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State space

E = R2 × R+. We denote by X = (x,R) an element in E .

M(E) the space of locally �nite con�gurations in E . We

denote by γ a con�guration inM(E) and by γ̄ its

associated germ-grain set

γ̄ =
⋃

(x,R)∈γ

B(x,R).

A Point Process Γ is a random variable inM(E) and Γ̄ is

its associated germ grain model.

First possible extension : The grains can be more

complicated (convex sets, paths, etc)

Second possible extension : The grains can be marked by a

type (color). E becomes for example R2 × R+ × {1, . . . ,K}.



Germ-grain models In�nite volume Gibbsian germ-grain models A percolation result Parametric estimation for Quermass models

State space

E = R2 × R+. We denote by X = (x,R) an element in E .
M(E) the space of locally �nite con�gurations in E . We

denote by γ a con�guration inM(E) and by γ̄ its

associated germ-grain set

γ̄ =
⋃

(x,R)∈γ

B(x,R).

A Point Process Γ is a random variable inM(E) and Γ̄ is

its associated germ grain model.

First possible extension : The grains can be more

complicated (convex sets, paths, etc)

Second possible extension : The grains can be marked by a

type (color). E becomes for example R2 × R+ × {1, . . . ,K}.



Germ-grain models In�nite volume Gibbsian germ-grain models A percolation result Parametric estimation for Quermass models

State space

E = R2 × R+. We denote by X = (x,R) an element in E .
M(E) the space of locally �nite con�gurations in E . We

denote by γ a con�guration inM(E) and by γ̄ its

associated germ-grain set

γ̄ =
⋃

(x,R)∈γ

B(x,R).

A Point Process Γ is a random variable inM(E) and Γ̄ is

its associated germ grain model.

First possible extension : The grains can be more

complicated (convex sets, paths, etc)

Second possible extension : The grains can be marked by a

type (color). E becomes for example R2 × R+ × {1, . . . ,K}.



Germ-grain models In�nite volume Gibbsian germ-grain models A percolation result Parametric estimation for Quermass models

State space

E = R2 × R+. We denote by X = (x,R) an element in E .
M(E) the space of locally �nite con�gurations in E . We

denote by γ a con�guration inM(E) and by γ̄ its

associated germ-grain set

γ̄ =
⋃

(x,R)∈γ

B(x,R).

A Point Process Γ is a random variable inM(E) and Γ̄ is

its associated germ grain model.

First possible extension : The grains can be more

complicated (convex sets, paths, etc)

Second possible extension : The grains can be marked by a

type (color). E becomes for example R2 × R+ × {1, . . . ,K}.



Germ-grain models In�nite volume Gibbsian germ-grain models A percolation result Parametric estimation for Quermass models

State space

E = R2 × R+. We denote by X = (x,R) an element in E .
M(E) the space of locally �nite con�gurations in E . We

denote by γ a con�guration inM(E) and by γ̄ its

associated germ-grain set

γ̄ =
⋃

(x,R)∈γ

B(x,R).

A Point Process Γ is a random variable inM(E) and Γ̄ is

its associated germ grain model.

First possible extension : The grains can be more

complicated (convex sets, paths, etc)

Second possible extension : The grains can be marked by a

type (color). E becomes for example R2 × R+ × {1, . . . ,K}.



Germ-grain models In�nite volume Gibbsian germ-grain models A percolation result Parametric estimation for Quermass models

Boolean model

Q is a probability measure on R+.

πz is the law of a Poisson Point Process on E with intensity

zλ⊗Q.
A boolean model with intensity z is a random set Γ̄
associated to a Poisson Point Process Γ with intensity z.
We denote by P z the law of this Boolean model in the

space of closed sets.

On a bounded window Λ : πzΛ, P
z
Λ
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Gibbsian modi�cations

On a �nite window Λ.

P z,H =
1

ZΛ
e−HP zΛ.

with H an Hamiltonian which depends on γ̄Λ : a function from

the space of �nite union of balls to R ∪ {+∞} such that

0 < ZΛ :=

∫
e−H(γ̄Λ)P zΛ(dγΛ) < +∞.

ZΛ > 0 : H(∅) = 0.

