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Message of this talk:

e One should not always use the weak topology of measures!

e Instead, it is often convenient to use a notion of convergence
of measures that exploits only the measurable structure of the
underlying space.

e In this way one avoids continuity assumptions.

e Relative entropy is then a useful tool.
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Message of this talk:

e One should not always use the weak topology of measures!

e Instead, it is often convenient to use a notion of convergence
of measures that exploits only the measurable structure of the
underlying space.

e In this way one avoids continuity assumptions.

e Relative entropy is then a useful tool.

Arose from my work on Gibbs measures and LDPs '88, '93

Used for point processes jointly with
Zessin '93, Haggstrom '96, Dereudre '09, '12, Thale '13, ...
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Setwise convergence

(Q, F) measurable space, P, P € & := P(Q,F)

Definitions
P, — P setwise < VA€ F: P,(A)— P(A)

& VFeMM(Q,F): [fdP,— [fdP
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Setwise convergence

(Q, F) measurable space, P, P € & := P(Q,F)

Definitions
P, — P setwise < VA€ F: P,(A)— P(A)

& VFeMM(Q,F): [fdP,— [fdP

(Pn)n>1 equicontinuous

& VA eF A la: limsup Py(A;)) L0 asjtoo

n—o00
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..., GanBler '71

Every equicontinuous sequence in &2 admits a convergent
subsequence.
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Every equicontinuous sequence in & admits a convergent
subsequence.

Proof.

As P, € [0,1)7, 3 subnet (n,) 3 P € [0,1]7 : P, — P setwise.
P is additive and, by equicontinuity of (P,), o-additive.
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Proof.

As P, € [0,1]7, 3 subnet (n,) 3 P €[0,1]7 : P, — P setwise.
P is additive and, by equicontinuity of (P,), o-additive.

To find a subsequence, take Q € & with P, = g,Q, P = gQ.
Let G = o(g,gn: n>1), A a countable algebra generating G.
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..., GanBler '71

Every equicontinuous sequence in & admits a convergent
subsequence.

Proof.

As P, € [0,1]7, 3 subnet (n,) 3 P €[0,1]7 : P, — P setwise.
P is additive and, by equicontinuity of (P,), o-additive.

To find a subsequence, take Q € & with P, = g,Q, P = gQ.
Let G = o(g,gn: n>1), A a countable algebra generating G.
Pp, — P setwise = I nVAecA: P, (A) — P(A)
Monotone class = P, |g — P|g setwise =

VAeF: P, (A) = [ Q(AIG) dP,, — [ Q(A|IG) dP = P(A)
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Local convergence

Assume from now on:

(2, F) = proj-lim (Qy, F;) projective limit of ‘local’ Borel spaces
{—00

Definition

P, — P localy < V¢: PP — PO setwise

(P,) locally equicontinuous <V £: (PY),>1 equicontinuous

Corollary

Every locally equicontinuous sequence in & admits a locally
convergent subsequence.

(Use GanBler's theorem, diagonal method, Kolmogorov extension)
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Entropy

Fix a reference p.m. Q € &

Local relative entropy of P rel. to Q@

HPY:QY) = sup | / g dP® — log / ef dQ)|

gEMb(Qe,,Fg)

Definition
(Pn)n>1 locally entropy-bounded relative to Q € &
& VL>1: limsup H(PY; QW) =: ¢ < o0

n—o0
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Proposition
(Pn)n>1 locally entropy-bd. rel. to Q =
(Pn)n>1 admits a locally convergent subsequence

Proof.
Vi>1, AJ'G./_"@, AJ'J,Q

Va>0: aPy(A;) <HPY; QW)+ Iog/ealAj dQ®
<c¢+1 forlarge nandj

= (PY)n>1 equicontinuous o
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Application to point processes

(E, d) complete separable metric space, & Borel
Q= Mp(E,E), F=0(Na:A€c&)

Q, Poisson p.p. with intensity measure p € .#Z(E,€)
Aoeép, MM T E, Qpi= Mp(Ap, ENAY)
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Application to point processes

(E, d) complete separable metric space, & Borel
Q= Mp(E,E), F=0(Na:A€c&)

Q, Poisson p.p. with intensity measure p € .#Z(E,€)
Aoeép, MM T E, Qpi= Mp(Ap, ENAY)

Theorem
(Pn)n>1 locally entropy-bd. rel. to Q, =
In,P VfeL: [fdP, — [fdP

fe¥ < 3L by, byst. f(w) = f(wA[), ‘f’ < b1+ b NAZ
No continuity of f required!

Consequence: Campbell measures also converge locally!
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Proof.

Proposition = Jny s.t. convergence holds V f € .£?.

