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Let A(W ) be the hyperplane arrangement consisting of all the re�ecting hyperplanes of a
�nite complex re�ection group W acting on a vectorspace V . The class of inductively free
arrangements IF got introduced by Orlik and Terao in [OT]. In [CH] it was shown to be a
combinatorial property. Abe showed in [A] that the Addition-Deletion-Theorem is combina-
torial too and de�ned the class of additionally free arrangements AF . Those properties are
the same if the dimension of V is lower than 4.

Hoge and Röhrle gave two examples of additionally free arrangements that are not inductively
free. To construct the �rst example B they took an inductively free subarrangement A of
A(E7) containing 32 hyperplanes and exponents {1, 5, 5, 5, 5, 5, 6}. Removing one further hy-
perplane provides an arrangement B that is additionally free with exponents {1, 5, 5, 5, 5, 5, 5},
but fails to be inductively free. They also show that the rank 6 restriction of B with matching
exponents {1, 5, 5, 5, 5, 5} is additionally free without being inductively free. To construct an
other example D they restrict B to the intersection of ker(x1) and ker(x6). The arrangement
D is free with exponents {1, 5, 5, 5, 5} and up to isomorphism only one restriction of D got
matching exponents to use the Addition-Deletion-Theorem on. This restriction is free, but
fails to be additionally free (in particular inductively free), because none of its restrictions
got matching exponents. Removing a hyperplane H ∈ D such that the restriction on H is
free and got matching exponents results in an inductively free arrangement. In particular
the arrangement D satis�es D ∈ AF\IF . Those examples of additionally free arrangements
that fail to be inductively free are the only ones known for now.

In this talk I will present results obtained in my Master Thesis concerning the coincidence of
inductive and additional freeness of subarrangements of A(W ) where W is one of the groups
G29, H4, G31, G32 or G(r, r, 4).
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