Die Wendelfläche oder Helikoide ist neben der Ebene die einzige einfach zusammenhängende Minimalfläche im 3-dimensionalen euklidischen Raum.

Näheres siehe: https://de.wikipedia.org/wiki/Wendelfläche

1. Auflage
Inhalt:

Kurzübersicht über die verschiedenen Modulabschlüsse
Überblick über Anmeldemodalitäten und Regelung zu Prüfungsversuchen
Stundenplan
Vorlesungsverzeichnis

Kurzübersicht über die verschiedenen Modulabschlüsse

Bachelor of Arts (PO 2016)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 2:</td>
<td>analog zu Modul 1</td>
</tr>
<tr>
<td>Modul 3:</td>
<td>ein unbenoteter Modulabschluss</td>
</tr>
<tr>
<td>Modul 4:</td>
<td>zwei benotete Modulabschlüsse aus Klausuren oder mündlichen Prüfungen</td>
</tr>
<tr>
<td>Modul 5:</td>
<td></td>
</tr>
<tr>
<td>Modul 6:</td>
<td>unbenoteter Modulabschluss</td>
</tr>
<tr>
<td>Modul 7:</td>
<td>benoteter Modulabschluss</td>
</tr>
<tr>
<td>Modul 8:</td>
<td>Bachelorarbeit (Abgabe frühestens nach 2/3 der Bearbeitungszeit!)</td>
</tr>
</tbody>
</table>

Master of Education (PO 2013 und 2020)

<table>
<thead>
<tr>
<th>Modul 1:</th>
<th>mündliche Prüfung über drei Veranstaltungen aus den Gebieten A-D, unbenoteter Schein im Seminar zu Schlüsselkompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 2:</td>
<td>benoteter Modulabschluss (Seminartvortrag + Forschungsbericht)</td>
</tr>
<tr>
<td>Modul 3:</td>
<td>mündliche Prüfung über zwei 4std. Vorlesungen aus 2 von 3 Gebieten</td>
</tr>
<tr>
<td>ggf.:</td>
<td>Masterarbeit (Abgabe frühestens nach 2/3 der Bearbeitungszeit!)</td>
</tr>
</tbody>
</table>
Kurzübersicht über die verschiedenen Modulabschlüsse

Bachelor of Science (PO 2006 und 2015)

<table>
<thead>
<tr>
<th>Modul 1</th>
<th>benoteter Modulabschluss (z.Zt. Klausur nach dem ersten und Klausur nach dem zweiten Semester, gewichtet mit 1/3 + 2/3, oder Nachschreibeklausur über beide Semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 2</td>
<td>analog zu Modul 1</td>
</tr>
<tr>
<td>Modul 3</td>
<td>unbenoteter Modulabschluss</td>
</tr>
<tr>
<td>Modul 4</td>
<td>unbenoteter Modulabschluss</td>
</tr>
<tr>
<td>Modul 5</td>
<td>unbenoteter Modulabschluss</td>
</tr>
<tr>
<td>Modul 6</td>
<td>benoteter Modulabschluss über Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Modul 7</td>
<td>(a oder b genügt) benoteter Modulabschluss über Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Modul 8</td>
<td>(zwei aus a, b, c, d, wobei a oder b Pflicht) benoteter Modulabschluss über Klausur oder mündliche Prüfung</td>
</tr>
<tr>
<td>Modul 9</td>
<td>(a, b und c Pflicht) ein unbenoteter Schein zwei benotete Modulabschlüsse aus mündlichen Prüfungen</td>
</tr>
<tr>
<td>Modul 10</td>
<td>benoteter Seminarschein Vertiefungsvorlesung Bachelorarbeit (Abgabe frühestens nach 2/3 der Bearbeitungszeit!)</td>
</tr>
</tbody>
</table>

Master of Science (PO 2006 und 2015)

<table>
<thead>
<tr>
<th>Modul 1</th>
<th>benoteter Modulabschluss durch mündliche Prüfung über beide Vorlesungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul 2</td>
<td>benoteter Modulabschluss durch mündliche Prüfung oder Klausur</td>
</tr>
<tr>
<td>Modul 3</td>
<td>benoteter Modulabschluss durch mündliche Prüfung oder Klausur</td>
</tr>
<tr>
<td>Modul 4</td>
<td>Modulabschluss durch zwei unbenotete Seminarscheine</td>
</tr>
<tr>
<td>Modul 5</td>
<td>Modulabschluss durch unbenoteten Seminarschein / Übungsschein</td>
</tr>
<tr>
<td>Modul 6</td>
<td>benoteter Modulabschluss gemäß Nebenfachregelungen</td>
</tr>
<tr>
<td>Modul 7</td>
<td>Modulabschluss durch unbenoteten Leistungsnachweis</td>
</tr>
<tr>
<td>Modul 8</td>
<td>Masterarbeit (Abgabe frühestens nach 2/3 der Bearbeitungszeit!)</td>
</tr>
</tbody>
</table>
Überblick über Anmeldemodalitäten

