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Abstract Chloroplast gene expression is regulated by
nucleus-encoded factors, which mainly act at the post-
transcriptional level. Plastid RNA-binding proteins
(RBPs) represent good candidates for mediating these
functions. The picture emerging from recent analyses is
that of a great number of differentially regulated RBPs,
which are organized in distinct, spatially separated
supramolecular complexes. This reflects the complexity
of the regulatory network that underlies the intracellular
communication system between the nucleus and the
chloroplast.
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Introduction

The transformation of a free-living cyanobacterium into
an autonomy-lacking organelle, or more specifically into
the chloroplast, represents one of the most important
steps during the evolution of the eukaryotic plant cell.
The key issue to be addressed during this process was the
necessity to co-ordinate gene expression between the
nuclear and plastid genetic systems. It is widely accepted
that this coordination/communication is mediated by
nucleus-encoded factors. These are imported by the
organelle and regulate almost all steps of gene expres-
sion, which are principally of a prokaryotic nature due
to the phylogenetic origin of the chloroplast.

Over the past years, the analysis of many photosyn-
thetic mutants from green algae and vascular plants
provided the basis for the application of genetic
approaches; and some of the regulatory factors were
successfully cloned (for reviews, see Barkan and Gold-
schmidt-Clermont 2000; Dent et al. 2001; Nickelsen
2003). To date, 16 nuclear loci have been isolated,
encoding proteins involved in a variety of post-tran-
scriptional steps of chloroplast gene expression.
Although some of these factors have been shown to be
part of high-molecular-weight complexes which contain
their target RNAs, a direct interaction with plastid
RNA probes has recently been documented for just one
protein, called HCF152, from Arabidopsis thaliana
(Meierhoff et al. 2003). HCF152 is involved in the
processing of transcripts from the chloroplast psbB op-
eron and contains a so-called pentatricopeptide repeat
(PPR) motif, which has been hypothesized to form a
RNA-binding domain (Lahmy et al. 2000; Small and
Peeters 2000). Such PPR proteins appear to represent
typical plant proteins belonging to a large family of
more than 200 members in A. thaliana (Small and
Peeters 2000). Nevertheless, the precise molecular
working mode of these factors remains to be elucidated.

With the availability of the complete genome sequence
of A. thaliana, bioinformatic searches became feasible for
proteins containing additional, well characterized RNA-
binding motifs, such as the RRM domain, which is also
present in polypeptides from cyanobacteria (Sugita and
Sugiura 1994), and the KH motif, which was first iden-
tified in the human (RNP) K protein. In total, 196 RRM
and 26 KH domains containing proteins have been
found in A. thaliana, which is more than in Drosophila
melanogaster (117 domains) or in Caenorhabditis elegans
(100 domains; Lorkovic and Barta 2002). However,
these studies do not specify how many domains are
chloroplast-localized. Independent estimations predict
the existence of about 60 chloroplast RNA-binding
proteins(cpRBPs) in A. thaliana, based on the computer-
assisted analysis of putative chloroplast-targeting signals
(Friedrich Ossenbühl, personal communication).
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An alternative and complementary biochemical ap-
proach for the identification of plastid factors control-
ling post-transcriptional processes, such as RNA
stabilization, RNA maturation, or translation initiation,
is the application of in vitro RNA-binding assays, which
include gel-shift and UV-crosslinking techniques. Sev-
eral chloroplast RNA-binding proteins have been de-
tected by this strategy and the aim of this review is to
give a brief overview of these factors by focusing on
some well studied cases.

