

Günter Last Institut für Stochastik Karlsruher Institut für Technologie

<ロト <四ト <注入 <注下 <注下 <

# Percolation on stationary tessellations

Günter Last

## joint work with Eva Ochsenreither (Karlsruhe)

presented at the

Mini-Workshop on Point Processes and Random Geometry

Bochum, 07.-08.10.2013

# 1. Stationary tessellations

### Setting

*X* is a face-to-face tessellation of  $\mathbb{R}^d$ , that is a random collection of convex and bounded polytopes (called cells) covering the whole space and such that for any different *C*, *C'*  $\in$  *X* the intersection  $C \cap C'$  is either empty, or a face of both *C* and *C'*.

### Definition

For  $k \in \{0, ..., d\}$  let  $X_k$  denote the point process (on the space  $\mathcal{P}^d$  of convex polytopes) of *k*-faces of *X* and let

$$\eta^{(k)} := \{ \boldsymbol{s}(\boldsymbol{F}) : \boldsymbol{F} \in \boldsymbol{X}_k \}$$

denote the point process (on  $\mathbb{R}^d$ ) of Steiner points of  $X_k$ .

### Assumptions

The tessellation X is stationary, that is

$$X + x := \{C + x : C \in X\} \stackrel{d}{=} X, \quad x \in \mathbb{R}^d.$$

Moreover, for all compact sets  $K \subset \mathbb{R}^d$ ,

$$\sum_{k=0}^{d} \mathbb{E} \sum_{F \in X_k} \mathbf{1} \{F \cap K \neq \emptyset\} < \infty.$$

Percolation on stationary tessellations

# 2. Face percolation

### Definition

Let  $p \in [0, 1]$  and  $n \in \{0, ..., d\}$ . Given a tessellation X, we declare the polytopes in  $X_n$  independently black with probability p. All other polytopes in  $X_n$  are white. If  $n \le d - 1$  and  $i \in \{n + 1, ..., d\}$ , then we colour  $F \in X_i$  black if all its (i - 1)-faces are black. Let

$$X^1_k := \{F \in X_k : F ext{ is black}\}, \quad k \in \{0, \dots, d\},$$

and

$$Z:=\bigcup_{k=0}^{d}\bigcup_{F\in X_{k}^{1}}F.$$

### Vertex percolation

Given X, the vertices are independently declared open with probability p. An edge is declared open if its endpoints are open. A cell is open if all its vertices are open.



### Vertex percolation

Given X, the vertices are independently declared open with probability p. An edge is declared open if its endpoints are open. A cell is open if all its vertices are open.



#### Günter Last

### Vertex percolation

Given X, the vertices are independently declared open with probability p. An edge is declared open if its endpoints are open. A cell is open if all its vertices are open.



### Voronoi percolation

Let X be a Voronoi tessellation. Declare the cells in X independently open with probability p and let Z be the union of all open cells.



Günter Last

### Voronoi percolation

Let X be a Voronoi tessellation. Declare the cells in X independently open with probability p and let Z be the union of all open cells.



Günter Last

### Theorem (Bollobás & Riordan '06)

Consider planar Poisson Voronoi percolation. Then  $p_c = 1/2$ . At this critical density there is no percolation, while above there is exactly one unbounded component.

### Definition

Let  $K \subset \mathbb{R}^d$  be compact and convex. The intrinsic volumes of K are the numbers  $V_0(K), \ldots, V_d(K)$  uniquely determined by the Steiner formula

$$V_d(K+rB^d)=\sum_{j=0}^d r^j \kappa_j V_{d-j}(K), \quad r\geq 0,$$

where  $\kappa_j$  is the (*j*-dimensional) volume of the Euclidean unit ball  $B^j$  in  $\mathbb{R}^j$ .

#### Remark

 $V_d(K)$  is the Lebesgue measure of *K*. If *K* has non-empty interior, then  $V_{d-1}(K)$  is half the surface area of *K*. Moreover,  $V_0(K) = \mathbf{1}\{K \neq \emptyset\}$ .

#### Remark

The intrinsic volumes satisfy the additivity property

$$V_i(K \cup L) = V_i(K) + V_i(L) - V_i(K \cap L)$$

whenever  $K, L, K \cup L$  are convex. Using the inclusion-exclusion formula the intrinsic volumes can be extended (uniquely!) to finite unions K of convex and compact sets. Then  $V_{d-1}(K)$  is still half the surface area of K while  $V_0(K)$  is the Euler characteristic of K.

