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1. Stationary tessellations

Setting

X is a face-to-face tessellation of Rd , that is a random collection
of convex and bounded polytopes (called cells) covering the
whole space and such that for any different C,C′ ∈ X the
intersection C ∩ C′ is either empty, or a face of both C and C′.

Definition

For k ∈ {0, . . . ,d} let Xk denote the point process (on the
space Pd of convex polytopes) of k -faces of X and let

η(k) := {s(F ) : F ∈ Xk}

denote the point process (on Rd ) of Steiner points of Xk .
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Assumptions

The tessellation X is stationary, that is

X + x := {C + x : C ∈ X} d
= X , x ∈ Rd .

Moreover, for all compact sets K ⊂ Rd ,

d∑
k=0

E
∑

F∈Xk

1{F ∩ K 6= ∅} <∞.
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2. Face percolation

Definition

Let p ∈ [0,1] and n ∈ {0, . . . ,d}. Given a tessellation X , we
declare the polytopes in Xn independently black with probability
p. All other polytopes in Xn are white. If n ≤ d − 1 and
i ∈ {n + 1, . . . ,d}, then we colour F ∈ Xi black if all its
(i − 1)-faces are black. Let

X 1
k := {F ∈ Xk : F is black}, k ∈ {0, . . . ,d},

and

Z :=
d⋃

k=0

⋃
F∈X 1

k

F .
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Vertex percolation

Given X , the vertices are independently declared open with
probability p. An edge is declared open if its endpoints are
open. A cell is open if all its vertices are open.
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Voronoi percolation

Let X be a Voronoi tessellation. Declare the cells in X
independently open with probability p and let Z be the union of
all open cells.
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Theorem (Bollobás & Riordan ’06)

Consider planar Poisson Voronoi percolation. Then pc = 1/2.
At this critical density there is no percolation, while above there
is exactly one unbounded component.
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3. Mean intrinsic volumes

Definition

Let K ⊂ Rd be compact and convex. The intrinsic volumes of K
are the numbers V0(K ), . . . ,Vd(K ) uniquely determined by the
Steiner formula

Vd(K + rBd) =
d∑

j=0

r jκjVd−j(K ), r ≥ 0,

where κj is the (j-dimensional) volume of the Euclidean unit ball
Bj in Rj .
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Remark

Vd(K ) is the Lebesgue measure of K . If K has non-empty
interior, then Vd−1(K ) is half the surface area of K . Moreover,
V0(K ) = 1{K 6= ∅}.

Remark

The intrinsic volumes satisfy the additivity property

Vi(K ∪ L) = Vi(K ) + Vi(L)− Vi(K ∩ L)

whenever K ,L,K ∪ L are convex. Using the inclusion-exclusion
formula the intrinsic volumes can be extended (uniquely!) to
finite unions K of convex and compact sets. Then Vd−1(K ) is
still half the surface area of K while V0(K ) is the Euler
characteristic of K .
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Definition

Let k ∈ {0, . . . ,d} and denote by

γk := Eη(k)[0,1]d

the intensity of η(k). Let P0
k denote the Palm probability measure

of η(k). The expectation with respect to P0
k is denoted by E0

k .

Definition

Let x ∈ Rd . Then there are unique k ∈ {0, . . . ,d} and
F (x) := F ∈ Xk such that x ∈ relint(F ). Under P0

k the origin is
almost surely in the relative interior of the k -face F (0). The
distribution

P0
k (F (0) ∈ ·)

is the distribution of the typical k -face.
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Assumption

We assume that

d∑
i,k=0

E0
kVi(F (0))2 <∞.

Definition (Face star)

Let x ∈ Rd and l ∈ {0, . . . ,d}. Let k be the dimension of F (x).
If l ≥ k (resp. l < k ) then we let Sl(x) be the set of all
l-dimensional faces G such that F (x) ⊂ G (resp. G ⊂ F (x)).
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Theorem

Consider n-percolation on X. Let W ⊂ Rd be convex with
Vd(W ) > 0 and i ∈ {0, . . . ,d}. Then the limit

δi(p) := lim
t→∞

EVi(Z ∩ tW )

Vd(tW )

exists and is given by

δi(p) =
n∑

k=i

(−1)i+kγkE0
k
[
(1− (1− p)|Sn(0)|)Vi(F (0))