General RNA-binding proteins

Amongst the first cpRBPs to be identified was a group of
proteins in the size range of 30 kDa. Cloning of the
corresponding genes showed that they resembled human
nuclear (hn)RNP proteins, which form the most abun-
dant fraction of RNA-binding proteins in the nucleus of
human cells. In tobacco, five different proteins, referred
to as cp28, cp29A, cp29B, cp31 and cp33, were found,
while a genome-wide computer-assisted search in A. tha-
liana revealed eight members of this group (Lorkovic and
Barta 2002), which could be classified into subgroups I–
III, based on phylogenetic comparisons (Ohta et al.
1995). A common feature of these polypeptides was that
they contain two consensus sequence-type RNA-binding
domains and an acidic N-terminal domain. In vitro, all
cpRBPs exhibited a high affinity for poly-(G) and poly-
(U) ribohomopolymers, but despite that, no distinct
binding sites on chloroplast RNAs could be identified,
suggesting that they represented general RBPs of the
plastid compartment for which a physiological function
was difficult to assign at that time. More recently, accu-
mulating biochemical evidence provided some clues as to
what role these proteins might play during chloroplast
gene expression. Nakamura et al. (2001) demonstrated
that the abundant cpRBPs form high-molecular-weight
ribonucleoprotein complexes in the chloroplast stroma
and function as stabilizing factors for ribosome-free
mRNAs. In a detailed and elegantly conducted study, it
was shown that the psbA mRNA encoding the D1 pro-
tein of photosystem II rapidly degraded in chloroplast
extracts when these were immunodepleted of cpRBPs.
Especially, cp33 appeared to be required for stable
accumulation of chloroplast mRNAs. In addition,
cpRBPs co-immunoprecipitated with chloroplast intron-
containing precursor tRNAs, suggesting that at least
some of them are involved in pre-tRNA splicing
(Nakamura et al. 1999).

In spinach, a protein named 28RNP, with homology
to cp28 and cp31 from tobacco, was analyzed in detail.
28RNP was shown to be essential for the 3¢ end for-
mation of several chloroplast mRNAs in vitro. Since its
affinity for RNA was substantially altered by phosp-
orylation, it was postulated to be directly involved in the
regulation of plastid 3¢UTR-mediated RNA stabiliza-
tion (Lisitsky and Schuster 1995). Finally, tobacco cp31
was implicated in the editing process of psbL mRNA

(see next section). Hence, the emerging picture, as far as
the physiological role of this group of small chloroplasts
is concerned, is that of a relatively unspecific protein
scaffold for plastid RNAs reminiscent of the situation
found for hnRNP particles in the nucleus. Nevertheless,
they may be involved in distinct steps of post-tran-
scriptional gene expression by direct interaction with
RNAs or, alternatively, by recruiting site-specific factors
mediating RNA metabolism.

Interestingly, a recent in vivo UV-crosslinking
approach led to the identification of PARBP33 and
PARBP35 from avocado, which share a high identity
with ATRBP33 from A. thaliana and other group II
members of small RBPs (Daros and Flores 2002).
PARBP33 was shown to bind to the RNA of the avo-
cado sunblotch viroid (ASBVd). In vitro, recombinant
PARBP33 was able to facilitate the hammerhead-medi-
ated self-cleavage of dimeric ASBVd transcripts, which
are normally formed during the rolling circle replication
of the viroid within the chloroplast. This suggests that
viroids can use host cpRBPs as RNA chaperones.

RBPs involved in splicing or editing
of chloroplast transcripts

Chloroplast genes can be interrupted by introns, which
are classified into the main groups I and II, based on
primary and secondary structural features (Michel and
Dujon 1983). Although some of these organellar introns
have the capacity to self-splice in vitro, it is likely that
these splicing processes are assisted by protein factors in
vivo similar to the snRNP-mediated splicing events in
the nuclear cell compartment.

The chloroplast trnK gene, for instance, is separated
by a long intron, which encodes an open reading frame
of 524 amino acids, called matK, which shares homol-
ogies with mitochondrial maturases. In mustard,
recombinant matK gene product expressed in Escheri-
chia coli was shown to selectively bind to precursor trnK
and trnG transcripts in vitro, supporting the idea that
MatK functions as a maturase during the excision of
group II introns from these precursor RNAs (Liere and
Link 1995).

Moreover, sedimentation analysis in transplastomic
Chlamydomonas reinhardtii strains revealed native high-
molecular-weight RNP complexes, which were formed
with group II intron RNA and chloroplast proteins.
Subsequent UV-crosslinking experiments then revealed
the interaction of proteins, 31 kDa and 61 kDa in size,
with distinct subdomains of group II intron RNAs
(Bunse et al. 2001). As mentioned above, the small
hnRNP-like cpRBPs were also found to co-precipitate
with intron-containing precursor tRNAs in tobacco.

