References in geosciences that incorporate Abaqus

Altmann, J.B., Müller, B., Müller, T., Heidbach, O., Tingay, M., and A. Weißhardt (2014): Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation. Geothermics, 52, 195-205, doi:10.1016/j.geothermics.2014.01.1004.

Altmann, J.B., Müller, T.M., Müller, B.I.R., Tingay, M.R.P. and O. Heidbach (2010): Poroelastic contribution to the reservoir stress path. Int. J. Rock. Mech. & Min. Sci., 47, 1104-1113, doi:10.1016/j.ijrmms.2012.1008.1001.

Árnadóttir, T., B. Lund, W. Jiang, H. Geirsson, H. Björnsson, P. Einarsson and T. Sigurdsson, (2009). Glacial rebound and plate spreading: Results from the first countrywide GPS observations in Iceland, Geophys. J. Int., 177, 691-716, doi: 10.1111/j.1365-246X.2008.04059.x.

Bagge, M., A. Hampel (2016): Three-dimensional finite-element modelling of coseismic Coulomb stress changes on intra-continental dip-slip faults. Tectonophysics, 684, 52-62.

Bagge, M., A. Hampel (2017): Postseismic Coulomb stress changes on intra-continental dip-slip faults due to viscoelastic relaxation in the lower crust and lithospheric mantle: insights from 3D finite-element modelling. International Journal of Earth Sciences, 106, 2895-2914, doi 10.1007/s00531-017-1467-8.

Bagge, M., A. Hampel, R. Gold (in press): Modeling the Holocene slip history of the Wasatch fault (Utah): Coseismic and postseismic Coulomb stress changes and implications for paleoseismicity and seismic hazard. Geological Society of America Bulletin, doi10.1130/B31906.1.

Bängtsson, E. and B. Lund, (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth, Int. J. Num. Meth. Engng., 75, 479-502, doi: 10.1002/nme.2268.

Buchmann, T. und Connolly, P., (2007): Contemporary kinematics of the Upper Rhine Graben: a 3D finite element approach. Global Planet. Change 58, 287-309.

Buchmann, T., (2009): 3D multi-scale finite element analysis of the present-day crustal state of stress and the recent kinematic behaviour of the northern and central Upper Rhine Graben: Karlsruhe, Vrije University of Amsterdam & University of Karlsruhe, pp. 257.

Bühler, M. M., Cudmani, R., Osinov, V. A., Libreros-Bertini, A. B., and G. Gudehus (2004). Experimental and numerical investigation of the influence of local site conditions on the ground motion during strong earthquakes.

Cailleau B. and O. Oncken (2008), Past forearc deformation in Nicaragua and coupling at the megathrust interface: Evidence for subduction retreat?, Geochem. Geophys. Geosyst., 9, doi:10.1029/2007GC001754.

Capitanio, F.A. and Morra, G., (2012), The bending mechanics in a dynamic subduction system: constraints from numerical modelling and global compilation analysis, Tectonophysics, doi: 10.1016/j.tecto.2011.12.003

Capitanio, F.A., Morra, G., and Goes, S., (2007), Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation, Earth Plan. Sci. Let., 262, 284-297.

Capitanio, F.A., Morra, G., and Goes, S., (2009), Dynamics of plate bending at the trench and slab-plate coupling, Geochem. Geophys. Geosyst., 10, Q04002, doi:10.1029/2008GC002348.

Capitanio, F.A., Morra, G., Goes, S., Weinberg, R.F. and Moresi, L., (2010), India-Asia convergence driven by the subduction of the Greater Indian continent, Nature Geoscience, doi: 10.1038/NGEO725.

