Hans-Otto Georgii

LMU Munich

Bochum 7. 10. 2013

Message of this talk:

- One should not always use the weak topology of measures!
- Instead, it is often convenient to use a notion of convergence of measures that exploits only the measurable structure of the underlying space.
- In this way one avoids continuity assumptions.
- Relative entropy is then a useful tool.

- One should not always use the weak topology of measures!
- Instead, it is often convenient to use a notion of convergence of measures that exploits only the measurable structure of the underlying space.
- In this way one avoids continuity assumptions.
- Relative entropy is then a useful tool.

Arose from my work on Gibbs measures and LDPs '88, '93

Used for point processes jointly with Zessin '93, Häggström '96, Dereudre '09, '12, Thäle '13, ...

Setwise convergence

$$(\Omega, \mathcal{F})$$
 measurable space, $P_n, P \in \mathscr{P} := \mathscr{P}(\Omega, \mathcal{F})$

Definitions

$$P_n \to P$$
 setwise $\Leftrightarrow \forall A \in \mathcal{F} : P_n(A) \to P(A)$
 $\Leftrightarrow \forall f \in M^b(\Omega, \mathcal{F}) : \int f dP_n \to \int f dP$

Setwise convergence

$$(\Omega, \mathcal{F})$$
 measurable space, $P_n, P \in \mathscr{P} := \mathscr{P}(\Omega, \mathcal{F})$

Definitions

$$P_n \to P$$
 setwise $\Leftrightarrow \forall A \in \mathcal{F} : P_n(A) \to P(A)$
 $\Leftrightarrow \forall f \in M^b(\Omega, \mathcal{F}) : \int f dP_n \to \int f dP$

$(P_n)_{n\geq 1}$ equicontinuous

$$\Leftrightarrow \quad \forall \ A_j \in \mathcal{F}, A_j \downarrow \varnothing : \quad \limsup_{n \to \infty} \ P_n(A_j) \downarrow 0 \quad \text{as } j \uparrow \infty$$

Every equicontinuous sequence in $\mathscr P$ admits a convergent subsequence.

..., Gänßler '71

Every equicontinuous sequence in \mathscr{P} admits a convergent subsequence.

Proof.

As $P_n \in [0,1]^{\mathcal{F}}$, \exists subnet $(n_{\alpha}) \exists P \in [0,1]^{\mathcal{F}} : P_{n_{\alpha}} \to P$ setwise. P is additive and, by equicontinuity of (P_n) , σ -additive.

..., Gänßler '71

Every equicontinuous sequence in ${\mathscr P}$ admits a convergent subsequence.

Proof.

As $P_n \in [0,1]^{\mathcal{F}}$, \exists subnet $(n_{\alpha}) \exists P \in [0,1]^{\mathcal{F}} : P_{n_{\alpha}} \to P$ setwise.

P is additive and, by equicontinuity of (P_n) , σ -additive.

To find a subsequence, take $Q \in \mathscr{P}$ with $P_n = g_n Q$, P = gQ.

Let $\mathcal{G} = \sigma(g, g_n : n \geq 1)$, \mathcal{A} a countable algebra generating \mathcal{G} .

..., Gänßler '71

Every equicontinuous sequence in ${\mathscr P}$ admits a convergent subsequence.

Proof.

As $P_n \in [0,1]^{\mathcal{F}}$, \exists subnet $(n_{\alpha}) \exists P \in [0,1]^{\mathcal{F}} : P_{n_{\alpha}} \to P$ setwise. P is additive and, by equicontinuity of (P_n) , σ -additive.

To find a subsequence, take $Q \in \mathscr{P}$ with $P_n = g_n Q$, P = gQ.

Let $\mathcal{G} = \sigma(g, g_n : n \geq 1)$, \mathcal{A} a countable algebra generating \mathcal{G} .

 $P_{n_{\alpha}} \to P$ setwise $\Rightarrow \exists n_k \ \forall \ A \in \mathcal{A} : P_{n_k}(A) \to P(A)$

Monotone class $\Rightarrow P_{n_k}|_{\mathcal{G}} \to P|_{\mathcal{G}}$ setwise \Rightarrow

$$\forall A \in \mathcal{F}: P_{n_k}(A) = \int Q(A|\mathcal{G}) dP_{n_k} \rightarrow \int Q(A|\mathcal{G}) dP = P(A)$$

Assume from now on:

$$(\Omega, \mathcal{F}) = \text{proj-lim} \ (\Omega_{\ell}, \mathcal{F}_{\ell})$$
 projective limit of 'local' Borel spaces $\ell \to \infty$

Definition

$$P_n \to P$$
 locally $\Leftrightarrow \forall \ell : P_n^{(\ell)} \to P^{(\ell)}$ setwise

 (P_n) locally equicontinuous $\Leftrightarrow \forall \ell : (P_n^{(\ell)})_{n\geq 1}$ equicontinuous

Corollary

Every locally equicontinuous sequence in \mathscr{P} admits a locally convergent subsequence.