To date, five nuclear genes required for chloroplast
splicing have been isolated by genetic means. These
include Raa1, Raa2, Raa3 from C. reinhardtii, which are
involved in a complex two-step trans-splicing mechanism
leading to mature chloroplast psaA mRNA. In addition,
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Crs1 from maize represents a splicing factor which
mediates intron removal from the atpF precursor RNA.
In the crs2 mutant, the splicing of a whole subgroup of
class IIB introns is defective (Vogel et al. 1999). For most
of these factors, it has been shown that they are part of
high-molecular-weight complexes, which contain their
target RNAs (Jenkins and Barkan 2001; Rivier et al.
2001; Till et al. 2001). However, to date, no direct contact
between these and the respective transcripts has been
reported. Thus, the precise cis-acting RNA elements in-
volved and, accordingly, the precise molecular working
mode of these proteins remains to be elucidated.

The only exception is represented by the above-
mentioned HCF152 factor from A. thaliana, which is
involved in both the cleavage of polycistronic precursor
RNAs between the psbH and petB genes and the splicing
of petB intron sequences. UV-crosslinking assays with
various RNA probes from the psbB-psbT-psbH-petB-
petD operon revealed a high affinity binding of re-
combinant HCF152 to distinct RNA regions covering
either the psbH-petB intergenic region or the exon–in-
tron boundaries of petB transcripts. These data suggest
that HCF152 is directly involved in the maturation of
petB mRNA (Meierhoff et al. 2003).

RNA-editing represents another RNA maturation
process which alters internal nucleotides of plastid
transcript-coding regions, mainly by C-to-U conversions
at specific sites. In algae, no editing can be observed,
indicating phylogenetically a later development of this
gene expression mechanism. While the essential cis-act-
ing elements on chloroplast RNAs have been narrowed
down by analyzing site-directed plastid mutants (Her-
mann and Bock 1999), relatively little is known about
the interacting trans-acting factors, for some of which
genetic data indicate that they may be nucleus-encoded
(Bock and Koop 1997; Schmitz-Linneweber et al. 2001).
Recently, in vitro RNA-editing systems for both tobacco
and pea chloroplasts were developed, which now enable
a rapid identification of both the involved cis-elements
and, furthermore, the proteins recognizing these RNA
regions by UV-crosslinking. In these editing extracts,
four different RBPs were detected that bound to differ-
ent RNA editing elements. A 25-kDa protein specifically
recognized the psbL-editing site and the above-men-
tioned general cpRBP cp31 was required for editing both
psbL and ndhB mRNAs, as demonstrated by immun-
odepletion of this factor from the extract (Hirose and
Sugiura 2001). In tobacco, proteins of 56 kDa and
70 kDa were shown to bind to the psbE and petB sites,
respectively. Interestingly, pea chloroplasts have no
editing capacity for the psbE site and lack the 56-kDa
protein, suggesting a co-evolution of editing sites and
their cognate editing factors (Miyamoto et al. 2002).

RBPs involved in 3¢ end formation of chloroplast RNAs

Apart from the internal regions of chloroplast RNAs,
the 5¢UTRs and 3¢UTRs have attracted special attention