ZΛ < +∞ : Stability

H(γ̄Λ) ≥ −BCard(γΛ).
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Examples of Hamiltonian

Quermass interaction( Likos, Mecke and Wagner 95-

Baddeley, Van Lieshout 99)

H(γ̄) =

d∑
i=0

θiWi.

with θi in R and Wi the ith Minkowski functional.

(area, perimeter and Euler-Poincaré characteristic in

dimension 2)

Continuum random cluster model (Georgii,

Häggström, Maes 99)

H(γ̄) = θNcc(γ̄), θ ∈ R

Multi type Widom Rowlinson model (Widom and

Rowlinson 70)

Inhibition model : non overlapping balls with di�erent type.
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Why the in�nite volume ?

Motivations :

Stationary model without boundary conditions

Macroscopic quantities (mean value, percolation,

conductivity, permeability)

Phase transition via the non uniqueness of the Gibbs

measures

Asymptotic properties of statistical estimations

(consistency, normality, etc)

Issues :

The in�nite volume Hamiltonian is senseless

De�nition of local Hamiltonian

Equilibrium equations via DLR equations
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The Local Hamiltonian

HΛ(γ̄) = lim
∆→R2

H(γ̄∆)−H(γ̄∆\Λ)

In some cases : a space Ω∗ of tempered con�gurations is needed.

De�nition (Gibbs measures)

An in�nite volume germ-grain model P is a Gibbs measure for

the Hamiltonian (HΛ) if P (Ω∗) = 1 and if the law of γΛ given

γΛc is absolutely continuous with respect to the Poisson law πzΛ
with the density

1

ZΛ(γΛc)
e−HΛ(γ̄)

Questions : Existence, uniqueness, non-uniqueness (phase

transition).
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Some results

Widom Rowlinson exclusion model :

(Widom-Rowlinson 70, Chayes Kotecky 95) The law of

radii Q is concentrated on a singleton R0 : Existence and

phase transition for large z large enough.

Quermass model : (Der. 2009) Existence under the

assumption

∀θ > 0,

∫
eθR

2
Q(dR) < +∞.

Continuum random cluster model : work in progress

with my Phd Student, Pierre Houdebert. Existence and

phase transition.
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Stability of Quermass Model in R2

Is e−H intégrable under πΛ ?

Proposition (KVB99, MH08)

If ∫
R+

e−θ1πR
2−2πθ2RQ(dr) < +∞,

then ∫
e−H(γ)πΛ(dγ) <∞.

Proof :

For one ball :
∫
e−θ1A(B(x,R))−θ2L(B(x,R))Q(dR)

Lemme (KVB99)

Let n (n ≥ 3) balls be in the plane. Then the number of holes is

lower than 2n− 5.

H is stable : H(γ) ≥ −K Card(γ).
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Tempered con�gurations for Quermass Model

ΩK,K′ =

{
γ tq

−i) supn∈N∗
1
πn2

∑
(x,R)∈γB(0,n)

(1 +R2) ≤ K
−ii) ∀n ∈ N∗, sup(x,R)∈γB(0,n)

R ≤ 1
2n+K ′

}
.

Ω∗ =
⋃

K≥2,K′≥2

MK,K′(E).

The local Hamiltonian

HΛ(γ̄) = lim
∆→R2

H(γ̄∆)−H(γ̄∆\Λ)

is well de�ned for tempered con�gurations.

The cluster points in the construction of Gibbs measures by

"entropy bounds" is tempered.
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A Result

"γ̄ percolates" means "there exists an unbounded connected

component in γ̄".

Theorem (Coupier, Der.. 2012)

We assume that Q([R0, R1]) = 1 with (R0 > 0 and R1 <∞),
then for any coe�cients θ1, θ2, θ3 in R, there exists z∗ > 0 such

that for any z > z∗ and any Quermass process P for parameters

z, θ1, θ2, θ3,

P (γ̄ percolates) = 1,

Remark : There exists Quermass process P such that

0 < P (γ̄ percolates) < 1.

