Gibbsian germ-grain models

David Dereudre,
Laboratoire de Mathématiques Paul Painlevé,
University Lille 1, France

Workshop, Point Processes and Random Geometry, 7th October 2013, Bochum
1. Germ-grain models

2. Infinite volume Gibbsian germ-grain models

3. A percolation result

4. Parametric estimation for Quermass models
1 Germ-grain models
State space

\[\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+. \] We denote by \(X = (x, R) \) an element in \(\mathcal{E} \).
State space

- $\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+$. We denote by $X = (x, R)$ an element in \mathcal{E}.

- $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E}. We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\tilde{\gamma}$ its associated germ-grain set

$$\tilde{\gamma} = \bigcup_{(x,R) \in \gamma} B(x, R).$$
State space

- $\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+$. We denote by $X = (x, R)$ an element in \mathcal{E}.

- $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E}. We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\bar{\gamma}$ its associated germ-grain set

$$\bar{\gamma} = \bigcup_{(x, R) \in \gamma} B(x, R).$$

- A Point Process Γ is a random variable in $\mathcal{M}(\mathcal{E})$ and $\bar{\Gamma}$ is its associated germ-grain model.
State space

- $\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+$. We denote by $X = (x, R)$ an element in \mathcal{E}.
- $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E}. We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\bar{\gamma}$ its associated germ-grain set

$$\bar{\gamma} = \bigcup_{(x, R) \in \gamma} B(x, R).$$

- A Point Process Γ is a random variable in $\mathcal{M}(\mathcal{E})$ and $\bar{\Gamma}$ is its associated germ grain model.
- First possible extension: The grains can be more complicated (convex sets, paths, etc)
State space

- $\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+$. We denote by $X = (x, R)$ an element in \mathcal{E}.
- $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E}. We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\tilde{\gamma}$ its associated germ-grain set

$$
\tilde{\gamma} = \bigcup_{(x,R) \in \gamma} B(x, R).
$$

- A Point Process Γ is a random variable in $\mathcal{M}(\mathcal{E})$ and $\tilde{\Gamma}$ is its associated germ grain model.
- First possible extension: The grains can be more complicated (convex sets, paths, etc)
- Second possible extension: The grains can be marked by a type (color). \mathcal{E} becomes for example $\mathbb{R}^2 \times \mathbb{R}^+ \times \{1, \ldots, K\}$.
Boolean model

- Q is a probability measure on \mathbb{R}^+.
Boolean model

- Q is a probability measure on \mathbb{R}^+.
- π^z is the law of a Poisson Point Process on \mathcal{E} with intensity $z\lambda \otimes Q$.

Boolean model

- Q is a probability measure on \mathbb{R}^+.
- π^z is the law of a Poisson Point Process on \mathcal{E} with intensity $z\lambda \otimes Q$.
- A boolean model with intensity z is a random set $\bar{\Gamma}$ associated to a Poisson Point Process Γ with intensity z. We denote by P^z the law of this Boolean model in the space of closed sets.
Boolean model

- Q is a probability measure on \mathbb{R}^+.
- π^z is the law of a Poisson Point Process on \mathcal{E} with intensity $z\lambda \otimes Q$.
- A boolean model with intensity z is a random set $\bar{\Gamma}$ associated to a Poisson Point Process Γ' with intensity z. We denote by P^z the law of this Boolean model in the space of closed sets.
- On a bounded window $\Lambda : \pi^z_\Lambda$, P^z_Λ
Gibbsian modifications

On a finite window Λ.

$$P^{z,H} = \frac{1}{Z_\Lambda} e^{-H} P^z_{\Lambda}.$$

with H an Hamiltonian which depends on $\tilde{\gamma}_\Lambda$: a function from the space of finite union of balls to $\mathbb{R} \cup \{+\infty\}$ such that

$$0 < Z_\Lambda := \int e^{-H(\tilde{\gamma}_\Lambda)} P^z_{\Lambda}(d\gamma_\Lambda) < +\infty.$$
Gibbsian modifications

On a finite window Λ.