with regard to their potential role in the regulation of
post-transcriptional gene expression steps. 3¢UTRs often
contain stem-loop structures, which function as general
transcript-stabilizing determinants and, in addition,
serve as processing signals for correct 3¢ end formation.
This 3¢ end formation is a two-step process, which
involves an initial endonucleolytic cut downstream of
the stem-loop structure and a subsequent exonucleolytic
trimming in the 3¢-to-5¢ direction. Removal of the stem-
loop structure, for instance by internal endonucleolytic
cuts, results in rapid degradation of the investigated
RNAs, both in vitro and in vivo. Interestingly, similar to
the situation in bacteria, polyadenylation of the resulting
cleavage products at their 3¢ ends targets them for deg-
radation (Hayes et al. 1999; Schuster et al. 1999). In
E. coli, polyadenylation of RNAs and their subsequent
degradation are performed by a poly(A)polymerase and
the exoribonuclease poynucleotide phosphorylase
(PNPase), respectively. Also in chloroplasts, a PNPase
has been detected which can be UV-crosslinked to many
chloroplast RNA probes. In contrast to the E. coli
enzyme, chloroplast PNPase apparently does not form a
degradosome-like structure containing both endonucle-
ase and helicase activities (Carpousis et al. 1999), but
forms a homo-oligomeric complex of about 600 kDa, as
judged by biochemical and mass-spectrometric analyses
(Baginsky et al. 2001). Recently, a reverse genetic
approach revealed a more complex picture of the func-
tion of PNPase in the chloroplasts of A. thaliana. In co-
suppressed plants exhibiting a drastically reduced
amount of PNPase, correct 3¢ end formation of rbcL and
psbA mRNAs was significantly reduced. However, their
total transcript accumulation remained unaffected by
the absence of PNPase and no obvious phenotype of
co-suppressed plants was observed. These data indicate
that PNPase represents a critical determinant for the
3¢ processing of plastid mRNAs but not for their half-
lives. Furthermore, the processing of rRNAs and the
decay of tRNAs appear to be affected by PNPase
(Walter et al. 2002). Another aspect of PNPase function
concerns its relation to processes of polyadenylation of
chloroplast RNA fragments. Biochemical data suggest
that PNPase itself acts as a poly(A)polymerase in both
higher plants and cyanobacteria (Yehudai-Resheff et al.
2001; Rott et al. 2003). However, analysis of the men-
tioned co-suppressed PNPase lines of A. thaliana reveals
that polyadenylation is enhanced in the absence of
PNPase, suggesting that a poly(A)polymerase distinct
from PNPase is responsible for RNA modification
similar to the situation in E. coli (Walter et al. 2002).
Future work will have to clarify these contradictory
results.

In addition to PNPase, several other proteins have
been shown to interact with various chloroplast RNA
3¢UTRs. Among these, CSP41 from spinach was
analyzed in detail. It belongs to the short-chain dehy-
drogenase/reductase superfamily and exhibits both
RNA-binding and endonuclease activity in vitro
(Yang et al. 1996). A thorough investigation of various
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different RNA substrates showed that recombinant
CSP41 especially recognizes and cleaves fully base-
paired stem-loop structures, suggesting that it plays a
broad role in the degradation of stem-loop-containing
plastid RNAs (Bollenbach and Stern 2003). Interest-
ingly, this protein appears to be associated with the
plastid transcription machinery, pointing to a tight
connection between transcriptional and post-transcrip-
tional processes (Pfannschmidt et al. 2000). Another
RBP from mustard chloroplast, named p54, also shows
endonucleolytic activity and is involved in the 3¢ end
formation of the stem-loop lacking 3¢UTRs from trnK
and rps16 transcripts (Nickelsen and Link 1993). Both
the redox state and phosphorylation of p54 regulate its
activity in vitro (Liere and Link 1997).

RBPs interacting with 5¢UTRs

5¢UTRs of chloroplast transcripts harbor the cis-acting
determinants for the stabilization of plastid transcripts
and, moreover, represent the platform on which trans-
lation initiation takes place. For instance, analysis of
chloroplast reporter gene constructs revealed that, in
both C. reinhardtii and tobacco, rbcL transcripts are
stabilized via elements within their 5¢ regions in vivo
(Salvador 1993; Shiina et al. 1998). The same applies to
5¢UTRs of psbD, petD and psbB transcripts in C. rein-
hardtii, which were shown to contain the target sites for
nucleus-encoded factors involved in the gene-specific
stabilization of the corresponding mRNAs (Nickelsen
et al. 1994; Drager et al. 1998; Vaistij et al. 2000a). For
psbD and petD RNAs, site-directed mutagenesis enabled
the precise localization of distinct RNA elements medi-
ating RNA stabilization (Higgs et al. 1999; Nickelsen et
al. 1999).