DeDontney, N., E. L. Templeton-Barrett, J. R. Rice, and R. Dmowska, (2011), Influence of plastic deformation on bimaterial fault rupture directivity, J. Geophys. Res., vol. 116, B10312, doi:10.1029/2011JB008417

DeDontney, N., J. R. Rice, and R. Dmowska, (2011), Influence of material contrast on fault branching behavior, Geophys. Res. Lett., vol. 38, L14305, doi:10.1029/2011GL047849

DeDontney, N., J. R. Rice, and R. Dmowska, (2012), Finite element model of branched ruptures including off-fault plasticity, Bull. Seism. Soc. Am., Vol. 102,  No. 2,  pp. 541-562, doi: 10.1785/0120110134

Dmowska, R., G. Zheng and J. R. Rice, (1996), Seismicity and Deformation at Convergent Margins due to Heterogeneous Coupling, J. Geophys. Res., 101, pp. 3015-3029.

Drewes, H., and O. Heidbach (2004). Deformation of the South American Crust from Finite Element and Collocation Methods, in A Window on the Future of Geodesy,International Association of Geodesy Symposia 128, edited by F. Sanso, pp. 296-301, Springer, Berlin.

Dyksterhuis, S., Albert, R. A., and R. D. Müller (2005). Finite-element modelling of contemporary and palaeointraplate stress using ABAQUS, Computers and Geosciences, 32, Doi:10.1016/j.cageo.2004.10.011. br>

Eckert, A. und Conolly, P., (2004): 2D Finite Element Modelling of Regional and Local Fracture Networks in the Eastern California Shear Zone and Coso Range, California USA. In, Geothermal Resources Council 2004 Annual Meeting, Volume 28, Geothermal Resources Council, 643-648.

Ellis, S., and B. Stöckhert (2004). Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust, J. Geophys. Res., 109, B05407, doi:10.1029/2003JB002744.

Ellis, S., and B. Stöckhert (2004). Imposed strain localization in the lower crust on seismic timescales, Earth Plants Space, 56, 1103-1109.

Fischer, K. D. (2006). The influence of different rheological parameters on the surface deformation and stress field of the Aegean-Anatolian region. Int. Jour. Earth Sci. 95 (2): 239-249.

Fischer, K. D., Jahr, Th., and G. Jentzsch (2004). Evolution of the Variscan foreland-basin: modelling the interactions between tectonics and surface processes. Phys. Chem. Earth. 29 (10): 665-671.

Funiciello, F, Morra, G., Regenauer-Lieb, K., and D. Giardini (2003). Dynamics of retreating slabs: 1. Insights from two-dimensional numerical experiments. Jour. Geophys. Res. 108 (B4), 2206.

Gerbault, M., Davey, F., and S. Henrys (2002). Three-dimensional lateral crustal thickening in continental oblique collision: an example from the Southern Alps, New Zealand, Geophys. J. Int., 150, 770-779.

Goes, S., Capitanio, F.A. and Morra, G., (2008), Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451, 981-984.

Hampel, A., A. Pfiffner (2006): Relative importance of trenchward upper plate motion and friction along the plate interface for the topographic evolution of mountain belts. In: S.J.H. Buiter, G. Schreurs (eds.) Analogue and Numerical Modelling of Crustal-Scale Processes, Geological Society of London Special Publication, 253, 105-115.

Hampel, A., J. Lüke, T. Krause, R. Hetzel (2019): Finite-element modelling of glacial isostatic adjustment (GIA): use of elastic foundations at material boundaries versus the geometrically non-linear formulation. Computers and Geosciences, 122, 1-14, https://doi.org/10.1016/j.cageo.2018.08.002.

Hampel, A., R. Hetzel (2006): Response of normal faults to glacial-interglacial fluctuations of ice and water masses on Earth's surface. Journal of Geophysical Research, 111, B06406, doi:10.1029/2005JB004124.

Hampel, A., R. Hetzel (2008): Slip reversals on active normal faults related to the inflation and deflation of magma chambers: Numerical modeling with application to the Yellowstone-Teton region. Geophysical Research Letters, 35, L07301, doi:10.1029/2008GL033226.

Hampel, A., R. Hetzel (2012): Temporal variation in fault friction and its effects on the slip evolution of a thrust fault over several earthquake cycles. Terra Nova, 24, 357-362, doi: 10.1111/j.1365-3121.2012.01073.x.