$$P^{\gamma,H} = \frac{1}{Z_{\Lambda}} e^{-H} P^\gamma_{\Lambda}.$$

with H an Hamiltonian which depends on $\bar{\gamma}_{\Lambda}$: a function from the space of finite union of balls to $\mathbb{R} \cup \{+\infty\}$ such that

$$0 < Z_{\Lambda} := \int e^{-H(\bar{\gamma}_{\Lambda})} P^\gamma_{\Lambda}(d\gamma_{\Lambda}) < +\infty.$$

- $Z_{\Lambda} > 0 : H(\emptyset) = 0$.
- $Z_{\Lambda} < +\infty :$ Stability

$$H(\bar{\gamma}_{\Lambda}) \geq -B\text{Card}(\gamma_{\Lambda}).$$
Examples of Hamiltonian

- **Quermass interaction** (Likos, Mecke and Wagner 95-Baddeley, Van Lieshout 99)

\[
H(\gamma) = \sum_{i=0}^{d} \theta_i W_i.
\]

with \(\theta_i\) in \(\mathbb{R}\) and \(W_i\) the ith Minkowski functional.
(area, perimeter and Euler-Poincaré characteristic in dimension 2)
Examples of Hamiltonian

- **Quermass interaction** (Likos, Mecke and Wagner 95-Baddeley, Van Lieshout 99)
 \[H(\gamma) = \sum_{i=0}^{d} \theta_i W_i. \]
 with \(\theta_i \) in \(\mathbb{R} \) and \(W_i \) the \(i \)th Minkowski functional. (area, perimeter and Euler-Poincaré characteristic in dimension 2)

- **Continuum random cluster model** (Georgii, Häggström, Maes 99)
 \[H(\gamma) = \theta N_{cc}(\gamma), \quad \theta \in \mathbb{R} \]
Examples of Hamiltonian

- **Quermass interaction** (Likos, Mecke and Wagner 95-Baddeley, Van Lieshout 99)

 \[H(\gamma) = \sum_{i=0}^{d} \theta_i W_i. \]
 with \(\theta_i \) in \(\mathbb{R} \) and \(W_i \) the ith Minkowski functional. (area, perimeter and Euler-Poincaré characteristic in dimension 2)

- **Continuum random cluster model** (Georgii, Häggström, Maes 99)

 \[H(\gamma) = \theta N_{cc}(\gamma), \quad \theta \in \mathbb{R} \]

- **Multi type Widom Rowlinson model** (Widom and Rowlinson 70)
 Inhibition model: non overlapping balls with different type.
Germ-grain models
Infinite volume Gibbsian germ-grain models
A percolation result
Parametric estimation for Quermass models
Infinite volume Gibbsian germ-grain models
Why the infinite volume?

Motivations:

- Stationary model without boundary conditions
- Macroscopic quantities (mean value, percolation, conductivity, permeability)
- Phase transition via the non uniqueness of the Gibbs measures
- Asymptotic properties of statistical estimations (consistency, normality, etc)
Why the infinite volume?

Motivations:
- Stationary model without boundary conditions
- Macroscopic quantities (mean value, percolation, conductivity, permeability)
- Phase transition via the non uniqueness of the Gibbs measures
- Asymptotic properties of statistical estimations (consistency, normality, etc)

Issues:
- The infinite volume Hamiltonian is senseless
- Definition of local Hamiltonian
- Equilibrium equations via DLR equations
The Local Hamiltonian

\[H_\Lambda(\tilde{\gamma}) = \lim_{\Delta \to \mathbb{R}^2} H(\tilde{\gamma}_\Delta) - H(\tilde{\gamma}_{\Delta \setminus \Lambda}) \]
The Local Hamiltonian

\[H_\Lambda(\bar{\gamma}) = \lim_{\Delta \to \mathbb{R}^2} H(\bar{\gamma}_\Delta) - H(\bar{\gamma}_{\Delta \setminus \Lambda}) \]

In some cases: a space \(\Omega^* \) of tempered configurations is needed.
The Local Hamiltonian

\[
H_{\Lambda}(\tilde{\gamma}) = \lim_{\Delta \to \mathbb{R}^2} H(\tilde{\gamma}_\Delta) - H(\tilde{\gamma}_{\Delta \setminus \Lambda})
\]

In some cases: a space Ω^* of tempered configurations is needed.