Bachelor of Science, Bachelor of Art, Master of Education, Master of Science

| Anmeldung: | Jede Modulabschlussprüfung muss mindestens zwei Wochen vor dem Prüfungstermin im Prüfungsamt angemeldet werden. Klausuranmeldung erfolgt hierbei in der Regel über eCampus. Ausgefüllte Anmeldeformulare für mündliche Prüfungen werden per Mail fristgerecht an das Prüfungsamt versandt. |
| Abmeldung: | Ohne Angabe von Gründen kann durch schriftliche Abmeldung im Prüfungsamt bis zu 3 Tage vor der Prüfung die Anmeldung rückgängig gemacht werden. |

Einzige Ausnahme:

Modulabschlussprüfungen im Master of Education

Anmeldung wie oben, aber Abmeldung nur bis spätestens eine Woche vor der Prüfung schriftlich im Prüfungsamt möglich.

Regelung zu Prüfungsversuchen

Bachelor of Science und Master of Science:

Jedes Modul kann 1x wiederholt werden. Daraus ergeben sich maximal 4 Prüfungsversuche pro Modul (Klausur + Nachschreibklausur + Klausur + Nachschreibeklausur)*

* Bei Bestehen eines Moduls kann der nächstmögliche Versuch einmalig pro Modul zur Notenverbesserung genutzt werden.

Bachelor of Arts:

Es stehen nur 3 reguläre Prüfungsversuche pro Modul zur Verfügung. Es besteht aber die Möglichkeit, in allen BA-Modulen eine FSP zu absolvieren, die einen zusätzlichen 0.-ten Versuch bedeutet. Notenverbesserung nur durch Streichen des Ergebnisses des FSP möglich.

Master of Education:

Es stehen nur 3 Prüfungsversuche pro Modul zur Verfügung. Es gibt keine Möglichkeit zur Notenverbesserung!

Bis zum Ende des Wintersemesters 21/22 gelten zunächst Sonderregelungen zu Frei-versuchen wegen der Corona-Pandemie. Ob diese Regelung für das Sommersemester 2022 verlängert werden, ist noch unklar.
<table>
<thead>
<tr>
<th></th>
<th>Montag</th>
<th>Dienstag</th>
<th>Mittwoch</th>
<th>Donnerstag</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-12</td>
<td>150214: Algebra I</td>
<td>150200: Analysis I</td>
<td>150228: Darstellungstheorie assoziativer Algebren</td>
<td>150200: Analysis I</td>
<td>150224: Differentialgeometrie I</td>
</tr>
<tr>
<td></td>
<td>150206: LinA I</td>
<td>150236: Algebraische Geometrie</td>
<td>150240: Elementargeometrie</td>
<td>150204: Analysis III</td>
<td>150216: Gewöhnliche Differentialgleichungen</td>
</tr>
<tr>
<td></td>
<td>150202: Analysis II</td>
<td>150204: Analysis III</td>
<td>150279: Liesche Gruppen</td>
<td>150236: Algebraische Geometrie</td>
<td>150262: Kombinatorik</td>
</tr>
<tr>
<td></td>
<td>150262: Kombinatorik</td>
<td></td>
<td></td>
<td>150278: Variational Methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150278: Variational Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150216: Gewöhnliche Differentialgleichungen</td>
<td>150259: Liesche Gruppen</td>
<td>150308: Diskrete Mathe I</td>
<td>150259: Mannigfaltigkeiten und Transformationsgruppen II</td>
<td>150214: Algebra I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150255: Mannigfaltigkeiten und Transformationsgruppen II</td>
<td></td>
<td>150266: Numerik gewöhnlicher Differentialgleichungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150214: Algebra I</td>
</tr>
<tr>
<td></td>
<td>150304: Datenbanksysteme</td>
<td>150222: Funktionentheorie II</td>
<td>150240: Elementargeometrie</td>
<td></td>
<td>150304: Datenbanksysteme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150210: Einf. W-Theorie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-18</td>
<td>150308: Diskrete Mathe I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vorkurse in Mathematik

|------------|--|-----------|--|---|------------------|------------------|

|------------|--|-----------|--|--|

|------------|---|-----------|--|--|

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Übungen zum Vorkurs für Naturwissenschaftler und Ingenieure</th>
<th>Vorlesung</th>
<th>Die Anmeldung zu den Übungskursen erfolgt über Moodle. Weitere Infos siehe:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Vorkurs Grundlagen für Naturwissenschaftler</th>
<th>Vorlesung</th>
<th>Termine: 5. bis 9. September 2022</th>
<th>Razeghpour, Farhad</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Übungen zum Vorkurs Grundlagen für Naturwissenschaftler</th>
<th>Vorlesung</th>
<th>Termine: 5. bis 9. September 2022</th>
<th>Razeghpour, Farhad</th>
</tr>
</thead>
</table>