Main issue : when θ3 6= 0, it is impossible to obtain a

stochastic minoration of P by Poisson processes

For all z′ > 0, πz
′

Λ � PΛ.
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The connection Lemma

D = the diamond box

D is open for γ̄ if

a) γ̄ ∩BN 6= ∅
b) the same for BE , BW , BS
c) BN , BE , BW , BS are

connected via γ̄D

Lemma (Connection Lemma)

There exists C > 0 (depending on θ1, θ2 and θ3) such that for

any z > 0 and any Quermass process P

inf
γΛc

P (D is open |γΛc) ≥ 1− C

z
.
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Classical Bernoulli domination

Let (V,E) be an undirected graph with uniformly bounded

degrees and ξ a random variable in {0, 1}V

Lemme (Liggett et al. 97)

Let p ∈ [0, 1]. Assume that for all x ∈ V ,

P (ξx = 1 | ξy : {x, y} /∈ E) ≥ p a.s.

Then the law of {ξx, x ∈ V } dominates stochastically a product

⊗x∈VBx of Bernoulli laws with parameter f(p), with
limp→1 f(p) = 1.
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Representation of the multi-type Quermass model on Λ

For K = 2 :

A one-type Quermass model PΛ on Λ with density 2Ncc(γ̄) :

QΛ(dγ) =
1

ZΛ
2Ncc(γ̄)PΛ(dγ).

Example with θ1 = −0.2, θ2 = 0.3 and θ3 = 0 :

In colouring independently the connected components, we

obtain a 2-type Quermass model on Λ for the same parameters.
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The phase transition proof

Let 1
ZΛ

2NccP zΛ(.|γΛc) be a modi�ed one-type Quermass process

with a full boundary condition

2-type Quermass Process in Λ
with red boundary condition

2-type Quermass Process in Λ
with blue boundary condition
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The phase transition proof

When Λ goes to R2, the 2-type Quermass process in Λ with

red boundary condition goes to a 2-type Quermass process

in R2 with the red particle density bigger than the blue

particle density (if percolation occurs).

Conversely for the 2-type Quermass process in Λ with blue

boundary condition.

We build two di�erent 2-type Quermass processes in R2.
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4 Parametric estimation for Quermass models
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MLE and MPLE procedures

-P a Quermass Model for Θ∗ = (z∗, θ∗1, θ
∗
2, θ
∗
3).

-hΘ∗ and hΘ are the local energies for Θ∗ and Θ.

-γ a realization of P .

-MLE : In Λ, the MLE is de�ned by

Θ̂Λ = argmaxΘ
1

ZΘ
Λ (γΛc)

e−H
Θ
Λ (γΛ|γΛc ).

It is studied by Moller, Helisova (2008) when the intensity z∗ is
known.

Indeed from the data it is not possible to compute #(γΛ).
-MPLE : In Λ, the MPLE is de�ned by

Θ̂Λ = argminΘ

∑
(x,R)∈γΛ

hΘ
(
(x,R), γ\(x,R)

)
+

∫
e−h

Θ((x,R),γ)λΛ(dx)Q(dR).

This procedure does not work since, from the data, we don't

know where are the balls.
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Takacs-Fiksel procedure.

This procedure is based on the GNZ equilibrium equation :

EP

(∑
X∈γ

f
(
X, γ\X

))
= EP

(∫
f
(
X, γ

)
e−h

Θ∗ (X,γ)z∗λ⊗Q(dX)
)
,

We have to choose f such that the empirical sum are

computable.

-Examples of such functions f :

f0(X, γ) = L(∂B(X) ∩ γ̄c).
In this situation

∑
X∈γΛ

f0

(
X, γ\X

)
≈ L(γ̄Λ)).

fα(X, γ) = L(∂B(x,R+ α) ∩ (γ̄)cα).
In this situation

∑
X∈γΛ

fα
(
X, γ\X

)
≈ L((γ̄Λ)α).

fiso(X, γ) = 1IB(X)∩γ̄=∅.
In this situation

∑
X∈γΛ

fiso
(
X, γ\X

)
is equal to the

number of isolated balls in γ̄Λ.
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Takacs-Fiksel procedure

For any function f we de�ne

∆f,Λ :=
∑
X∈γΛ

f
(
X, γ\X

)
−
∫
f
(
X, γ

)
e−h

Θ
(
X,γ
)
λΛ ⊗Q(dX).

TFE :

Θ̂ := argminΘ

(
∆2
f1,Λ + ∆2

f2,Λ + ∆2
f3,Λ + ∆2

f4,Λ

)
.

By the GNZ equation :

EP (∆fi,Λ) = 0

and by ergodicity

1

|Λ|
∆fi,Λ 7−→Λ→R2 0.
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