Definition (Gibbs measures)

An infinite volume germ-grain model P is a Gibbs measure for the Hamiltonian (H_{Λ}) if $P(\Omega^*) = 1$ and if the law of γ_{Λ} given γ_{Λ^c} is absolutely continuous with respect to the Poisson law π_{Λ} with the density

\[
\frac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} e^{-H_{\Lambda}(\tilde{\gamma})}
\]

Questions: Existence, uniqueness, non-uniqueness (phase transition).
The Local Hamiltonian

\[H_\Lambda(\tilde{\gamma}) = \lim_{\Delta \to \mathbb{R}^2} H(\tilde{\gamma}_\Delta) - H(\tilde{\gamma}_{\Delta\setminus\Lambda}) \]

In some cases: a space \(\Omega^* \) of tempered configurations is needed.

Definition (Gibbs measures)

An infinite volume germ-grain model \(P \) is a Gibbs measure for the Hamiltonian \((H_\Lambda) \) if \(P(\Omega^*) = 1 \) and if the law of \(\gamma_\Lambda \) given \(\gamma_{\Lambda^c} \) is absolutely continuous with respect to the Poisson law \(\pi^{\tilde{\Lambda}} \) with the density

\[
\frac{1}{Z_\Lambda(\gamma_{\Lambda^c})} e^{-H_\Lambda(\tilde{\gamma})}
\]

Questions: Existence, uniqueness, non-uniqueness (phase transition).
Some results

- **Widom Rowlinson exclusion model:**
 (Widom-Rowlinson 70, Chayes Kotecky 95) The law of radii Q is concentrated on a singleton R_0: Existence and phase transition for large z large enough.
Some results

- **Widom Rowlinson exclusion model**: (Widom-Rowlinson 70, Chayes Kotecky 95) The law of radii \(Q \) is concentrated on a singleton \(R_0 \): Existence and phase transition for large \(z \) large enough.

- **Quermass model**: (Der. 2009) Existence under the assumption

\[
\forall \theta > 0, \quad \int e^{\theta R^2} Q(dR) < +\infty.
\]
Some results

- **Widom Rowlinson exclusion model**: (Widom-Rowlinson 70, Chayes Kotecky 95) The law of radii Q is concentrated on a singleton R_0: Existence and phase transition for large z large enough.

- **Quermass model**: (Der. 2009) Existence under the assumption

 $$\forall \theta > 0, \quad \int e^{\theta R^2} Q(dR) < +\infty.$$

- **Continuum random cluster model**: work in progress with my Phd Student, Pierre Houdebert. Existence and phase transition.
Stability of Quermass Model in \mathbb{R}^2

Is e^{-H} intégrable under π_Λ?

Proposition (KVB99, MH08)

If
\[\int_{\mathbb{R}^+} e^{-\theta_1 \pi R^2 - 2\theta_2 R} Q(dr) < +\infty, \]

then
\[\int e^{-H(\gamma)} \pi_\Lambda(d\gamma) < \infty. \]

Proof:
For one ball:
\[\int e^{-\theta_1 A(B(x,R)) - \theta_2 L(B(x,R))} Q(dR) \]

Lemme (KVB99)

Let n ($n \geq 3$) balls be in the plane. Then the number of holes is lower than $2n - 5$.