Hampel, A., R. Hetzel (2015): Horizontal surface velocity and strain patterns near thrust and normal faults during the earthquake cycle: the importance of viscoelastic relaxation in the lower crust and implications for interpreting geodetic data. Tectonics, 34, 731-752, doi:10.1002/2014TC003605.?

Hampel, A., R. Hetzel (2016): Role of climate changes for wind gap formation in a young, actively growing mountain range. Terra Nova, 28, 441-448.

Hampel, A., R. Hetzel, A.L. Densmore (2007): Postglacial slip rate increase on the Teton normal fault, northern Basin and Range Province, caused by melting of the Yellowstone ice cap and deglaciation of the Teton Range? Geology, 35, 12, 1107-1110.

Hampel, A., R. Hetzel, G. Maniatis (2010): Response of faults to climate-driven changes in ice and water volumes on Earth's surface. In: W. McGuire (ed.), Climate forcing of geological and geomorphological hazards, Philosophical Transactions (A) of the Royal Society, 368, 2501-2517.

Hampel, A., R. Hetzel, G. Maniatis, T. Karow (2009): Three-dimensional numerical modeling of slip rate variations on normal and thrust fault arrays during ice cap growth and melting. Journal of Geophysical Research, 114, B08406, doi:10.1029/ 2008JB006113.

Hampel, A., T. Karow, G. Maniatis, R. Hetzel (2010): Slip rate variations on faults during glacial loading and postglacial unloading: Implications for the viscosity structure of the lithosphere. In: C. Pascal, I.S. Stewart, B.L.A. Vermeersen (eds) Neotectonics, Seismicity and Stress in Glaciated Regions, Journal of the Geological Society London, 167, 385-399.

Hampel, A., T. Li, G. Maniatis (2013): Contrasting strike-slip motions on thrust and normal faults: Implications for space-geodetic monitoring of surface deformation. Geology, 41, 299-302, doi:10.1130/G33927.1.

Heidbach, O., Hergert, T. und Grünthal, G., (2011): Computersimulation der Plattenbewegungen südlich von Istanbul. GFZ Journal 1, doi:10.2312/GFZ.syserde.01.01.2, 12-17.

Heidbach, O., Ledermann, P., Kurfeß, D., Peters, G., Buchmann, T., Negut, M., Matenco, L., Sperner, B., Müller, B., Nuckelt, A. und Schmitt, G., (2007): Attached or not attached: Slab dynamics beneath Vrancea, Romania. In, International Symposium on Strong Vrancea Earthquakes and Risk Mitigation: Bucharest, Romania, 3-20.

Henrys, S. A., Ellis, S., and C. Uruski (2003). Conductive heat flow variations from bottom-simulating reflectors on the Hikurangi margin, New Zealand, Geophys. Res. Lett., 30, 2, 1065, doi:10.1029/2002GL015772.

Hergert, T. und Heidbach, O., (2006): New insights in the mechanism of postseismic stress relaxation exemplified by the June 23rd 2001 Mw = 8.4 earthquake in southern Peru. Geophys. Res. Lett. 33, doi:1029/2005GL024585.

Hergert, T. und Heidbach, O., (2009): Seismische Gefährdung von Istanbul - 3D Simulation der Deformationsraten und des Spannungszustandes des geologischen Störungssystems in der Marmara See. In, 21. Deutschsprachige Abaqus-Benutzerkonferenz, Dasseault Systems, 21.-22. August 2009, Würzburg, 8.

Hergert, T. und Heidbach, O., (2010): Slip-rate variability and distributed deformation in the Marmara Sea fault system. Nature Geoscience 3, 132-135, doi:10.1038/NGEO739.

Hergert, T. und Heidbach, O., (2011): Geomechanical model of the Marmara Sea region - II. 3-D contemporary background stress field. Geophys. J. Int., doi:10.1111/j.1365-246X.2011.04992.x, 1090-1102.

Hergert, T., Heidbach, O., Bécel, A., and M. Laigle (2011): Geomechanical model of the Marmara Sea region - I. 3D contemporary kinematics. Geophys. J. Int., 185, 1073-1089, doi:10.1111/j.1365 1246X.2011.04991.x.