### Definition

### Let $k \in \{0, \ldots, d\}$ and denote by

$$\gamma_k := \mathbb{E}\eta^{(k)}[0,1]^d$$

the intensity of  $\eta^{(k)}$ . Let  $\mathbb{P}_k^0$  denote the Palm probability measure of  $\eta^{(k)}$ . The expectation with respect to  $\mathbb{P}_k^0$  is denoted by  $\mathbb{E}_k^0$ .

### Definition

Let  $x \in \mathbb{R}^d$ . Then there are unique  $k \in \{0, ..., d\}$  and  $F(x) := F \in X_k$  such that  $x \in \text{relint}(F)$ . Under  $\mathbb{P}^0_k$  the origin is almost surely in the relative interior of the *k*-face F(0). The distribution

 $\mathbb{P}^0_k(F(0) \in \cdot)$ 

is the distribution of the typical k-face.

A (1) > A (2) > A

### Assumption

### We assume that

$$\sum_{i,k=0}^d \mathbb{E}^0_k V_i(F(0))^2 < \infty.$$

### Definition (Face star)

Let  $x \in \mathbb{R}^d$  and  $l \in \{0, ..., d\}$ . Let k be the dimension of F(x). If  $l \ge k$  (resp. l < k) then we let  $S_l(x)$  be the set of all l-dimensional faces G such that  $F(x) \subset G$  (resp.  $G \subset F(x)$ ).

Percolation on stationary tessellations

- E 🕨

### Theorem

Consider n-percolation on X. Let  $W \subset \mathbb{R}^d$  be convex with  $V_d(W) > 0$  and  $i \in \{0, ..., d\}$ . Then the limit

$$\delta_i(\boldsymbol{p}) := \lim_{t \to \infty} \frac{\mathbb{E} V_i(Z \cap tW)}{V_d(tW)}$$

exists and is given by

$$\begin{split} \delta_i(\boldsymbol{p}) &= \sum_{k=i}^n (-1)^{i+k} \gamma_k \mathbb{E}_k^0 \big[ (1 - (1 - \boldsymbol{p})^{|\mathcal{S}_n(0)|}) V_i(F(0)) \big] \\ &+ \sum_{k=n+1}^d (-1)^{i+k} \gamma_k \mathbb{E}_k^0 \big[ \boldsymbol{p}^{|\mathcal{S}_n(0)|} V_i(F(0)) \big]. \end{split}$$

I naa

< 回 > < 三 > < 三 >

One idea of the proof: Using Groemer's (1972) extension of intrinsic volumes we have almost surely that

$$V_i(Z \cap tW) = V_i(Z \cap \operatorname{int}(tW)) + V_i(Z \cap \partial tW)$$
  
=  $\sum_{k=0}^d \sum_{F \in X_k^1} V_i(\operatorname{relint}(F \cap W_t)) + V_i(Z \cap \partial tW)$   
=  $\sum_{k=0}^d (-1)^{i+k} \sum_{F \in X_k^1} V_i(F \cap tW) + V_i(Z \cap \partial tW),$ 

where we recall that  $X_k^1$  is the set of black k-faces.

### Example

For cell percolation on a planar and normal tessellation

$$\delta_0(p) = \gamma_2 p(1-p)(1-2p).$$

### Example

For cell percolation on a planar line tessellation

$$\delta_0(\boldsymbol{p}) = 3\gamma_2\boldsymbol{p} - 9\gamma_2\boldsymbol{p}^2 + 8\gamma_2\boldsymbol{p}^3 - 2\gamma_2\boldsymbol{p}^4.$$

Percolation on stationary tessellations

э

A (10) > A (10) > A (10)

# 4. Covariance structure

### Assumption

We consider a normal stationary tessellation *X* and a convex body  $W \subset \mathbb{R}^d$  of volume 1 (assumed to be a polytope if  $d \ge 3$ ) such that the following limits exist for all  $i, j \in \{0, ..., d\}$ :

$$\rho_{i,j}^{k,l} := \lim_{t \to \infty} \frac{1}{V_d(tW)} \mathbb{C}\operatorname{ov}\left(\int V_i(F(x) \cap tW)\eta^{(k)}(dx), \int V_j(F(x) \cap tW)\eta^{(l)}(dx)\right).$$

### Remark

General tessellations require more efforts but can be treated as well.

### Definition

# For $i, j \in \{0, ..., d\}$ we define asymptotic covariances $\sigma_{i,j}(p) := \lim_{t \to \infty} \frac{\mathbb{C}\text{ov}(V_i(Z \cap tW), V_j(Z \cap tW))}{V_d(tW)}.$

#### Definition

Let  $x \in \mathbb{R}^d$ ,  $l, n \in \{0, ..., d\}$  and  $m \in \mathbb{N}$ . Define  $S_l^{m,n}(x)$  as the system of all *l*-dimensional faces sharing *m n*-faces with the face F(x). Further let

$$S^{m,n}_{j,l} := \int V_j(F(x)) \mathbf{1}\{F(x) \in \mathcal{S}^{m,n}_l(0)\} \eta^{(l)}(dx)$$

the total *j*-th intrinsic volumes of those faces.