Similarly, analysis of mutants and reporter genes
confirmed that 5¢UTRs also contain essential translation
elements, some of which represent the target sites for
nucleus-encoded functions regulating the basic bacteria-
like translation apparatus (for reviews, see Bruick and
Mayfield 1999; Zerges 2000). To date, three nuclear
genes have been cloned from C. reinhardtii which encode
proteins mediating their function via chloroplast
5¢UTRs. These include Nac2 and Mbb1, controlling the
stabilization of psbD and psbB transcripts, respectively,
and Tbc2, regulating translation initiation on the psbC
mRNA (Boudreau et al. 2000; Vaistij et al. 2000b;
Auchincloss et al. 2002). Similar to the above-mentioned
genetically defined factors involved in chloroplast-spli-
cing, all three factors have been detected in high-
molecular-weight complexes which also contain RNA;
but it remains to be clarified whether or not they directly
interact with their cognate transcripts.

To identify factors regulating plastid translation ini-
tiation at 5¢UTRs, which is considered to be the rate-
limiting step for polypeptide synthesis, mainly in vitro
analyses have been applied in the past. During extensive
RNA-binding experiments using a variety of different

systems, a large number of RBPs were detected, which
interact with chloroplast leader regions (Danon and
Mayfield 1991; Nickelsen et al. 1994; Hauser et al. 1996;
Alexander et al. 1998; Zerges and Rochaix 1998; Hot-
chkiss and Hollingsworth 1999; McCormac et al. 2001).
Moreover, a promising in vitro system has been devel-
oped, based on a tobacco chloroplast protein extract,
which is capable of accurately translating exogenously
added mRNAs (Hirose and Sugiura 1996). Gel-shift
experiments with this extract confirmed an RNA–pro-
tein complex formation with the AU-rich element of the
psbA 5¢UTR, which is required for protein synthesis.
Also, in spinach, the ribosomal protein S1 was shown to
interact with the psbA leader in addition to several other
RNAs (Alexander et al. 1998; Shteiman-Kotler and
Schuster 2000).

Currently, the most comprehensive analysis of psbA
gene expression has been performed in C. reinhardtii.
Using RNA affinity chromatography, a psbA 5¢UTR-
interacting protein complex was isolated, consisting of
four subunits referred to as RB47, RB60, RB55 and
RB38. Among these, only RB47 directly contacts the
RNA, as was determined by UV-crosslinking assays.
The genes for both RB47 and RB60 were cloned and
shown to encode a poly(A)-binding protein (cPABP)
and a protein disulfide isomerase (cPDI), respectively
(Kim and Mayfield 1997; Yohn et al. 1998). The binding
activity of this complex was decreased in nuclear mu-
tants, which affected D1 synthesis, underlining its
function for translation initiation. In vitro, both
phosporylation and redox reactions could modulate
protein-binding to the psbA 5¢UTR through RB60 and/
or RB47 (Fong et al. 2000; Trebitsh et al. 2000).
Accordingly, a model for the regulation of D1 synthesis
was proposed, which predicts a direct coupling of
translation initiation with photosynthetic activity via
NADPH and ATP (Bruick and Mayfield 1999). Con-
sistent with this, redox signals originating from both
photosystem I and photosystem II were found to influ-
ence D1 synthesis in isolated C. reinhardtii chloroplasts.
However, since the synthesis of other chloroplast pro-
teins was regulated in the same manner, it remains to be
clarified whether this reflects a psbA-specific or a more
general effect on the translation machinery (Trebitsh and
Danon 2001). A related redox-regulation of RNA–pro-
tein complex formation on the psbA 5¢UTR has also
been reported for A. thaliana (Shen et al. 2001).