Hergert, T., Heidbach, O., Reiter, K., Giger, S., and P. Marschall (2015): Stress field sensitivity analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland. Solid Earth, 6, 533-552, doi:510.5194/se-5196-5533-2015.

Hetzel, R., A. Hampel, (2005): Slip rate variations on normal faults during glacial-interglacial changes in surface loads. Nature, 435, 81-84.

Hooper, A.J., B. Ófeigsson, F. Sigmundsson, B. Lund, P. Einarsson, H. Geirsson, E. Sturkell, (2011). Increased capture of magma in the crust promoted by ice cap retreat in Iceland, Nature Geoscience, 4(11), 783-786, doi: 10.1038/ngeo1269.

Hughes, K. L. H., Masterlark, T. und Mooney, W. D., (2010): Poroleastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake. Earth Planet. Sc. Lett., doe:10.1016/j.epsl.2010.02.043.

Karow, T., A. Hampel (2010): Slip rate variations on faults in the Basin-and-Range Province caused by regression of Late Pleistocene Lake Bonneville and Lake Lahontan. International Journal of Earth Sciences, 99, 1941-1953.

Kaufmann, G., and P. Wu (1998a). Upper mantle lateral viscosity variations and postglacial rebound: application to the Barents Sea. In P. Wu, editor, Dynamics of the Ice Age Earth: A Modern Perspective, pages 583-602. Trans Tech Pub., Zürich, Switzerland.

Kaufmann, G., and P. Wu (1998b). Lateral asthenospheric viscosity variations and postglacial rebound: a case study for the Barents Sea. Geophys. Res. Lett., 25 (11), 1963-1966.

Kaufmann, G., and P. Wu (2002). Glacial isostatic adjustment in fennoscandia with a three-dimensional viscosity structure as an inverse problem. Earth Planet. Sci. Lett., 197 (1-2), 1-10.

Kaufmann, G., Wu, P., and D. Wolf (1997). Some effects of lateral heterogeneities in the upper mantle on postglacial land uplift close to continental margins. Geophys. J. Int., 128, 175-187.

Kaufmann, G., Wu, P., and E.R. Ivins (2005). Lateral viscosity variations beneath antarctica and their implications on regional rebound motions and seismotectonics. J. Geodyn., 39 (2), 165-181.

Kaufmann, G., Wu, P., and G. Li (2000). Glacial isostatic adjustment in Fennoscandia for a laterally heterogeneous Earth. Geophys. J. Int., 143 (1), 262-273.

Kenner, S. J., and P. Segall (2000). A Mechanical Model for Intraplate Earthquakes: Application to the New Madrid Seismic Zone, Science, 289, 2329-2332.

Kenner, S., and P. Segall (2003). Lower crustal structure in northern California: Implications from strain rate variations following the 1906 Dan Francisco earthquake, J. Geophys. Res., 108, B1, 2011, doi:10.1029/2001JB000189.

Kroner, C., Jahr, Th., Kuhlmann, S., and K. D. Fischer (2005). Pressure-induced noise on horizontal seismometer and strainmeter records evaluated by Finite element modelling. Geophys. J. Int. 161, 167-178, doi:10.1111/j.1365-246X.2005.02576.x.

Kurfeß, D. and O. Heidbach (2009): CASQUS: A new simulation tool for coupled 3D finite element modeling of tectonic and surface processes based on ABAQUS and CASCADE. Computer and Geosc., 35, 1959-1967, doi:10.1016/j.cageo.2008.1010.1019.

Kurz, J. H., Jahr, Th, and G. Jentzsch (2003). Geodynamic modelling of the recent stress and strain field in the Vogtland swarm earthquake area using the finite-element-method. Jour. Geodyn.35 (1-2): 247-258.

Kurz, J. H., Jahr, Th, and G. Jentzsch (2004). Earthquake swarm examples and a look at the generation mechanism of the Vogtland/Western Bohemia earthquake swarms. Phys. Earth Planet. Int. 142 (1-2): 75-88.