]
+

d∑
k=n+1

(−1)i+kγkE0
k
[
p|Sn(0)|Vi(F (0))

]
.
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One idea of the proof: Using Groemer’s (1972) extension of
intrinsic volumes we have almost surely that

Vi(Z ∩ tW ) = Vi(Z ∩ int(tW )) + Vi(Z ∩ ∂tW )

=
d∑

k=0

∑
F∈X 1

k

Vi(relint(F ∩Wt)) + Vi(Z ∩ ∂tW )

=
d∑

k=0

(−1)i+k
∑

F∈X 1
k

Vi(F ∩ tW ) + Vi(Z ∩ ∂tW ),

where we recall that X 1
k is the set of black k -faces.
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Example

For cell percolation on a planar and normal tessellation

δ0(p) = γ2p(1− p)(1− 2p).

Example

For cell percolation on a planar line tessellation

δ0(p) = 3γ2p − 9γ2p2 + 8γ2p3 − 2γ2p4.
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4. Covariance structure

Assumption

We consider a normal stationary tessellation X and a convex
body W ⊂ Rd of volume 1 (assumed to be a polytope if d ≥ 3)
such that the following limits exist for all i , j ∈ {0, . . . ,d}:

ρk ,l
i,j := lim

t→∞

1
Vd(tW )

Cov
(∫

Vi(F (x) ∩ tW )η(k)(dx),∫
Vj(F (x) ∩ tW )η(l)(dx)

)
.

Remark

General tessellations require more efforts but can be treated as
well.
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Definition

For i , j ∈ {0, . . . ,d} we define asymptotic covariances

σi,j(p) := lim
t→∞

Cov(Vi(Z ∩ tW ),Vj(Z ∩ tW ))

Vd(tW )
.

Definition

Let x ∈ Rd , l ,n ∈ {0, . . . ,d} and m ∈ N. Define Sm,n
l (x) as the

system of all l-dimensional faces sharing m n-faces with the
face F (x). Further let

Sm,n
j,l :=

∫
Vj(F (x))1{F (x) ∈ Sm,n

l (0)}η(l)(dx)

the total j-th intrinsic volumes of those faces.
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Theorem

Consider n-percolation on X. Under suitable integrability
assumptions the asymptotic covariances exist and are given by

σi,j(p) =
d∑

k=i

d∑
l=j

(−1)i+j+k+l fk ,l(p)ρ
k ,l
i,j

+
d∑

k=i

d∑
l=j

(−1)i+j+k+l
d+1−max(k ,l)∑

m=1

gk ,l,m(p)γkE0
kVi(F (0))Sm,n

j,l ,

where fk ,l and gk ,l,m are explicitly given polynomials not
depending on the distibution of X .
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Remark

The above polynomials are given by

fk ,l(p) :=((1− (1− p)d−k+1)1{k < n}+ pd−k+11{k ≥ n})
× ((1− (1− p)d−l+1)1{l < n}+ pd−l+11{l ≥ n}),

and

gk ,l,m(p) :=(1− p)2d−k−l−m+2(1− (1− p)m)1{k , l < n}
+ pd−k+1(1− p)d−l+11{k ≥ n, l < n}
+ (1− p)d−k+1pd−l+11{k < n, l ≥ n}
+ p2d−k−l−m+2(1− pm)1{l , k ≥ n}).

The maximal degree (for k = l = 0) is 2d + 2.
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Corollary

The asymptotic covariance between volume and the j-th
intrinsic volume is given by

σd ,j(p) =
n−1∑
l=j

(−1)j+lp(1− p)d−l+1γdE0
dVd(F (0))S1,n

j,l

+
d∑

l=max(n,j)

(−1)j+lpd−l+1(1− p)γdE0
dVd(F (0))S1,n

j,l .

In particular we have for cell percolation (on arbitrary stationary
tessellations)

σd ,d(p) = p(1− p)γdE0
d [Vd(F (0))2],

σd ,d−1(p) = p(1− p)(1− 2p)γdE0
d [Vd(F (0))Vd−1(F (0))].
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5. Cell percolation on planar normal tessellations

Setting

In this section we consider cell percolation on a planar and
normal tessellation.