H is stable: $H(\gamma) \geq -K \text{ Card}(\gamma)$.
Tempered configurations for Quermass Model

\[\Omega_{K,K'} = \left\{ \gamma \ \text{tq} \begin{array}{ll}
-i) & \sup_{n \in \mathbb{N}^*} \frac{1}{\pi n^2} \sum_{(x,R) \in \gamma_{B(0,n)}} (1 + R^2) \leq K \\
-ii) & \forall n \in \mathbb{N}^*, \sup_{(x,R) \in \gamma_{B(0,n)}} R \leq \frac{1}{2} n + K' \end{array} \right\}. \]

\[\Omega^* = \bigcup_{K \geq 2, K' \geq 2} M_{K,K'}(\mathcal{E}). \]
Tempered configurations for Quermass Model

\[\Omega_{K,K'} = \left\{ \gamma \right.
\begin{align*}
&-i) \sup_{n \in \mathbb{N}^*} \frac{1}{\pi n^2} \sum_{(x,R) \in \gamma_{B(0,n)}} (1 + R^2) \leq K \\
&-ii) \forall n \in \mathbb{N}^*, \sup_{(x,R) \in \gamma_{B(0,n)}} R \leq \frac{1}{2} n + K' \end{align*}
\left. \right\}.
\]

\[\Omega^* = \bigcup_{K \geq 2, K' \geq 2} M_{K,K'}(\mathcal{E}). \]

The local Hamiltonian

\[H_{\Lambda}(\bar{\gamma}) = \lim_{\Delta \to \mathbb{R}^2} H(\bar{\gamma}_\Delta) - H(\bar{\gamma}_{\Delta \setminus \Lambda}) \]

is well defined for tempered configurations.
Tempered configurations for Quermass Model

\[\Omega_{K,K'} = \left\{ \gamma \text{ tq } -i \sup_{n \in \mathbb{N}^*} \frac{1}{\pi n^2} \sum_{(x,R) \in \gamma_{B(0,n)}} (1 + R^2) \leq K \\
-ii \right. \forall n \in \mathbb{N}^*, \sup_{(x,R) \in \gamma_{B(0,n)}} R \leq \frac{1}{2} n + K' \right\}. \]

\[\Omega^* = \bigcup_{K \geq 2, K' \geq 2} M_{K,K'}(\mathcal{E}). \]

The local Hamiltonian

\[H_{\Lambda}(\bar{\gamma}) = \lim_{\Delta \to \mathbb{R}^2} H(\bar{\gamma}_\Delta) - H(\bar{\gamma}_{\Delta \setminus \Lambda}) \]

is well defined for tempered configurations. The cluster points in the construction of Gibbs measures by "entropy bounds" is tempered.
3 A percolation result
A Result

"\(\tilde{\gamma}\) percolates" means "there exists an unbounded connected component in \(\tilde{\gamma}\)."
A Result

"\(\bar{\gamma} \) percolates" means "there exists an unbounded connected component in \(\bar{\gamma} \)."

<table>
<thead>
<tr>
<th>Theorem (Coupier, Der.. 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>We assume that (Q([R_0, R_1]) = 1) with ((R_0 > 0) and (R_1 < \infty)), then for any coefficients (\theta_1, \theta_2, \theta_3) in (\mathbb{R}), there exists (z^* > 0) such that for any (z > z^*) and any Quermass process (P) for parameters (z, \theta_1, \theta_2, \theta_3),</td>
</tr>
</tbody>
</table>

\[
P(\bar{\gamma} \text{ percolates}) = 1,
\]

Remark: There exists Quermass process \(P \) such that \(0 < P(\bar{\gamma} \text{ percolates}) < 1 \).

Main issue: when \(\theta_3 \neq 0 \), it is impossible to obtain a stochastic minoration of \(P \) by Poisson processes for all \(z' > 0 \), \(\pi_{z'} \Lambda \succeq P \Lambda \).
A Result

"\(\tilde{\gamma} \) percolates" means "there exists an unbounded connected component in \(\tilde{\gamma} \)."

Theorem (Coupier, Der.. 2012)

We assume that \(Q([R_0, R_1]) = 1 \) with \((R_0 > 0 \text{ and } R_1 < \infty)\), then for any coefficients \(\theta_1, \theta_2, \theta_3 \in \mathbb{R} \), there exists \(z^* > 0 \) such that for any \(z > z^* \) and any Quermass process \(P \) for parameters \(z, \theta_1, \theta_2, \theta_3 \),

\[
P(\tilde{\gamma} \text{ percolates}) = 1,
\]

Remark : There exists Quermass process \(P \) such that

\[
0 < P(\tilde{\gamma} \text{ percolates}) < 1.
\]
"$\bar{\gamma}$ percolates" means "there exists an unbounded connected component in $\bar{\gamma}$".