(Use Gänßler's theorem, diagonal method, Kolmogorov extension)

Fix a reference p.m. $Q \in \mathscr{P}$

Local relative entropy of P rel. to Q

$$H(P^{(\ell)};Q^{(\ell)}) := \sup_{g \in M^b(\Omega_\ell,\mathcal{F}_\ell)} \Big[\int g \ dP^{(\ell)} - \log \int e^g \ dQ^{(\ell)} \Big]$$

Definition

 $(P_n)_{n\geq 1}$ locally entropy-bounded relative to $Q\in \mathscr{P}$

$$\Leftrightarrow \ \ \forall \ \ell \geq 1 : \limsup_{n \to \infty} \ H(P_n^{(\ell)}; Q^{(\ell)}) =: c_\ell < \infty$$

Proposition

$$(P_n)_{n\geq 1}$$
 locally entropy-bd. rel. to $Q\Rightarrow (P_n)_{n\geq 1}$ admits a locally convergent subsequence

Proof.

$$\forall \ \ell \geq 1, \ A_j \in \mathcal{F}_{\ell}, \ A_j \downarrow \varnothing$$

$$orall \ a>0: \ a\,P_n^{(\ell)}(A_j)\leq H(P_n^{(\ell)};\,Q^{(\ell)})+\log\int e^{a1_{A_j}}\,dQ^{(\ell)}$$
 $\leq c_\ell+1 \quad ext{ for large } n ext{ and } j$

$$\Rightarrow (P_n^{(\ell)})_{n>1}$$
 equicontinuous

Application to point processes

- (E, d) complete separable metric space, \mathcal{E} Borel
- $\Omega := \mathcal{M}_p(E, \mathcal{E}), \quad \mathcal{F} = \sigma(N_{\Delta} : \Delta \in \mathcal{E}_b)$
- Q_{ϱ} Poisson p.p. with intensity measure $\varrho \in \mathscr{M}(E,\mathcal{E})$
- $\Lambda_{\ell} \in \mathcal{E}_b$, $\Lambda_{\ell} \uparrow E$, $\Omega_{\ell} := \mathscr{M}_p(\Lambda_{\ell}, \mathcal{E} \cap \Lambda_{\ell})$

Application to point processes

- (E, d) complete separable metric space, \mathcal{E} Borel
- $\Omega := \mathcal{M}_p(E, \mathcal{E}), \quad \mathcal{F} = \sigma(N_{\Delta} : \Delta \in \mathcal{E}_b)$
- Q_{ϱ} Poisson p.p. with intensity measure $\varrho \in \mathcal{M}(E, \mathcal{E})$
- $\Lambda_{\ell} \in \mathcal{E}_b$, $\Lambda_{\ell} \uparrow E$, $\Omega_{\ell} := \mathscr{M}_p(\Lambda_{\ell}, \mathcal{E} \cap \Lambda_{\ell})$

Theorem

$$(P_n)_{n\geq 1}$$
 locally entropy-bd. rel. to $Q_{\varrho}\Rightarrow \exists n_k,P \ orall \ f\in \mathscr{L}:\ \int f\ dP_{n_k} o \int f\ dP$

$$f \in \mathscr{L} \iff \exists \ell, b_1, b_2 \text{ s.t. } f(\omega) = f(\omega_{\Lambda_\ell}), \ |f| \leq b_1 + b_2 N_{\Lambda_\ell}$$

No continuity of f required!

Consequence: Campbell measures also converge locally!

Proof.

Proposition $\Rightarrow \exists n_k \text{ s.t. convergence holds } \forall f \in \mathcal{L}^b$.

General f: Wlog $|f| \leq N_{\Lambda_{\ell}}$. Consider $f_m = f 1_{\{|f| \leq m\}} \in \mathcal{L}^b$.

$$\sup_{n} \left| \int f \, dP_{n} - \int f_{m} \, dP_{n} \right| \leq \sup_{n} \int N_{\Lambda_{\ell}} \, \mathbf{1}_{\{|N_{\Lambda_{\ell}}| \geq m\}} \, dP_{n}$$

$$\leq \frac{c_{\ell}}{a} + \frac{1}{a} \log \int e^{aN_{\Lambda_{\ell}} \mathbf{1}_{\{|N_{\Lambda_{\ell}}| \geq m\}}} dQ$$

 $< \varepsilon$ if a, m sufficiently large.

