1(ZN W), ¥2(ZN W))
r(W)—o0

Va(W)
exists. Under (M3), there is a constant ¢y, y, such that

Cov(y1(Z2 N W), ¢2(Z N W)) < Cuze
Oy | =
Va(W)
for W € K9 with r(W) > 1

o
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Covariance structure §(“

More precisely,

oo
Y *
= E — Kin...NnK
Opq 12 o nl /ch /(Kd)n1¢1( 1 n)

vi(Ky N N K) AT(d(Kz, - - -, Kn)) Q(dKY)

where 1* : K¢ — R is given by

VH(K) =Ep(ZNK) —9(K), KeKkC.
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Covariance structure §(“

More precisely,

oo
Y *
= E — Kin...NnK
Opq 12 o nl /ch /(Kd)n1¢1( 1 n)

vi(Ky N N K) AT(d(Kz, - - -, Kn)) Q(dKY)

where 1* : K¢ — R is given by

VH(K) =Ep(ZNK) —9(K), KeKkC.

Fori,j € {0,...,d} we define

o CouvZnw), v(Zn w))
r(W)—oo Vd(W)
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Idea of the proof Q(“

It follows from the Fock space representation (see Last/Penrose 2011) that

Cov(¢1(Z N W), p2(Z N W))

EDf, . x,t2(Z 0 W)A'(d(Ki, ..., Ky))

D (ZOW) = > (=1)"Mpz(n+Y " sk)nw).

Ic{1,...,n} i€l
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Idea of the proof

It turns out that

EDg,  x0(ZNW) = (=1)"p*(KiN...0 KN W).
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Idea of the proof §(“

It turns out that
ED,’}h.._,an/J(Z NW)=(—1)"p"(KiN...NnKyN W).

Combining the dominated convergence theorem with some new integral
geometric inequalities, we show that

li (Kn...nKyNnW
r(M))rlw Vd(W) (]Cd)nw1( ! " )

vy(Kin ... Ky N W)AN(d(Kq,s ..., Kp))

:’y\/]Cd/(/Cd)n_1w1(K1m...mKn)
Va(Ki N N K) AT (d(Kz, - . ., Kn)) Q(dKY).
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Positive definiteness

Theorem: HLS 2013
Let ¢k, k € {0,...,d}, be homogeneous of degree k and satisfy

(K| = B(wi)r(K),

K e K¢,
with constants B(wk) > 0. Moreover, assume (M2) and that

(P) P(Vy(Z) > 0) > 0.

Then the covariance matrix = = (0, ;)i je{o,...,q} iS positive definite.

o
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Positive definiteness

Theorem: HLS 2013
Let ¢k, k € {0,...,d}, be homogeneous of degree k and satisfy

(K| = B(wi)r(K),

K e K¢,
with constants 3(1x) > 0. Moreover, assume (M2) and that

(P) P(V4(Z) > 0) > 0.

Then the covariance matrix = = (0, ;)i je{o,...,q} iS positive definite.

Corollary: HLS 2013
If (P) and (M2) are satisfied, the covariance matrix = = (0 )i jeco,....a} IS
positive definite.
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Variance of the volume ﬂ(“

Let Cy(x) = EVy4(2Z N (Z + x)), x € RY, and p := P(0 € Z). Then

Od,d = (1 —,0)2/ eﬂ/Cd(X) — 1 dx.
Rd
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Variance of the volume

Let Cy(x) = EVy4(2Z N (Z + x)), x € RY, and p := P(0 € Z). Then

Rd

Proposition: HLS 2013
Under (M2) and (P) there is a constant ¢y ¢ > 0 such that

Var Vy(Z N W) ‘ Cd,d
Od,d — >

Va(W)
for W € K9 with r(W) > 1

r(w)

o (=] =
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Covariance structure

Fori,j € {0,...,d} we define

1)
v

“——E — Vii(KiNKonN...NK,

Pi —1 n! /ICd/(/Cd)"_1 I(1 2 ’7)

Vi(Ki N Kz N ... N Kp) A" (d(Ka,
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Covariance structure

Fori,j € {0,...,d} we define

JU— l f
pjj = ;_1 i /’Cd /(Kd)n_1 V,(K1 NKoN...N Kn)

Vi(KiNKa N .0 Ky) A1 (d(Ka, -, Kn)) Q(dK).
Theorem: HLS 2013
Assume (M2) and let Z be isotropic. Then
d d

oij = (1 - p)? Z Z Piw(yVis -, vVa—1)Ppi(v v,

k=i I=j
isotropy.