Lang, J., A. Hampel, C. Brandes, J. Winsemann (2014): Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes. Quaternary Science Reviews, 101, 217-233, 10.1016/j.quascirev.2014.07.022.

Li, T., A. Hampel (2012): Effect of glacial-interglacial sea-level changes on the displacement and stress field in the forearc and along the plate interface of subduction zones. In: S. Buiter, F. Funiciello, J. van Hunen (eds.), Subduction Zones, Solid Earth, 3, 63-70, http://www.solid-earth.net/3/63/2012/se-3-63-2012.html2012.

Lithgow-Bertelloni, C., and J. H. Guynn (2004). Origin of the lithospheric stress field, J. Geophys. Res., 109, BO1408, doi:10.1029/2003JB002467.

Lu, Z., Masterlark, T., and D. Dzurisin (2005). Interferometric synthetic aperture (InSAR) study of Okmok volcano, Alaska: Magma supply dynamics and post-emplacement lava flow deformation, J. Geophys. Res. 110, B02403, doi:10.1029/2004JB003148.

Lund, B. and J-O. Näslund, (2009). Glacial isostatic adjustment: Implications for glacially induced faulting and nuclear waste repositories, In: Volcanic and Tectonic Hazard Assessment for Nuclear Facilities, Eds. Connor, C.B., Chapman, N.A. and Connor, L.J., Cambridge University Press, Cambridge, UK, 640pp.

Manconi, A., Walter, T. R. und Amelung, F., (2007): Effects of mechanical layering on volcano deformation. Geophys.J.Int, 10.1111/j.1365-246X.2007.03449.x.

Maniatis, G., A. Hampel (2008): Along-strike variations of the slip direction on normal faults: Insight from three-dimensional finite-element models. Journal of Structural Geology, 30, 21-28.

Maniatis, G., D. Kurfeß, A. Hampel, O. Heidbach (2009): Slip acceleration on normal faults due to erosion and sedimentation - results from a new three-dimensional numerical model coupling tectonics and landscape evolution, Earth and Planetary Science Letters, 284, 570-582.

Marquez-Azúa, B., DeMets, C., and T. Masterlark (2002). Strong interseismic coupling, fault afterslip, and viscoelastic flow before and after the Oct. 9, 1995 Jalisco-Colima earthquake: Continuous GPS measurements from Colima, Mexico, Geophys. Res. Lett. 29, doi:10.1029/2002GL014702.

Masterlark, T. (2003). Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions, J. Geophys. Res., 108, B11, 2540, doi:10.1029/2002JB002296.

Masterlark, T. und Hughes, K. L. H., (2008): Next generation of deformation models for the 2004 M9 Sumatra-Andaman earthquake. Geophys. Res. Lett. 35, 10.1029/2008GL035198.

Masterlark, T., and H. F. Wang (2000). Poroelastic Coupling Between the 1992 Landers and Big Bear Earthquakes, Geophys. Res. Lett., 27, 22, 3647-3650.

Masterlark, T., and H. F. Wang (2002). Transient stress-coupling between the 1992 Landers and 1999 Hector Mine earthquakes, Bull. Seism. Soc. Am. 92, 1470-1486.

Masterlark, T., DeMets, C., Wang, H. F., Stock, J., and O. Sanchez (2001). Homogeneous vs. heterogeneous subduction zone models: Coseismic and postseismic deformation, Geophys. Res. Lett. 28, 4047-4050.

Masterlark, T., Lu, Z., and R. Rykhus (2006). Thickness distribution of a cooling pyroclastic flow deposit: Optimization using InSAR, FEMs, and an adaptive mesh algorithm, Journal of Volcanology and Geothermal Research 150, 186-201.

Morra, G., Regenauer-Lieb, K., (2009). A coupled solid-fluid method for modelling subduction Philosophical magazine 86 (21-22), 3307-3323

Musiol S., B. Cailleau, A. Dumke, T. Platz, T. Kneissl, G. Neukum (2011), Outflow activity near Hadriaca Patera, Mars - Fluid-tectonic interaction investigated with HRSC stereo data and finite-element modeling, Journal of Geophysical Research, 116(E08001), doi:10-1029/2010JE003791R.