Case of stationary marked point processes:

$$E = \mathbb{R}^d \times M, \ \varrho = z \lambda \otimes \mu, \ \Lambda_\ell = [-2^{\ell-1}, 2^{\ell-1}]^d \times M$$

$$P ext{ stationary } \Rightarrow \exists \ h_{\varrho}(P) = \mathop{\uparrow}\lim_{\ell \to \infty} \ 2^{-\ell} \ H(P^{(\ell)}; Q_{\varrho}^{(\ell)})$$

Corollary

 $\forall \ c \geq 0 : \ \{P \in \mathscr{P}_{\Theta} : \ h_{\varrho}(P) \leq c\} \ \text{sequentially compact}$

Gibbsian point processes

Definitions

$$\gamma: E \times \Omega \to \mathbb{R}_+$$
 Papangelou intensity \Leftrightarrow

$$\forall x, y \in E, \ \omega \in \Omega : \ \gamma(x, \omega) \gamma(y, \omega + \delta_x)$$
 symmetric in x, y

Definitions

$$\gamma: E \times \Omega \to \mathbb{R}_+$$
 Papangelou intensity \Leftrightarrow

$$\forall x, y \in E, \ \omega \in \Omega: \ \gamma(x, \omega) \, \gamma(y, \omega + \delta_x) \text{ symmetric in } x, y$$
P Gibbs for γ and $\varrho \Leftrightarrow \mathbb{C}_P^! = \gamma(\varrho \otimes P) \Leftrightarrow \forall f \geq 0$

$$\int P(d\omega) \int \omega(dx) \, f(x, \omega - \delta_x) = \int \varrho(dx) \int P(d\omega) \, \gamma(x, \omega) \, f(x, \omega)$$
(GNZ)

Gibbsian point processes

Definitions

$$\gamma: E imes \Omega o \mathbb{R}_+$$
 Papangelou intensity \Leftrightarrow $\forall x,y \in E, \ \omega \in \Omega: \ \gamma(x,\omega)\,\gamma(y,\omega+\delta_x)$ symmetric in x,y

P Gibbs for γ and $\varrho \ \Leftrightarrow \ \mathrm{C}_P^! = \gamma(\varrho \otimes P) \ \Leftrightarrow \ \forall \, f \geq 0$

$$\int P(d\omega) \int \omega(dx) f(x, \omega - \delta_x) = \int \varrho(dx) \int P(d\omega) \gamma(x, \omega) f(x, \omega)$$
(GNZ)

Basic Existence Theorem

- γ s.t. (i) strong stability: $\gamma(x,\omega) < c$
 - (ii) finite range: $\forall x \in E \ \exists \ell \ \forall \omega \in \Omega : \gamma(x,\omega) = \gamma(x,\omega_{\Lambda_{\ell}})$
- $\Rightarrow \exists$ Gibbs p.p. for γ and every ρ

Gibbsian point processes

<u>Proof.</u> Define $P_n := Z_n^{-1} \; \hat{\gamma}(\cdot,0) \; Q_{\varrho|\Lambda_n}$ (free b.c.)

where for $\alpha = \{x_1, \dots x_n\}$

$$\hat{\gamma}(\alpha,\omega) := \gamma(x_1,\omega) \gamma(x_2,\omega+\delta_{x_1}) \cdots \gamma(x_n,\omega+\delta_{x_1}+\cdots+\delta_{x_{n-1}})$$

Proof. Define $P_n := Z_n^{-1} \hat{\gamma}(\cdot, 0) Q_{\rho|\Lambda_n}$ (free b.c.)

where for $\alpha = \{x_1, \dots x_n\}$

$$\hat{\gamma}(\alpha,\omega) := \gamma(x_1,\omega) \gamma(x_2,\omega + \delta_{x_1}) \cdots \gamma(x_n,\omega + \delta_{x_1} + \cdots + \delta_{x_{n-1}})$$

Then $\forall \ \ell < n, \ \omega$:

$$P_n(\cdot \mid \omega \text{ in } \Lambda_n \setminus \Lambda_\ell) = \underbrace{Z_{\Lambda_\ell}(\omega)}_{\geq e^{-\varrho(\Lambda_\ell)}}^{-1} \underbrace{\hat{\gamma}(\cdot, \omega)}_{\leq c^{N_{\Lambda_\ell}}} Q_{\varrho \mid \Lambda_\ell}$$

Proof. Define
$$P_n := Z_n^{-1} \; \hat{\gamma}(\cdot,0) \; Q_{\rho|\Lambda_n}$$
 (free b.c.)