< 回 > < 三 > < 三

### Theorem

Consider n-percolation on X. Under suitable integrability assumptions the asymptotic covariances exist and are given by

$$\sigma_{i,j}(p) = \sum_{k=i}^{d} \sum_{l=j}^{d} (-1)^{i+j+k+l} f_{k,l}(p) \rho_{i,j}^{k,l} + \sum_{k=i}^{d} \sum_{l=j}^{d} (-1)^{i+j+k+l} \sum_{m=1}^{d+1-\max(k,l)} g_{k,l,m}(p) \gamma_k \mathbb{E}_k^0 V_i(F(0)) S_{j,l}^{m,n},$$

where  $f_{k,l}$  and  $g_{k,l,m}$  are explicitly given polynomials not depending on the distibution of *X*.

э

### Remark

The above polynomials are given by

$$\begin{split} f_{k,l}(p) &:= ((1 - (1 - p)^{d-k+1}) \mathbf{1}\{k < n\} + p^{d-k+1} \mathbf{1}\{k \ge n\}) \\ &\times ((1 - (1 - p)^{d-l+1}) \mathbf{1}\{l < n\} + p^{d-l+1} \mathbf{1}\{l \ge n\}), \end{split}$$

and

$$\begin{split} g_{k,l,m}(p) &:= (1-p)^{2d-k-l-m+2} (1-(1-p)^m) \mathbf{1}\{k,l < n\} \\ &+ p^{d-k+1} (1-p)^{d-l+1} \mathbf{1}\{k \ge n,l < n\} \\ &+ (1-p)^{d-k+1} p^{d-l+1} \mathbf{1}\{k < n,l \ge n\} \\ &+ p^{2d-k-l-m+2} (1-p^m) \mathbf{1}\{l,k \ge n\}). \end{split}$$

The maximal degree (for k = l = 0) is 2d + 2.

э.

(日) (四) (日) (日) (日)

### Corollary

The asymptotic covariance between volume and the *j*-th intrinsic volume is given by

$$\sigma_{d,j}(p) = \sum_{l=j}^{n-1} (-1)^{j+l} p (1-p)^{d-l+1} \gamma_d \mathbb{E}_d^0 V_d(F(0)) S_{j,l}^{1,n} + \sum_{l=\max(n,j)}^d (-1)^{j+l} p^{d-l+1} (1-p) \gamma_d \mathbb{E}_d^0 V_d(F(0)) S_{j,l}^{1,n}$$

In particular we have for cell percolation (on arbitrary stationary tessellations)

$$\sigma_{d,d}(p) = p(1-p)\gamma_d \mathbb{E}_d^0 [V_d(F(0))^2],$$
  
$$\sigma_{d,d-1}(p) = p(1-p)(1-2p)\gamma_d \mathbb{E}_d^0 [V_d(F(0))V_{d-1}(F(0))].$$

# 5. Cell percolation on planar normal tessellations

### Setting

In this section we consider cell percolation on a planar and normal tessellation.

### Theorem

Under suitable integrability assumptions the asymptotic covariance between area and Euler characteristic is given by

$$egin{aligned} \sigma_{0,2}(p) =& p(1-p)\gamma_2 \mathbb{E}_2^0 V_2(F(0)) \ &- p^2(1-p)^2 \gamma_2 \mathbb{E}_2^0 [V_2(F(0)) f_0(F(0))], \end{aligned}$$

where  $f_0(F(0))$  is the number of the vertices of the (typical cell) F(0).

#### Theorem

The asymptotic covariance between surface length and Euler characteristic and the variance of the Euler characteristic are given by

$$\begin{split} \sigma_{0,1}(p) = & p^2(1-p)^2(1-2p)(\rho_{1,0}^{2,2}-\gamma_2\mathbb{E}_2^0[V_1(F(0))f_0(F(0))]) \\ &+ p(1-p)(1-p-3p^2+2p^3)\gamma_2\mathbb{E}_2^0[V_1(F(0))], \\ \sigma_{0,0}(p) = & \gamma_2\mu_2p^3(1-p)^3 \\ &+ \gamma_2p(1-p)(1-9p-p^2+20p^3-10p^4) \\ &+ \rho_0p^2(1-p)^2(1-2p)^2, \end{split}$$

where  $\mu_2 := \mathbb{E}_2^0 f_0(F(0))^2$  and  $\rho_0 := \rho_{0,0}^{2,2}$  is the asymptotic variance of  $\eta^{(2)}$ .