Theorem (Coupier, Der.. 2012)

We assume that $Q([R_0, R_1]) = 1$ with $(R_0 > 0$ and $R_1 < \infty)$, then for any coefficients $\theta_1, \theta_2, \theta_3$ in \mathbb{R}, there exists $z^* > 0$ such that for any $z > z^*$ and any Quermass process P for parameters z, $\theta_1, \theta_2, \theta_3$,

$$P(\bar{\gamma} \text{ percolates}) = 1,$$

Remark : There exists Quermass process P such that

$$0 < P(\bar{\gamma} \text{ percolates}) < 1.$$

Main issue : when $\theta_3 \neq 0$, it is impossible to obtain a stochastic minoration of P by Poisson processes

For all $z' > 0$, $$\pi_{z'} \not\leq P_\Lambda.$$
The connection Lemma

$$D = \text{the diamond box}$$

$$D$$ is open for $$\bar{\gamma}$$ if

a) $$\bar{\gamma} \cap B_N \neq \emptyset$$

b) the same for $$B_E, B_W, B_S$$

c) $$B_N, B_E, B_W, B_S$$ are connected via $$\bar{\gamma}_D$$
The connection Lemma

\[D = \text{the diamond box} \]
\[D \text{ is open for } \bar{\gamma} \text{ if} \]
\[a) \bar{\gamma} \cap B_N \neq \emptyset \]
\[b) \text{the same for } B_E, B_W, B_S \]
\[c) B_N, B_E, B_W, B_S \text{ are connected via } \bar{\gamma}_D \]

Lemma (Connection Lemma)

There exists \(C > 0 \) (depending on \(\theta_1, \theta_2 \) and \(\theta_3 \)) such that for any \(z > 0 \) and any Quermass process \(P \)

\[
\inf_{\gamma_{\Lambda^c}} P(D \text{ is open} \mid \gamma_{\Lambda^c}) \geq 1 - \frac{C}{z},
\]
Classical Bernoulli domination

Let \((V, E)\) be an undirected graph with uniformly bounded degrees and \(\xi\) a random variable in \(\{0, 1\}^V\)

Lemme (Liggett et al. 97)

Let \(p \in [0, 1]\). Assume that for all \(x \in V\),

\[
P(\xi_x = 1 \mid \xi_y : \{x, y\} \notin E) \geq p \quad \text{a.s.}
\]

Then the law of \(\{\xi_x, x \in V\}\) dominates stochastically a product \(\bigotimes_{x \in V} B_x\) of Bernoulli laws with parameter \(f(p)\), with \(\lim_{p \to 1} f(p) = 1\).
Representation of the multi-type Quermass model on Λ

For $K = 2$:
A one-type Quermass model P_Λ on Λ with density $2^{N_{cc}(\gamma)}$:

$$Q_\Lambda(d\gamma) = \frac{1}{Z_\Lambda} 2^{N_{cc}(\gamma)} P_\Lambda(d\gamma).$$

Example with $\theta_1 = -0.2$, $\theta_2 = 0.3$ and $\theta_3 = 0$:
Representation of the multi-type Quermass model on Λ

For $K = 2$:
A one-type Quermass model P_Λ on Λ with density $2^{N_{cc}(\gamma)}$:

$$Q_\Lambda(d\gamma) = \frac{1}{Z_\Lambda} 2^{N_{cc}(\gamma)} P_\Lambda(d\gamma).$$

Example with $\theta_1 = -0.2$, $\theta_2 = 0.3$ and $\theta_3 = 0$:

In colouring independently the connected components, we obtain a 2-type Quermass model on Λ for the same parameters.
The phase transition proof

Let \(\frac{1}{Z_{\Lambda}} 2^{N_{cc}} P_{\Lambda}^z(.|\gamma_{\Lambda c}) \) be a modified one-type Quermass process with a full boundary condition
The phase transition proof

Let \(\frac{1}{Z_\Lambda} 2^{N_{cc}} P^z_\Lambda(\cdot | \gamma_{\Lambda, c}) \) be a modified one-type Quermass process with a full boundary condition.