Lehrveranstaltungen in Mathematik für Studierende der Angewandten Informatik, Informatik, der Natur- und der Ingenieurwissenschaften

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Mathematics - Mathematical Aspects of Differential Equations and Numerical Mathematics (MSc-CE-P01 / MSc-SE-C1)</th>
<th>Vorlesung</th>
<th>Termine: 5. bis 9. September 2022</th>
<th>Razeghpour, Farhad</th>
</tr>
</thead>
</table>

Beschreibung:

Numerical methods for hyperbolic conservation laws (MSc-CE-WP17)

Vorlesung Mo 11:00-13:00 IC 03/653. Beginn 10.10.
mit Übung Mi 15:00-17:00 IC 03/653. Beginn 12.10.
4 SWS

Kormann, Katharina

Beschreibung:
The class gives an introduction to the numerical solution of hyperbolic conservation laws as they appear especially in fluid dynamics. In the first part of the course, we will recall some general aspects of linear second order partial differential equations and we briefly discuss the basic three types of such equations, namely elliptic, parabolic and hyperbolic problems, as well as the differences in their numerical treatment. After that, the course focuses on nonlinear conservation laws of first order, including their well-posedness, entropy solutions and how to find corresponding approximations with stable numerical methods. Here we will also learn about the concepts of characteristic curves, entropy conditions and monotone schemes.

Voraussetzungen:
Basic knowledge about: ordinary differential equations, numerical integration, and numerical methods for the solution of large linear and non-linear systems of equations.

Literaturhinweise:
Übung zu Höhere Mathematik C

<table>
<thead>
<tr>
<th>Übung</th>
<th>Do 14:00-16:00</th>
<th>NB 6/99</th>
<th>Beginn 13.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Do 14:00-16:00</td>
<td>IA 1/135</td>
<td>Beginn 13.10.</td>
</tr>
<tr>
<td></td>
<td>Do 14:00-16:00</td>
<td>IC 03/447</td>
<td>Beginn 13.10.</td>
</tr>
<tr>
<td></td>
<td>Do 16:00-18:00</td>
<td>NB 3/99</td>
<td>Beginn 13.10.</td>
</tr>
<tr>
<td></td>
<td>Do 16:00-18:00</td>
<td>NB 02/99</td>
<td>Beginn 13.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 08:00-10:00</td>
<td>NB 5/99</td>
<td>Beginn 14.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 10:00-12:00</td>
<td>NB 6/99</td>
<td>Beginn 14.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 10:00-12:00</td>
<td>IA 02/480</td>
<td>Beginn 14.10.</td>
</tr>
</tbody>
</table>

(dieser Raum ist nur der Durchgangsraum zum Seminarraum IA 02/81)

Numerische Mathematik für Maschinenbau-, Bauingenieure und UTRM

Vorlesung

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Fr 12:00-14:00</th>
<th>HZO 30</th>
<th>Beginn 14.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Lipinski, Mario</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module: Mathematik 3 und Numerische Mathematik

Übungen zu Numerische Mathematik für Maschinenbau-, Bauingenieure und UTRM

<table>
<thead>
<tr>
<th>Übung</th>
<th>Mo 16:00-18:00</th>
<th>HNC 20</th>
<th>Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Mi 14:00-16:00</td>
<td>HGB 50</td>
<td>Beginn 12.10.</td>
</tr>
</tbody>
</table>

Module: Mathematik 3 und Numerische Mathematik

Mathematische Statistik für Bauingenieure

Vorlesung

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Di 10:00-12:00</th>
<th>HZO 60</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Dehling, Herold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module: Mathematik 3 und Numerische Mathematik

Übungen zu Mathematische Statistik für Bauingenieure

<table>
<thead>
<tr>
<th>Übung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Module: Mathematik 3 und Numerische Mathematik

Mathematik 1 für ET / IT

Vorlesung

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Di 10:00-12:00</th>
<th>HZO 30</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6+2 SWS /</td>
<td>Mi 10:00-12:00</td>
<td>HZO 30</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td>10 CP</td>
<td>Fr 10:00-12:00</td>
<td>HZO 30</td>
<td>Beginn 14.10.</td>
</tr>
</tbody>
</table>

| Lipinski, Mario |

Beschreibung:

ZIELE/INHALTE:

PRÜFUNG: schriftlich (120 min), Anmeldung: FlexNow

Voraussetzungen:

Für die Vorlesung gibt es keine Voraussetzungen.