General f: Wilog [f| < Np,. Consider fp = f 1ffj<m} € b
sup, | [ £ dP, — [ fm dPy| < sup, [ Na, Liny,[>my dPn

<2 4liogf ™Mo Hmy 1zm} gy
a

<e if a,m sufficiently large. o
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Case of stationary marked point processes:

E=RIxM, o=z A®@p, Ap=[-212719 x M

P stationary = 3 h,(P) = tlim 2=¢ H(P®; QY)

{—00

Corollary
Ve>0: {PePs: hy(P)< c} sequentially compact J
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Gibbsian point processes

Definitions
~v: E x Q — R, Papangelou intensity <

Vx,y € E, we Q: y(x,w)y(y,w+dx) symmetric in x,y
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Gibbsian point processes

Definitions
~v: E x Q — R, Papangelou intensity <

Vx,y € E, we Q: y(x,w)y(y,w+dx) symmetric in x,y

P Gibbs for yand ¢ & Cp=7(e®P) & VFf>0

[ P(dw) [w(dx) f(x,w—0bx) = [ o(dx) [ P(dw)~(x,w) f(x,w)
(GNZ)
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Gibbsian point processes

Definitions
~v: E x Q — R, Papangelou intensity <

Vx,y € E, we Q: y(x,w)y(y,w+dx) symmetric in x,y

P Gibbs for yand ¢ & Cp=7(e®P) & VFf>0

[ P(dw) [w(dx) f(x,w—0bx) = [ o(dx) [ P(dw)~(x,w) f(x,w)
(GNZ)

v

Basic Existence Theorem
7 s.t. (i) strong stability: v(x,w) < ¢

(i) finite range: Vx € E 34 Vw € Q: vy(x,w) = v(x,wa,)
= 1 Gibbs p.p. for ~v and every o
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Proof. Define  Pn:=Z, 1 4(-,0) Qya, (free b.c.)

n

where for a = {x1,...xp}

’7(055 w) = ’Y(Xla w) ’7(X27 w+6x1) T ’Y(Xnv w+5X1+ e +5Xn71)
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Proof. Define  Pn:=Z, 1 4(-,0) Qya, (free b.c.)
where for a = {x1,...xp}

’7(055 w) = ’Y(Xla w) 7(X27 w+6x1) T ’Y(Xﬂv w+5X1+ T +6Xn71)
ThenV /i< n, w:

Pa(-|win An\ Ag) = Zn,(w) 7 AC.w) Qya,

> ee(he) < M
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Proof. Define  Pn:=Z, 1 4(-,0) Qya, (free b.c.)
where for @ = {x1,...xn}

Ao, w) == y(x1,w) Y0x2, wA0x) -+ Y(Xn, WHOx+ -+ +0x,)
ThenV /i< n, w:

Po(-|win Ap\ Ap) = Zp,(w) ! A+, w) e
N—— S——

> ee(he) < e

= H(PY:; Q) < co(Ay) = P, — some P locally.

Since also Cpnk — Cp locally, P is Gibbsian for ~. o
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Standard examples

e Repulsive pair interaction of finite range:

E=RI ~(x,w)=_ze Jul@)elxy) with

(i) either ¢ >0, or ¢ > —c and ¢(x,y) = oo for |x—y| < r
(i) ¢(x,y) = 0 for [x—y[ > R.
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Standard examples

e Repulsive pair interaction of finite range:

E=RI ~(x,w)=_ze Jul@)elxy) with

(i) either ¢ >0, or ¢ > —c and ¢(x,y) = oo for |x—y| < r
(i) ¢(x,y) = 0 for [x—y[ > R.

e Two-type Widom-Rowlinson gas:

E=RIx{-1,1}, y(x,0;w) :zl{

w(B/(x)x{~0}) = }
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Variations & extensions

A. QuermaB interactions

E=R2 xRy, 0 =2z\® u, 4 subexponential
I'(w) == U, new Br(x) (Boolean model)
w ‘nice’ = logy(x,r;w) ‘=" W(I(w+d(x,n)) — W([(w))

where W is a linear combination of Minkowski functionals

Dereudre '09
ho(Pn) < c for suitable P,, c. Hence 3 stationary Gibbs p.p. for v.J

(Energy estimates for point collections)
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Variations & extensions

B. Geometric interactions

E =R?, o= z)\, I'(w) := Delaunay or Voronoi graph of w
w ‘nice’ = logy(x,w) ‘=" W(T'(w+dx)) — W(I'(w))

where

W(w) = — Z p(a,w),

a clique of T'(w)

E.g.: o(a,w) = oo if ar is a Delaunay triangle with smallest angle < 5 — ¢

Dereudre, Drouilhet, Georgii '12
¢ reasonable, z > z(¢) > 0 = I stationary Gibbs p.p. for ~. }
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Variations & extensions

C. Branching tessellations

Cells of a tessellation of RY are randomly divided by hyperplanes.

Reference model @ = STIT:
Cells split independently without memory

Gibbsian branching:
Cell ¢ € Ts is divided by H at time s with rate ¥(s, ¢, Ts, dH)

Georgii, Schreiber, Thale '13
U reasonable = 3 Gibbsian branching tessellation for . J

Proof via some conditional relative entropy.
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