2-type Quermass Process in \(\Lambda \) with red boundary condition.
The phase transition proof

Let \(\frac{1}{Z_\Lambda} 2^{N_{cc}} P^z_{\Lambda}(\cdot | \gamma_{\Lambda^c}) \) be a modified one-type Quermass process with a full boundary condition.
The phase transition proof

- When Λ goes to \mathbb{R}^2, the 2-type Quermass process in Λ with red boundary condition goes to a 2-type Quermass process in \mathbb{R}^2 with the red particle density bigger than the blue particle density (if percolation occurs).
The phase transition proof

- When Λ goes to \mathbb{R}^2, the 2-type Quermass process in Λ with red boundary condition goes to a 2-type Quermass process in \mathbb{R}^2 with the red particle density bigger than the blue particle density (if percolation occurs).
- Conversely for the 2-type Quermass process in Λ with blue boundary condition.
The phase transition proof

- When Λ goes to \mathbb{R}^2, the 2-type Quermass process in Λ with red boundary condition goes to a 2-type Quermass process in \mathbb{R}^2 with the red particle density bigger than the blue particle density (if percolation occurs).

- Conversely for the 2-type Quermass process in Λ with blue boundary condition.

- We build two different 2-type Quermass processes in \mathbb{R}^2.
Parametric estimation for Quermass models
MLE and MPLE procedures

- P a Quermass Model for $\Theta^* = (z^*, \theta_1^*, \theta_2^*, \theta_3^*)$.
- h^{Θ^*} and h^{Θ} are the local energies for Θ^* and Θ.
- γ a realization of P.
MLE and MPLE procedures

- P a Quermass Model for $\Theta^* = (z^*, \theta_1^*, \theta_2^*, \theta_3^*)$.
- h^{Θ^*} and h^Θ are the local energies for Θ^* and Θ.
- γ a realization of P.
- **MLE**: In Λ, the MLE is defined by

$$
\hat{\Theta}_\Lambda = \arg\max_{\Theta} \frac{1}{Z^\Theta_\Lambda(\gamma_\Lambda^{c})} e^{-H^\Theta_\Lambda(\gamma_\Lambda|\gamma_\Lambda^{c})}.
$$
MLE and MPLE procedures

- P a Quermass Model for $\Theta^* = (z^*, \theta_1^*, \theta_2^*, \theta_3^*)$.
- h^{Θ^*} and h^Θ are the local energies for Θ^* and Θ.
- γ a realization of P.
- **MLE** : In Λ, the MLE is defined by

$$\hat{\Theta}_\Lambda = \arg\max_{\Theta} \frac{1}{Z^\Theta_\Lambda(\gamma^\Lambda|\gamma^\Lambda_e)} e^{-H^\Theta_\Lambda(\gamma^\Lambda|\gamma^\Lambda_e)}.$$

It is studied by Moller, Helisova (2008) when the intensity z^* is known.
Indeed from the data it is not possible to compute $\#(\gamma^\Lambda)$.

MLE and MPLE procedures

- P a Quermass Model for $\Theta^* = (z^*, \theta_1^*, \theta_2^*, \theta_3^*)$.
- h^{Θ^*} and h^Θ are the local energies for Θ^* and Θ.
- γ a realization of P.
- **MLE** : In Λ, the MLE is defined by

$$
\hat{\Theta}_\Lambda = \arg\max_{\Theta} \frac{1}{Z^\Theta_\Lambda(\gamma^\Lambda_c)} e^{-H^\Theta_\Lambda(\gamma^\Lambda \mid \gamma^\Lambda_c)}.
$$

It is studied by Moller, Helisova (2008) when the intensity z^* is known.

Indeed from the data it is not possible to compute $\#(\gamma^\Lambda)$.