Norton, K.P., A. Hampel (2010): Postglacial rebound promotes glacial re-advances - a case study from the European Alps. Terra Nova, 22, 297-302, doi: 10.1111/j.1365-3121.2010.00946.x.

Nüchter, J. und Ellis, S., (2011): Mid-crustal controls on episodic stress-field rotation around major reverse, normal and strike-slip faults. In A. Fagereng, V. G. Toy undJ. V. Rowland, eds., Geology of the Earthquake Source: A Volume in Honour of Rick Sibson, Volume Spec. Pub. 359, Geol. Soc., doi:10.1144/SP359.11, 187-201.

Ord, A., Hobbs, B. and Regenauer-Lieb, K., (2007). Shear band emergence in granular materials - A numerical study. International Journal for Numerical and Analytical Methods in Geomechanics. 31: 373-393.

Pagli, C., F. Sigmundsson, B. Lund, E. Sturkell, H. Geirsson, P. Einarsson, Th. Árnadóttir and S. Hreinsdóttir, (2007). Glacio-isostatic deformation around the Vatnajökull ice cap, Iceland, induced by recent climate warming: GPS observations and finite element modeling, J. Geophys. Res., 112, B08405, doi:10.1029/2006JB004421.

Poland, M., Bürgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., and J. Fink (2006). Constraints on the mechanism of long-term, steady subsidence at Medicine Lake volcano, northern California, from GPS and precise leveling, Journal of Volcanology and Geothermal Research 150, 55-78.

Rajabi, M., Heidbach, O., Tingay, M., and K. Reiter (2017): The 3D stress field of Australia predicted by geomechanical-numerical modelling, Australian J. of Earth Sci., 64, 435-454, doi:10.1080/08120099.2017.1294109.

Regenauer-Lieb, K., Rosenbaum, G. and Weinberg, R.F., (2008). Strain localisation and weakening of the lithosphere during extension. Tectonophysics, 458: 96-104.

Regenauer-Lieb, K., Yuen, D.A. (2003). Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal-mechanical approaches, Earth - Science Reviews, 63, pp. 295-349.

Reiter, K. and O. Heidbach (2014): 3-D geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin (Canada): Solid Earth, doi:10.5194/se-5195-1123-2014.

Roggon, L., R. Hetzel, H. Hiesinger, J.D. Clark, A. Hampel, C.H. van der Bogert (2017): Length-displace-ment scaling of thrust faults on the Moon and formation of uphill-facing scarps. Icarus, 292, 111-124.

Salomon, E., S. Schmidt, R. Hetzel, F. Mingorance, A. Hampel (2013): Repeated folding during late Holocene earthquakes on the La Cal thrust fault near Mendoza city (Argentina), Bulletin of the Seismological Society of America, 103, 936-949, doi: 10.1785/0120110335.

Schmidt, P., B. Lund and C. Hieronymus, (2012). Implementation of the glacial rebound pre-stress advection correction in general-purpose finite element analysis software: Springs versus foundations, Comp. Geosc., 40, 97-106, doi:10.1016/j.cageo.2011.07.017.

Schoenball, M., Müller, T.M., Müller, and B., and O. Heidbach (2010): Fluid-induced microseismicity in pre-stressed rock masses. Geophys. J. Int., 180, 813-119, doi:811.1111/j1365-1246X.2009.04443.x.

Sigmundsson, F., F. Albino, P. Schmidt, B. Lund, V. Pinel, A. Hooper, C. Pagli, (2012). Multiple effects of ice load changes and associated stress change on magmatic systems In: McGuire, W. J. and Maslin, M. A. (eds) Climate Forcing of Geological and Geomorphological Hazards. 320pp, Wiley-Blackwell, submitted.

Sigmundsson, F., V. Pinel, B. Lund, F. Albino, C. Pagli, H. Geirsson, E. Sturkell, (2010). Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland, Special issue on climate forcing of geological and geomorphological hazards, Phil. Trans. R. Soc. A, 368, 2519-2534, doi:10.1098/rsta.2010.0042.