where for $\alpha = \{x_1, \dots x_n\}$

$$\hat{\gamma}(\alpha,\omega) := \gamma(x_1,\omega) \gamma(x_2,\omega+\delta_{x_1}) \cdots \gamma(x_n,\omega+\delta_{x_1}+\cdots+\delta_{x_{n-1}})$$

Then $\forall \ \ell < n. \ \omega$:

$$P_n(\,\cdot\,|\,\omega \text{ in }\Lambda_n\setminus\Lambda_\ell) = \underbrace{Z_{\Lambda_\ell}(\omega)}_{\geq e^{-\varrho(\Lambda_\ell)}} \overset{-1}{\underbrace{\hat{\gamma}(\cdot\,,\omega)}} \underbrace{Q_{\varrho|\Lambda_\ell}}_{\leq c^{N_{\Lambda_\ell}}}$$

$$\Rightarrow$$
 $H(P_n^{(\ell)}; Q_\varrho^{(\ell)}) \le c \varrho(\Lambda_\ell) \Rightarrow P_{n_k} \to \text{some } P \text{ locally.}$

Since also $C_{P_{n_k}} \to C_P$ locally, P is Gibbsian for γ .

Standard examples

Gibbsian point processes

Repulsive pair interaction of finite range:

$$E=\mathbb{R}^d$$
, $\gamma(x,\omega)=z\,e^{-\int\omega(dy)\,\varphi(x,y)}$ with
 (i) either $\varphi\geq 0$, or $\varphi\geq -c$ and $\varphi(x,y)=\infty$ for $|x-y|\leq r$
 (ii) $\varphi(x,y)=0$ for $|x-y|>R$.

Gibbsian point processes

• Repulsive pair interaction of finite range:

$$E=\mathbb{R}^d$$
, $\gamma(x,\omega)=z\,e^{-\int\omega(dy)\,\varphi(x,y)}$ with
 (i) either $\varphi\geq 0$, or $\varphi\geq -c$ and $\varphi(x,y)=\infty$ for $|x-y|\leq r$
 (ii) $\varphi(x,y)=0$ for $|x-y|>R$.

• Two-type Widom-Rowlinson gas:

$$E = \mathbb{R}^d \times \{-1, 1\}, \ \ \gamma(x, \sigma; \omega) = z \ 1_{\{\omega(B_r(x) \times \{-\sigma\}) = 0\}}$$

Variations & extensions

A. Quermaß interactions

$$E=\mathbb{R}^2 imes\mathbb{R}_+,\ \varrho=z\lambda\otimes\mu,\ \mu \ ext{subexponential}$$

$$\Gamma(\omega):=\bigcup_{(x,r)\in\omega}B_r(x) \qquad \text{(Boolean model)}$$
 $\omega \text{ 'nice'} \ \Rightarrow \ \log\gamma(x,r;\omega) \ \text{'='}\ W\left(\Gamma(\omega+\delta_{(x,r)})\right)-W\left(\Gamma(\omega)\right)$ where W is a linear combination of Minkowski functionals

Dereudre '09

 $h_o(P_n) \leq c$ for suitable P_n, c . Hence \exists stationary Gibbs p.p. for γ .

(Energy estimates for point collections)

Variations & extensions

B. Geometric interactions

 $E=\mathbb{R}^2$, $\rho=z\lambda$, $\Gamma(\omega):=$ Delaunay or Voronoi graph of ω ω 'nice' $\Rightarrow \log \gamma(x,\omega)$ '=' $W(\Gamma(\omega+\delta_x)) - W(\Gamma(\omega))$ where

$$W(\omega) = -\sum_{\alpha \text{ clique of }\Gamma(\omega)} \varphi(\alpha,\omega) \; ,$$

E.g.: $\varphi(\alpha,\omega) = \infty$ if α is a Delaunay triangle with smallest angle $< \frac{\pi}{3} - \delta$

Dereudre, Drouilhet, Georgii '12

 φ reasonable, $z > z(\varphi) \ge 0 \implies \exists$ stationary Gibbs p.p. for γ .

C. Branching tessellations

Cells of a tessellation of \mathbb{R}^d are randomly divided by hyperplanes.

Reference model Q = STIT:

Cells split independently without memory

Gibbsian branching:

Cell $c \in T_s$ is divided by H at time s with rate $\Psi(s, c, T_s, dH)$

Georgii, Schreiber, Thäle '13

 Ψ reasonable $\Rightarrow \exists$ Gibbsian branching tessellation for Ψ .

Proof via some conditional relative entropy.