- **MPLE** : In Λ, the MPLE is defined by

$$
\hat{\Theta}_\Lambda = \arg\min_{\Theta} \sum_{(x,R) \in \gamma^\Lambda} h^\Theta((x,R), \gamma \setminus (x,R)) + \int e^{-h^\Theta((x,R),\gamma)} \lambda^\Lambda(dx)Q(dR).
$$
MLE and MPLE procedures

- \(P \) a Quermass Model for \(\Theta^* = (z^*, \theta_1^*, \theta_2^*, \theta_3^*) \).
- \(h^{\Theta^*} \) and \(h^\Theta \) are the local energies for \(\Theta^* \) and \(\Theta \).
- \(\gamma \) a realization of \(P \).

MLE: In \(\Lambda \), the MLE is defined by

\[
\hat{\Theta}_\Lambda = \arg \max_{\Theta} \frac{1}{Z^\Theta_\Lambda(\gamma_\Lambda | \gamma_\Lambda^c)} e^{-H^\Theta_\Lambda(\gamma_\Lambda | \gamma_\Lambda^c)}.
\]

It is studied by Moller, Helisova (2008) when the intensity \(z^* \) is known.

Indeed from the data it is not possible to compute \#(\(\gamma_\Lambda \)).

MPLE: In \(\Lambda \), the MPLE is defined by

\[
\hat{\Theta}_\Lambda = \arg \min_{\Theta} \sum_{(x,R) \in \gamma_\Lambda} h^\Theta((x,R), \gamma \setminus (x,R)) + \int e^{-h^\Theta((x,R),\gamma)} \lambda_\Lambda(dx) Q(dR).
\]

This procedure does not work since, from the data, we don’t know where are the balls.
Takacs-Fiksel procedure.

This procedure is based on the GNZ equilibrium equation:

\[E_P\left(\sum_{X \in \gamma} f(X, \gamma \setminus X) \right) = E_P\left(\int f(X, \gamma) e^{-h(\Theta^* (X, \gamma))} z^* \lambda \otimes Q(dX) \right), \]
Takacs-Fiksel procedure.

This procedure is based on the GNZ equilibrium equation:

\[
E_P \left(\sum_{X \in \gamma} f(X, \gamma \backslash X) \right) = E_P \left(\int f(X, \gamma) e^{-h\Theta^*(X, \gamma)\zeta^*\lambda \otimes Q(dX)} \right),
\]

We have to choose \(f \) such that the empirical sum are computable.
Takacs-Fiksel procedure.

This procedure is based on the GNZ equilibrium equation:

$$E_P \left(\sum_{X \in \gamma} f(X, \gamma \setminus X) \right) = E_P \left(\int f(X, \gamma) e^{-h^\Theta_*(X, \gamma) z^* \lambda \otimes Q(dX)} \right),$$

We have to choose f such that the empirical sum are computable.

- Examples of such functions f:
 - $f_0(X, \gamma) = \mathcal{L}(\partial B(X) \cap \bar{\gamma}^c)$.
 In this situation $\sum_{X \in \gamma \Lambda} f_0(X, \gamma \setminus X) \approx \mathcal{L}(\bar{\gamma}_\Lambda)$.
Takacs-Fiksel procedure.

This procedure is based on the GNZ equilibrium equation:

\[E_P \left(\sum_{X \in \gamma} f(X, \gamma \setminus X) \right) = E_P \left(\int f(X, \gamma) e^{-h\Theta^*(X,\gamma)} z^* \lambda \otimes Q(dX) \right), \]

We have to choose \(f \) such that the empirical sum are computable.

- Examples of such functions \(f \):
 - \(f_0(X, \gamma) = \mathcal{L}(\partial B(X) \cap \bar{\gamma}^c) \).
 In this situation \(\sum_{X \in \gamma_\Lambda} f_0(X, \gamma \setminus X) \approx \mathcal{L}(\bar{\gamma}_\Lambda) \).
 - \(f_\alpha(X, \gamma) = \mathcal{L}(\partial B(x, R + \alpha) \cap (\bar{\gamma})^c_\alpha) \).
 In this situation \(\sum_{X \in \gamma_\Lambda} f_\alpha(X, \gamma \setminus X) \approx \mathcal{L}((\bar{\gamma}_\Lambda)_\alpha) \).
Takacs-Fiksel procedure.