Spada, G., V.R. Barletta, V. Klemann, R.E.M. Riva, Z. Martinec, P. Gasperini, B. Lund, D. Wolf, L.L.A. Vermeersen and M. King, (2011). A benchmark study for glacial isostatic adjustment codes, Geophys. J. Int., 185, 106-132, doi:10.1111/j.1365-246X.2011.04952.x.

Steffen, H., and G. Kaufmann (2006). Numerical modelling of deformation changes induced by lake-level fluctuations of the Hohenwarte reservoir, Thuringia, Germany. J. Geodyn. 41(4), 411-421.

Steffen, H., Kuhlmann, S., Jahr, Th., and C. Kroner (2006). Numerical modelling of the barometric pressure-induced noise in horizontal components for the observatories Moxa and Schiltach. J. Geodyn. 41(1-3), 242-252, doi:10.1016/j.jog.2005.08.011.

Taylor, M. A. J., Dmowska, R., and J. R. Rice (1998). Upper plate stressing and seismicity in the subduction earthquake cycle, J. Geophys. Res., 103, B10, 24,523-24,542.

Taylor, M. A. J., Zheng, G., Rice, J. R., Stuart, W. D., and R. Dmowska (1996). Cyclic stressing and seismicity at strongly coupled subduction zones, J. Geophys. Res., 101, B4, 8363-8381.

Tempelton, E. L. und Rice, J. R., (2008): Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure changes. Journal of Geophysical Research 113, 10.1029/2007JB005529.

Templeton, E. L., Baudet, A., Bhat, H. S., Dmowska, R., Rice, J. R., Rosakis, A. J. und Rousseau, C.-E., (2009): Finite element simulations of dynamic shear rupture experiments and dynamic path selection aling kinked and branched faults. Journal of Geophysical Research 114, 17.

Turpeinen, H., A. Hampel, T. Karow, G. Maniatis (2008): Effect of ice sheet growth and melting on the slip evolution of thrust faults. Earth and Planetary Science Letters, 269, 1-2, 230-241, doi:10.1016/j.epsl.2008.02.017.

Turpeinen, H., G. Maniatis, A. Hampel (2015): Fault slip induced by surface processes after the cessation of regional extension - insights from three-dimensional numerical modelling. In: K. Reicherter, R. van Balen, P. Silva, I. Papanikolaou (eds.) Geomorphology of Active Faulting. Geomorphology, 237, 79-87, doi: 10.1016/j.geomorph.2013.12.008.

Ustaszewski, M., A. Hampel, O.A. Pfiffner (2008): Composite faults in the Swiss Alps formed by the inter-play of tectonics, gravitation and postglacial rebound: an integrated field and modelling study. Swiss Journal of Geosciences (former Eclogae Geologicae Helvetiae), 101, 223-235.

Viesca, R, C., E. L. Templeton and J. R. Rice, (2008), Off-fault plasticity and earthquake rupture dynamics, 2. Effects of fluid saturation, J. Geophys. Res, vol. 113, B09307, doi:10.1029/2007JB005530

Viesca, R. C., and J. R. Rice, (2010), Modeling slope instability as shear rupture propagation in a saturated porous medium, in Submarine Mass Movements and Their Consequences (Proc. 4th Int'l. Symp., Austin, Texas, 8-11 November 2009), eds. D. C. Mosher, R.C. Shipp, L. Moscardelli, J. D. Chaytor, C. D. P. Baxter, H. J. Lee, and R. Urgeles, Advances in Natural and Technological Hazards Research, Vol. 28, Springer-Verlag New York, pp. 215-225.

Wang, H. S., and P. Wu (2006). Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion on a spherical, self-gravitating Maxwell Earth. Earth Planet. Sci. Lett. 244, 576-589.

Westerhaus, M., Altmann, J., and O. Heidbach (2008): Using topographic signatures to classify internally and externally driven tilt anomalies at Merapi Volcano, Java, Indonesia. Geophys. Res. Lett., 32, doi:10.1029/2007GL032262.