э

Proof: By Euler's formula and normality

$$\gamma_0 = 2\gamma_2, \quad \gamma_1 = 3\gamma_2$$

and

$$\begin{split} \rho_{0,0}^{0,0} &= 4\rho_0, \quad \rho_{0,0}^{0,1} = 6\rho_0, \\ \rho_{0,0}^{0,2} &= 2\rho_0, \quad \rho_{0,0}^{1,1} = 9\rho_0, \quad \rho_{0,0}^{1,2} = 3\rho_0. \end{split}$$

The result follows from the general theorem.

### Remark

For a planar Poisson Voronoi tessellation  $\rho_0 = \gamma_2$  and  $\mu_2 \approx 37.78$  (Heinrich and Muche, 2008).

→ ∃ →

### Corollary

The covariance  $\sigma_{2,0}$  has a global minimum at 1/2 while the variance  $\sigma_{0,0}$  has a global maximum at 1/2 if

$$\mu_2 > \frac{86}{3} + \frac{4\rho_0}{3\gamma_2}.$$

#### Remark

Jensen's inequality and  $\mathbb{E}_2^0 f_0(F(0)) = 6$  imply that

 $\mu_{2} \ge 36.$ 

Percolation on stationary tessellations

I naa

< 🗇 > < 🖻 > < 🖻 > –

# 6. Poisson Voronoi percolation

### Setting

In this section we consider cell percolation on the Voronoi tessellation generated by a stationary Poisson process  $\eta$  of intensity 1.

### Definition

Let  $\eta^x := \eta \cup \{x\}$  and  $\eta^{0,x} := \eta \cup \{0, x\}$ ,  $x \in \mathbb{R}^d$ , and define a stochastic kernel  $\kappa$  by

$$\kappa(x,\cdot):=\mathbb{P}((\mathcal{C}(\eta^{0,x},0),\mathcal{C}(\eta^{0,x},x))\in \cdot),\quad x\in\mathbb{R}^d,$$

and the random variables

$$V_i^{(k)}(x) := V_i(\mathcal{F}_k(\mathcal{C}(\eta^x, x))).$$

э

< 回 > < 三 > < 三

#### Theorem

The limits  $\rho_{i,j}^{k,l}$  exist and are given by  $(d-k+1)(d-l+1)\rho_{i,j}^{k,l} = \mathbb{E}V_i^{(k)}(0)V_j^{(l)}(0)$  $+\int \left[\int V_i(\mathcal{F}_k(C))V_j(\mathcal{F}_l(C'))\kappa(x,d(C,C')) - \mathbb{E}V_i^{(k)}(0)\mathbb{E}V_j^{(l)}(0)\right] \mathrm{d}x.$ 

# 7. A central limit theorem

### Theorem

Consider cell percolation on a Poisson Voronoi tessellation. Then the vector

$$\xi_t := (V_0(Z \cap tW), \ldots, V_d(Z \cap tW))$$

of intrinsic volumes satisfies the central limit theorem

$$t^{-1/2}(\xi_t - \mathbb{E}\xi_t) \stackrel{d}{\rightarrow} \mathcal{N}(\mathcal{p}) \quad as \ t \rightarrow \infty,$$

where N(p) is a centred normal distribution with covariance matrix  $(\sigma_{ij}(p))$ . For  $p \in (0, 1)$  this matrix is positive definite.

Idea of the proof: Stabilization theory (Penrose and Yukich, 2005).

# 8. References

- Bollobás, B. and Riordan, O. (2006). The critical probability for random Voronoi percolation in the plane is 1/2. *Probab. Theor. Related Fields* **136**, 417-468.
- Groemer, H. (1972). Eulersche Charakteristik,
  Projektionen und Quermaintegrale. *Math. Ann.* 198, 23-56.
- Heinrich, L. and Muche, L. (2008). Second-order properties of the point process of nodes in a stationary Voronoi tessellation. *Math. Nachr.* 281, 350-375.
- Last, G. and Ochsenreither, E. (2013). Percolation on stationary tessellations: models, mean values and second order structure. In preparation.

- Neher, R.A., Mecke, K. and Wagner, H. (2008). Topological estimation of percolation thresholds. J. Stat. Mech. Theory Exp., P01011.
- Penrose, M.D. and Yukich, J.E. (2005). Normal approximation in geometric probability. In: *Steins Method and Applications*, Lecture Note Series, Institute for Mathematical Sciences, 37-58.

🗇 🕨 🖌 🖻 🕨 🔺 🖻