This procedure is based on the GNZ equilibrium equation:

\[
E_P \left(\sum_{X \in \gamma} f(X, \gamma \setminus X) \right) = E_P \left(\int f(X, \gamma) e^{-h\Theta^*(X,\gamma)} z^* \lambda \otimes Q(dX) \right),
\]

We have to choose \(f\) such that the empirical sum are computable.

- Examples of such functions \(f\):
 - \(f_0(X, \gamma) = \mathcal{L}(\partial B(X) \cap \bar{\gamma}^c)\).
 In this situation \(\sum_{X \in \gamma} f_0(X, \gamma \setminus X) \approx \mathcal{L}(\bar{\gamma}_\Lambda)\).
 - \(f_{\alpha}(X, \gamma) = \mathcal{L}(\partial B(x, R + \alpha) \cap (\bar{\gamma})^c_{\alpha})\).
 In this situation \(\sum_{X \in \gamma} f_{\alpha}(X, \gamma \setminus X) \approx \mathcal{L}((\bar{\gamma}_\Lambda)^{\alpha})\).
 - \(f_{iso}(X, \gamma) = \mathbb{1}_{B(X) \cap \bar{\gamma} = \emptyset}\).
 In this situation \(\sum_{X \in \gamma} f_{iso}(X, \gamma \setminus X)\) is equal to the number of isolated balls in \(\bar{\gamma}_\Lambda\).
Takacs-Fiksel procedure

For any function f we define

$$\Delta_{f,\Lambda} := \sum_{X \in \gamma_\Lambda} f(X, \gamma \setminus X) - \int f(X, \gamma)e^{-h^{\Theta}(X, \gamma)} \lambda_\Lambda \otimes Q(dX).$$
Takacs-Fiksel procedure

For any function f we define

$$\Delta_{f,\Lambda} := \sum_{X \in \gamma_\Lambda} f(X, \gamma \setminus X) - \int f(X, \gamma) e^{-h^\Theta(X, \gamma)} \lambda_\Lambda \otimes Q(dX).$$

TFE :

$$\hat{\Theta} := \arg\min_\Theta \left(\Delta_{f_1,\Lambda}^2 + \Delta_{f_2,\Lambda}^2 + \Delta_{f_3,\Lambda}^2 + \Delta_{f_4,\Lambda}^2 \right).$$
Takacs-Fiksel procedure

For any function f we define

$$\Delta_{f,\Lambda} := \sum_{X \in \gamma \Lambda} f(X, \gamma \setminus X) - \int f(X, \gamma) e^{-h^\Theta(X, \gamma)} \lambda_\Lambda \otimes Q(dX).$$

TFE:

$$\hat{\Theta} := \arg\min_{\Theta} \left(\Delta^2_{f_1,\Lambda} + \Delta^2_{f_2,\Lambda} + \Delta^2_{f_3,\Lambda} + \Delta^2_{f_4,\Lambda} \right).$$

By the GNZ equation:

$$E_P(\Delta_{f_i,\Lambda}) = 0$$

and by ergodicity

$$\frac{1}{|\Lambda|} \Delta_{f_i,\Lambda} \xrightarrow{\Lambda \to \mathbb{R}^2} 0.$$
References

- The Takacs-Fiksel procedure is introduced in 1984-86 by Takacs and Fiksel.
- Application for the Quermass model: Der., Helisova and Lavancier 2013.
Heather Dataset

Heather : Real data

Approximation by balls
Heather Dataset

Heather : Real data

Approximation by balls

TFE for Quermass model with Q uniform in $[0, 0.5]$:

$z = 2.12$, $\theta_1 = 0$, $\theta_2 = 0.14$ and $\theta_3 = 0.22$.

D. Der, Existence of Quermass processes for non locally stable interaction and non bounded convex grains, Adv. in Appl. probab. 41 664-681 (2009).

D. Der and F. Lavancier, Fitting all parameters of the Quermass model by the Takacs-Fiksel method, submitted.

