- 1. Laufzeitkurve der Ersteinsätze eines refraktionsseismischen Experiments. 2-Schichtfall. Bestimmen Sie:
 - a) die Wellengeschwindigkeit in den Schichten,
 - b) die 1. Schichtdicke,
 - c) kritische Entfernung der refraktierten Welle,
 - d) direkte, refraktierte und reflektierte Welle ins Diagramm einzeichen.
- 2. $f = 25 \text{ Hz}, v_p = 2400 \text{ m/s}$
- 3. Sumatra-Beben. SW-NE-Schnitt durch Herd und in Skize:
 - a) Herdflächenlösung,
 - b) relative Bewegungen,
 - c) Hauptspannungsrichtungen,
 - d) Abstrahlcharakteristikum der P-Wellen
- 4. homogener, isotroper Würfel, Kantenlänge 1m. Verformung in x-Richtung. Dehnung e_{xx} = 0,005. Sonst keine Deformation. ρ = 2000 kg/m³, v_p = 2700 m/s, v_s =1250 m/s Spannungstensor und Kräfte, die auf alle Würfelflächen wirken.
- 5. Medium, Geschwindigkeit nimmt in Tiefe zu.
 - a) Laufzeitkurve,
 - b) typischer Strahlweg

Wellen gegen Senkrechte 32°. Medium tiefster Punkt des Strahlwegs v = 6.5 km/s.

- c) Welche Geschwindigkeit hat das Medium an Oberfläche?
- In bestimmter Tiefe v = 4.5 km/s
- d) Welcher Winkel durchläuft die Welle in dieser Tiefe?
- e) mit welchem Verfahren kann man die Tiefe bestimmen?