3 YVd—1)Pk,I
fori,j € {0,...,d}. Fori,j € {d—1,d} the formula remains true without

o

(=
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Integral formulas

AT

istuhe I

Theorem: HLS 2013
The numbers p; j, i,j € {0,...,d}, can be expressed as

pij = /R ) 7%0) H; j(dx)

with certain multiple curvature measures Hi ;.

o (=] =
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Covariance structure AT

Corollary: Heinrich/Molchanov 1999, HLS 2013

If (M2) is satisfied and the typical grain is almost surely full-dimensional,
the asymptotic variance of the surface area is given by

0d1a-1 = (1—pP2y22_, /Rd (evcd(x) —1) dx
PR [ O ) ~2a) M (o)
+(1=pPy [ O My as(lx.p)
with the second moment area measure
Ma—1.1 ::E/}Rd /Rd1{(x,y) € ) Py_1(Z0; dx) Py_1(Z0; )

and the mean area-covariogram Cy_1(x) := E®y_1(Zy; Zy + x).
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Covariance structure

Corollary: HLS 2013
Under (M2) the asymptotic covariance between volume and surface area
is given by

0a-10=—(1—p)*yva_1 /d (67 — 1) ax
R

+ (1 —P)Qv/

(R9)2
with the mixed moment measure

e’yCd(X—Y) Md—1,d(d(x’ y))

Mg—1,q := E/Rd /Rd 1{(x,y) € -} Pg_1(Z; dx) ®y(Z; dy).

o
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Spherical Boolean model

We consider volume and surface area of a spherical Boolean model with
fixed radius in dependence on the intensity.

0.54

-0.54 \,,/

T T
2 25

Figure : Covariance between volume and surface area for different dimensions
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Spherical Boolean model A\K“

We consider volume and surface area of a spherical Boolean model with
fixed radius in dependence on the intensity.

1
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Figure : Correlation between volume and surface area for different dimensions
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Covariances for d = 2

Corollary: HLS 2013
Assume (M2) and that Z is isotropic and d = 2. Then

2V2
o0z =p(1 —p)y = (1= pP(y = 1)

/ (e’yCZ(X) — 1) dX
RZ

2
—(1- p)227_v1

/ &%) My o(d(x, y)),
(R2)2

where we recall the mixed moment measure

™

M172 = E/Rz /Rz1{(x,y) € } ¢1(Zo;dX) ¢2(Zo,dy)

o (=] =
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Covariances for d = 2

Corollary: HLS 2013

If additionally the typical grain is almost surely full-dimensional,

2 2(.2 v c
o1 =1 —=p)yvi+(1—p) (’y v1—T)/2(67 A
R

£0pF [ R0 Mhald(r,0)

272v.
-(1- P)z% /(RZ)z &%) My 1 (d(x, y)),

where
. 3732 243y
X(X) = e’YCZ(X)< ,Yﬂ- 1 _ FYTr 1 C1 (X) _ 72))

M1’1 = E/Rz /RZ‘I{(X,}/) € '}¢1(Zo;dX) ¢1(Zo;dy),

and C; (X) = E¢1(Zo; 2o + X).
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Covariances for d = 2

Corollary: HLS 2013
If additionally the typical grain is almost surely full-dimensional,

’72V2
000 =(1—-2p)(1 —p)y+ (1 —p)(2p - 3)71
+(1 —p)2<7— ﬁ)z/ (e7%) — 1) dx

T ]R2
+ (1 —p)z/ xX(x — y) My 2(d(y, x))
(R2)2

(- 232/
+7T2( p)’}/V1
where

e Mis(d ),

4~ y2
x(0) = &% (TFHCi (0 — i) +
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Spherical Boolean model ﬂ(“

We consider a planar spherical Boolean model with fixed radius in
dependence on the intensity.

0.6
059!
04,
03]
0.2
|

0.14

2 3 4
sigma 00 sigma 01 sigma 11
—-— sigma 02 — - sigma 22

Figure : Covariances between intrinsic volumes
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Spherical Boolean model ﬂ(“

We consider a planar spherical Boolean model with fixed radius in
dependence on the intensity.