One particularly intriguing, but not entirely resolved,
aspect of chloroplast gene expression is the mode of
subcompartmentalizing different gene expression steps
within the organelle. In addition to the stroma or the
membrane phases of thylakoids and the inner envelope
membrane, another membranous subcompartment, the
so-called ‘‘low density membrane’’ (LDM), has been
described (Zerges and Rochaix 1998). LDMs resemble
the inner envelope with regard to their lipid composition
and associate with thylakoids in a magnesium-dependent
manner. It is hypothesized that they represent interme-
diate states during thylakoid membrane biogenesis,
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which might originate from the inner chloroplast enve-
lope via vesicle transport (Zerges 2000; Kroll et al. 2001).
Interestingly, several light-activated RNA-binding
activities in C. reinhardtii were shown to be significantly
enriched in the LDM fraction (Zerges and Rochaix 1998;
Zerges et al. 2002), suggesting that the envelope/LDMs
represent the site of thylakoid membrane protein syn-
thesis. Consistent with this, the psbA-specific transla-
tional regulator RB47 was localized to LDMs and RB60
was found to be partitioned between the soluble and
membrane phase during chloroplast fractionation
experiments (Zerges and Rochaix 1998; Trebitsh et al.
2001). Recently, a novel psbA-specific RBP, named
RBP63, was identified in C. reinhardtii, which recognizes
a translational A-rich element within the psbA leader,
but, in contrast to RB47, is exclusively associated with
stromal thylakoid membranes (Ossenbühl et al. 2002).
This is the place where photo-damaged D1 is co-transl-
ationally exchanged during photosystem II repair (Adir
et al. 1990; Zhang and Aro 2002). Thus, two different,
spatially separated processes of photosystem II genera-
tion may have to be considered: One is the de novo
assembly of PSII in developing chloroplasts, which takes
place at the LDM system, and the other is its thylakoid-
located maintenance in mature chloroplasts. Whilst psbA
mRNA translation at LDMs is likely to be regulated by
the complex containing RB47, RB60, RB55 and RB38,
D1-repair synthesis might be targeted to stromal thyla-
koid membranes via a molecular tether represented by
RBP63. Future work will show whether two different

pathways actually do exist for psbA gene expression in
chloroplasts.

Many of the molecular details we are aware of today
regarding site-specific RNA–protein interactions are
mainly based on in vitro investigations. Research on
C. reinhardtii, which lends itself to the application of
both genetic and biochemical approaches, married in
vitro work on RBPs with genetic approaches. Possibly,
one of the most comprehensive analyses of this kind was
performed for the chloroplast psbD gene, encoding the
D2 protein of the PSII reaction center. Analysis of the
photosynthetic mutant nac2 revealed that the stability of
the psbD mRNA depends on a nucleus-encoded tetrat-
ricopeptide repeats protein, which is part of a high-
molecular-weight complex mediating its function via the
psbD 5¢UTR (Boudreau et al. 2000). However, a thor-
ough site-directed mutagenesis of the psbD 5¢region after
biolistic transformation of chloroplasts from wild-type
cells identified several essential cis-acting elements
required for either stabilization or translation of the
psbD message (Nickelsen et al. 1999). Concomitant in
vitro RNA binding assays with the mutant psbD 5¢
versions then demonstrated that the deletion of an
U-rich element leading to a defect in psbD mRNA
translation in vivo resulted in the inability of binding a
protein of 40 kDa (RBP40) to the 5¢UTR in vitro.
Furthermore, a suppressor screen led to the isolation of
a photosynthetic revertant, which contained a 5-bp
duplication within the mutated U-rich element. This
cis-acting suppressor mutation was then shown to be

Fig. 1 Model of psbD gene
expression in Chlamydomonas
reinhardtii. See text for
explanation
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sufficient to restore both D2 synthesis and binding of
RBP40 to the psbD leader, indicating a strong correla-
tion of these two processes. Interestingly, the binding of
RBP40 was also dependent on the presence of the RNA
stabilization factor, Nac2. This suggests that a tight
connection between 5¢UTR-mediated RNA stabilization
and translation initiation exists in the chloroplast. Based
on the data collected so far, the following model for
psbD gene expression has been proposed, which is de-
picted in Fig. 1. Indirect evidence strongly suggests that,
after transcription, the Nac2 complex interacts with a
RNA element within the psbD 5¢UTR, called PRB2
(Nickelsen et al. 1999). This leads to the protection of
the RNA against exonucleolytic degradation from the 5¢
end of the message. Furthermore, Nac2 guides RBP40 to
its U-rich binding site immediately downstream of PRB2
(Ossenbühl and Nickelsen 2000). Once RBP40-psbD
mRNA complex formation has been established, Nac2 is
released from the RNA. This transient interaction of the
Nac2 complex with the psbD 5¢UTR is supported by the
finding that Nac2 cannot be identified at polysomes
from C. reinhardtii chloroplasts (Boudreau et al. 2000).
Afterwards, RBP40-mediated ribosomal assembly takes
place and translation is initiated.