Wu, P. (2002). Effects of nonlinear rheology on degree 2 harmonic deformation in a spherical self-gravitating earth, Geophys. Res. Lett. 29-8, doi:10.1029/2001GL014109.

Wu, P. (2002). Mode coupling in a viscoelastic self-gravitating spherical earth induced by axisymmetric loads and lateral viscosity variations. Earth Planet. Sci. Lett., 202, 49-60.

Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea level and the state of stress, Geophys. J. Int., 158, doi:10.1111/j.1365-246X.2004.02338.x.

Wu, P. (2005). Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion in Laurentia. Earth Planet. Sci. Lett., 235, 549-563.

Wu, P. (2006). Sensitivity of relative sea levels and crustal velocities in Laurentide to radial and lateral viscosity variations in the mantle. Geophys. J. Int. 165, 401-413, doi: 10.1111/j.1365-246X.2006.02960.x.

Wu, P., and W. van der Wal (2003). Postglacial sealevels on a spherical, selfgravitating viscoelastic earth: Effects of lateral viscosity variations in the upper mantle on the inference of viscosity contrasts in the lower mantle. Earth Planet. Sci. Lett., 211, 57-68.

Wu, P., Ni, Z., and G. Kaufmann (1998). Postglacial rebound with lateral heterogeneities: from 2D to 3D modeling. In P. Wu, editor, Dynamics of the Ice Age Earth: A Modern Perspective, 557-582. Trans Tech Pub., Zürich, Switzerland.

Wu, P., Wang, H. S., and H. Schotman (2005). Postglacial induced surface motions, sea levels and geoid rates on a spherical, self-gravitating laterally heterogeneous earth. J. Geodyn., 39 (2), 127-142.

Zeumann, S, A. Hampel (2015): Deformation of erosive and accretive forearcs during subduction of migrat-ing and non-migrating aseismic ridges: Results from 3D finite-element models and application to the Central American, Peruvian and Ryukyu margins. Tectonics, 34, 1769-1791, doi:10.1002/2015TC003867.

Zeumann, S., A. Hampel (2017): Impact of Cocos Ridge (Central America) subduction on the forearc drainage system. Geology, 45, 907-910, 2017.

Zeumann, S., A. Hampel, Three-dimensional finite-element models on the deformation of forearcs caused by aseismic ridge subduction: The role of ridge shape, friction coefficient of the plate interface and mechanical properties of the forearc. Tectonophysics, 684, 76-91, 2016.

Zhang, Y. A. Karrech, P.M. Schaubs, K. Regenauer-Lieb, T. Poulet, J.S. Cleverley, (2012). Modelling of deformation around magmatic intrusions with application to gold-related structures in the Yilgarn Craton, Western tralia, Tectonophysics, Volumes 526-529, 10 March 2012, Pages 133-146

Zheng, G., R. Dmowska and J. R. Rice, (1996) Modeling Earthquake Cycles in the Shumagins Subduction Segment, Alaska, with Seismic and Geodetic Constraints, J. Geophys. Res., 101, pp. 8383-8392.

Ziegler, M., Heidbach, O., Zang, A., Martínez-Garzón, P., and M. Bohnhoff (2017): Estimation of the differential stress from the stress rotation angle in low permeable rock. Geohpys. Res. Lett., 44, 6761-6770, doi:10.1002/2017GL073598.

Ziegler, M., O. Heidbach, J. Reinecker, A. M. Przybycin, and M. Scheck-Wenderoth (2016): A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin, Solid Earth, 7, 1365-1382, doi:10.5194/se-7-1-2016.

Ziegler, M., Reiter, K., Heidbach, O., Zang, A., Kwiatek, G., Dresen, G., and G. Hoffmann (2015): Mining-Induced Stress Transfer and Its Relation to a Mw 1.9 Seismic Event in an Ultra-deep South African Gold Mine. Pure App. Geophys., 172, doi:10.1007/s00024-00015-01033-x.