\

0.84

0.6

0.44

-0.6q

corr 01 corr 02

Figure : Correlations between intrinsic volumes
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Probability distances A\KIT

For two m-dimensional random vectors Y;, Y2 such that E|| Y;||? < oo and

E| Y2|> < oo we define

d3(Y1, Y2) = sup |[Eh(Yy) — Eh(Yz)],
heHm
where H , is the set of all thrice continuously differentiable functions
h: R™ — R such that the second and third partial derivatives are

bounded by one.
For two random variables Y, Yz such that EYZ, EYZ < oo we define

dw(Y1, Yg) = Ssup |Eh( Y1) — Eh( Yg)‘,
helip(1)

where Lip(1) is the set of all h : R — R whose Lipschitz constant is at
most one.
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Multivariate central limit theorem ﬂ(“

Theorem: HLS 2013

Let 41, ..., ¥m be geometric functionals and let W := (1, ..., ¥m).
Assume (M2) and let N be a centred Gaussian random vector with
covariance matrix X = (oy, ;)i je{1,...,m}- Then

_ U
Va(W)

If (M3+¢) is satisfied, there is a constant ¢y, . 4, > 0 such that

(W(EZNW)—EU(ZNW) SN as r(W)— .

1 Cpr...ibmie
dy| ——=(V(ZNW)-EV(ZNnW)),N | < ———T——
3( Vd(W)( ( ) ( ))7 ) = f(W)m'n{Ed/271}

for W € K9 with r(W) > 1.
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Univariate central limit theorem AT

Theorem: HLS 2013

Let v be additive, locally bounded and measurable and assume that

iming Y2¥EOW)
r(W)—oo Vd( W)
Assume (M2) and let N be a standard Gaussian random variable. Then

w(ZﬂW)—Ew(ZﬂW)iN as r(W)— o
Var(Z N W) '

If (M3+¢) is satisfied, there are constants ¢, . and rp such that

(zp(z NW)—Ey(Zn W) ) Cpe
v VargZnw) ) = Vg(w)mn{e/2,1/2)

for W € K9 with r(W) > r.
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Central limit theorems ﬂ(“

m CLTs for volume or surface area by Baddeley 1980, Mase 1982,
Molchanov 1995, Heinrich/Molchanov 1999, Heinrich 2005,
Baryshnikov/Yukich 2005, Penrose 2007, Heinrich/Spiess 2009.

m The rate of convergence in the multivariate case is optimal for ¢ > 1.

a The multivariate CLT holds for non-translation invariant functionals if
the asymptotic covariance matrix exists.

a The rate of convergence in the univariate CLT is better than the rate
in the multivariate CLT ford > 3 and ¢ > 1.

m The CLTs still hold for some non-stationary underlying Poisson
processes.
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Wiener-1t6 chaos expansion ﬂ(“

Let n be a Poisson process over a measurable space (X, X’) with a
o-finite intensity measure \. Let I, stand for the n-th Wiener-It6 integral.

Theorem: Last/Penrose 2011

Let F € L?(IP) be a Poisson functional. Then f, : X" — R, n € N, given by
1 1 _
fn(Xh 000 7Xn) = HED)Z,...,X,,F = FE Z (_1)n |I|F(77 + 25Xf)
Ic{1,...,n} i€l
isin L2(X™) and ~
F=EF+Y h(f),

n=1

where the right-hand side converges in L2(PP). This implies that

o0
Var F =" nl||f;|2.
n=1
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Malliavin-Stein method

Theorem: Peccati/Sole/Taqqu/Utzet 2010
Let F € L?(P) be such that F € dom D (i.e. Y o2, (n+ 1)![|f][|2 < 00)
and EF = 0 and let N be a standard Gaussian random variable. Then

dw(F,N) <E|[1 —/DXF(—DXL—1F)/\(dx)\
X

+E / (DyF)? |DL™"F| A\(dx),
X

where

D,F = i nln—1(fa(x,-))

o
and D,L'F == I 1(fax,")):

n=1

o

(=
Matthias Schulte — Second order properties and CLTs for geometric functionals of Boolean models

October 8, 2013

29/32



Malliavin-Stein method AT

Theorem: HLS 2013

Let F € L3(P) N dom D be such that
/ 18 f@ 5@ 6| d\°l < 0o, o €Ny,i,jeN,
XU

and assume that there are constants a > 0 and b > 1 such that

" ab™ .
/XUI |(fi®fi®ﬁ'®ﬂ')a|d)\l |SW, o¢cNyi,jeN.

Let N be a standard Gaussian random variable. Then

_ o i
dw F—EF’N < 2% 2/17/2 : b ﬁ‘
v/Var F — |i/14]! Var F
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Idea of the proofs of the CLTs &K“

a There is a multivariate version based on Peccati/Zheng 2010.

a We have to bound some asymptotic integrals, which can be treated
similar as in the proof of the formula for the asymptotic covariances.

m So far, we must require the integrability condition (M3+¢). Using a
truncation argument, this assumption can be weakened to (M2).
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Thank you! A\KIT

Thank you!

D. Hug, G. Last and M. Schulte: Second order properties and central limit
theorems for geometric functionals of Boolean models, arXiv: 1308.6519.
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