Similar experiments based on the analysis of various
cis-acting suppressor strains in combination with in vitro
RNA-binding assays were carried out for the 5¢UTR of
the chloroplast rps7 gene in C. reinhardtii. A 20-kDa
protein, which was shown to be the S7 protein of the
small ribosomal subunit encoded by rps7 itself, was
detected in UV-crosslinking experiments with the wild-
type rps7 5¢UTR probe. It failed to bind to mutant
versions, which affected translation of a reporter gene
when introduced into the chloroplast genome. However,
5¢UTRs derived from isolated cis-acting suppressor
strains bound to S7, highlighting the in vivo significance
of this interaction. The above-mentioned RB47 factor
implicated in the regulation of psbA mRNA translation
was also found to recognize the rps7 5¢UTR during these
experiments. However, in contrast to S7, no correlation
between the in vitro and the in vivo data could be
observed, indicating that the function of RB47 during
rps7 gene expression is not essential. Overall, these data
suggest a positive auto-regulation of the rps7 gene by its
own product and possibly also the regulation of other
genes (Fargo et al. 2001).

Conclusions and perspectives

The biogenesis of chloroplasts is controlled by numerous
nucleus-encoded factors, which mediate the crosstalk
between the plastid and nuclear genomes by regulating
organellar gene expression, mainly at the post-tran-
scriptional level. In addition to genetic approaches,
biochemical analyses of RNA protein complex forma-
tion within chloroplasts have proven to be powerful
tools for the characterization of RBPs and the identifi-
cation of their corresponding genes.

In conclusion, data available to date indicate the
existence of a high number of different plastid RBPs,
which appear to possess differentially regulated RNA-
binding activities. Some of these exhibit sequence-
specific and, thus, gene-specific binding affinities, while
others represent more general RBPs that might establish
a protein scaffold for chloroplast transcripts enhancing
RNA stability and/or RNA-folding. Another outcome
of more recent research is that most RBPs form part of
high-molecular-weight complexes, which are likely to
represent the regulatory units controlling gene expres-
sion. Their chloroplast sublocalization and their supra-
molecular organization in distinct complexes now
provide the basis for the selective enrichment of RBPs in
plastid subfractions. Further biochemical processing of
these fractions by affinity chromatography in combina-
tion with recently improved proteomic techniques will
facilitate the identification of even low-abundance RBPs
and constituents of the RBP-containing complexes,
thereby enabling the cloning of their respective genes.
The parallel development of chloroplast in vitro systems
for editing and translation and the site-directed muta-
tion of plastid genes in transplastomic transformants is
expected to reveal precise molecular details of the
working mode of the regulatory network that underlies
intracellular communication between cell organelles.
With the understanding of this communication system,
we might be able to answer a fundamental question of
cell biology, i.e., how the photoautotrophic cell which
we see today has developed by starting from two inde-
pendent organisms, a photoautotrophic procaryote and
a heterotrophic eucaryotic host which became fused.
Especially, the harmonization of the two genetic systems
involved via this communication system provides
the molecular basis for organelle biogenesis and, thus,
reflects a milestone in the development of higher
organisms.

Furthermore, the identification of the molecular
machinery mediating gene regulation in chloroplasts,
together with established techniques for both nuclear and
chloroplast transformation, will accelerate the develop-
ment of high-efficiency systems for the expression of
foreign genes within plastids, which recently became of
outstanding interest in terms of biotechnical applications
(Bock 2001; Maliga 2003).
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