Theorem

Under suitable integrability assumptions the asymptotic
covariance between area and Euler characteristic is given by

σ0,2(p) =p(1− p)γ2E0
2V2(F (0))

− p2(1− p)2γ2E0
2[V2(F (0))f0(F (0))],

where f0(F (0)) is the number of the vertices of the (typical cell)
F (0).
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Theorem

The asymptotic covariance between surface length and Euler
characteristic and the variance of the Euler characteristic are
given by

σ0,1(p) =p2(1− p)2(1− 2p)(ρ2,2
1,0 − γ2E0

2[V1(F (0))f0(F (0))])

+ p(1− p)(1− p − 3p2 + 2p3)γ2E0
2[V1(F (0))],

σ0,0(p) =γ2µ2p3(1− p)3

+ γ2p(1− p)(1− 9p − p2 + 20p3 − 10p4)

+ ρ0p2(1− p)2(1− 2p)2,

where µ2 := E0
2f0(F (0))2 and ρ0 := ρ2,2

0,0 is the asymptotic
variance of η(2).
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Proof: By Euler’s formula and normality

γ0 = 2γ2, γ1 = 3γ2

and

ρ0,0
0,0 = 4ρ0, ρ0,1

0,0 = 6ρ0,

ρ0,2
0,0 = 2ρ0, ρ1,1

0,0 = 9ρ0, ρ1,2
0,0 = 3ρ0.

The result follows from the general theorem.

Remark

For a planar Poisson Voronoi tessellation ρ0 = γ2 and
µ2 ≈ 37.78 (Heinrich and Muche, 2008).
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Corollary

The covariance σ2,0 has a global minimum at 1/2 while the
variance σ0,0 has a global maximum at 1/2 if

µ2 >
86
3

+
4ρ0

3γ2
.

Remark

Jensen’s inequality and E0
2f0(F (0)) = 6 imply that

µ2 ≥ 36.
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6. Poisson Voronoi percolation

Setting

In this section we consider cell percolation on the Voronoi
tessellation generated by a stationary Poisson process η of
intensity 1.

Definition

Let ηx := η ∪ {x} and η0,x := η ∪ {0, x}, x ∈ Rd , and define a
stochastic kernel κ by

κ(x , ·) := P((C(η0,x ,0),C(η0,x , x)) ∈ ·), x ∈ Rd ,

and the random variables

V (k)
i (x) := Vi(Fk (C(ηx , x))).
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Theorem

The limits ρk ,l
i,j exist and are given by

(d − k + 1)(d − l + 1)ρk ,l
i,j = EV (k)

i (0)V (l)
j (0)

+

∫ [∫
Vi(Fk (C))Vj(Fl(C′))κ(x ,d(C,C′))− EV (k)

i (0)EV (l)
j (0)

]
dx .
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7. A central limit theorem

Theorem

Consider cell percolation on a Poisson Voronoi tessellation.
Then the vector

ξt := (V0(Z ∩ tW ), . . . ,Vd(Z ∩ tW ))

of intrinsic volumes satisfies the central limit theorem

t−1/2(ξt − Eξt)
d→ N(p) as t →∞,

where N(p) is a centred normal distribution with covariance
matrix (σij(p)). For p ∈ (0,1) this matrix is positive definite.

Idea of the proof: Stabilization theory (Penrose and Yukich,
2005).

Günter Last Percolation on stationary tessellations



8. References

Bollobás, B. and Riordan, O. (2006). The critical probability
for random Voronoi percolation in the plane is 1/2. Probab.
Theor. Related Fields 136, 417-468.
Groemer, H. (1972). Eulersche Charakteristik,
Projektionen und Quermaintegrale. Math. Ann. 198, 23-56.
Heinrich, L. and Muche, L. (2008). Second-order
properties of the point process of nodes in a stationary
Voronoi tessellation. Math. Nachr. 281, 350-375.
Last, G. and Ochsenreither, E. (2013). Percolation on
stationary tessellations: models, mean values and second
order structure. In preparation.

Günter Last Percolation on stationary tessellations



Neher, R.A., Mecke, K. and Wagner, H. (2008). Topological
estimation of percolation thresholds. J. Stat. Mech. Theory
Exp., P01011.
Penrose, M.D. and Yukich, J.E. (2005). Normal
approximation in geometric probability. In: Steins Method
and Applications, Lecture Note Series, Institute for
Mathematical Sciences, 37-58.

Günter Last Percolation on stationary tessellations