Empfohlene Vorkenntnisse:

Gute Kenntnisse der Mathematik aus der Oberstufe. Empfohlen wird außerdem die Teilnahme am 4-wöchigen Vorkurs "Mathematik für Ingenieure und Naturwissenschaftler", den die Fakultät für Mathematik vor Studienbeginn jeweils im September anbietet.

Literaturhinweise:

Module: Mathematik 1
Mathematik 1
Mathematik A

<table>
<thead>
<tr>
<th>150111 Übungen zu Mathematik 1 für ET / IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

siehe LV-Nr. 150110

Module: Mathematik 1
Mathematik 1

<table>
<thead>
<tr>
<th>150114 Mathematik 3 für ET / IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
</tr>
<tr>
<td>2+4 SWS</td>
</tr>
<tr>
<td>Start:</td>
</tr>
<tr>
<td>Püttmann, Annett</td>
</tr>
</tbody>
</table>

Beschreibung:

ZIELE:
Die Studierenden beherrschen folgende mathematische Methoden zur Lösung ingenieurwissenschaftlicher Probleme und können diese an wenden:
• gewöhnliche Differentialgleichungen
• partielle Differentialgleichungen

INHALT:
1. Gewöhnliche Differentialgleichungen
• Theorie: Anfangswertprobleme, Satz von Picard-Lindelöf
• Spezielle DGL-Typen: Lösung durch Substitution, Bernoulli-DGL, Riccati-DGL, Exakte DGL, integrieren der Faktor
• Lineare DGL n-ter Ordnung: Erinnerung: Eigenschaften, Wronski-Determinante, Variation der Konstanten, Reduktion der Ordnung, Eulersche DGL, Potenzreihenansatz und verallgemeinerter Potenzreihenansatz (2. Ordnung), Lineare Randwertprobleme
• Systeme von DGL Definition, Umwandlung n-ter Ordnung -> System, Lösung des homogenen Problems, Wronski-Determinante, Variation der Konstanten, Ansätze
2. Partielle Differentialgleichungen
• Quasilineare partielle DGL: Methode der Charakteristiken, integrierende Faktoren
• Lineare partielle DGL 2. Ordnung: Definition, Klassifikation, Normalformen, Wärmeleitungsgleichung, Schwingungsgleichung, Methode von d’Alembert, Poisson-Gleichung / Dirichlet-Problem, Laplace transformation und pDGL, Fourier-Transformation und pDGL

PRÜFUNG:
schriftlich (120 min), FlexNow

Voraussetzungen:

VORAUSSETZUNGEN:
keine

EMPFOHLENE VORKENNTNISSE:
Inhalte der Vorlesungen Mathematik 1-2

Module: Mathematik 3
Mathematik 3
Mathematik C

<table>
<thead>
<tr>
<th>150115 Übungen zu Mathematik 3 für ET / IT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

siehe LV-Nr. 150114

Module: Mathematik 3
Mathematik 3
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Vorlesung</th>
<th>Übungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>150120</td>
<td>Mathematik für Physiker I</td>
<td>Mo 12:00-14:00 HNC 20 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mi 08:00-10:00 HZO 60 Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Härterich, Jörg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module: Einführung in die Mathematik I (Schwerpunkte: Physik und Geophysik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150121</td>
<td>Mathematik für Physiker I (Übungen)</td>
<td>Mo 14:00-16:00 IA 1/181 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mo 14:00-16:00 IA 1/53 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di 08:00-10:00 IA 1/177 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di 14:00-16:00 IA 1/53 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mi 10:00-12:00 NB 2/158 Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mi 10:00-12:00 IA 1/135 Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr 08:00-10:00 HZO 70 Beginn 14.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr 12:00-14:00 IA 1/135 Beginn 14.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module: Einführung in die Mathematik I (Schwerpunkte: Physik und Geophysik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150124</td>
<td>Mathematik für Physiker und Geophysiker III</td>
<td>Mo 14:00-16:00 HZO 60 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mi 12:00-14:00 HZO 100 Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fr 12:00-14:00 HZO 80 Beginn 14.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module: Mathematik III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150125</td>
<td>Mathematik für Physiker und Geophysiker III (Übungen)</td>
<td>Mo 08:00-10:00 IA 1/135 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mo 16:00-18:00 IA 1/53 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di 08:00-10:00 IA 1/109 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di 08:00-10:00 IA 1/181 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mi 14:00-16:00 NB 3/99 Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module: Mathematik III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150125a</td>
<td>Tutorium zu Mathematik für Physiker III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>212027</td>
<td>Mathematik 1 - Grundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vorlesung</td>
<td>Di 10:00-12:00 NC 2/99 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di 14:00-16:00 NB 02/99 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di 14:00-16:00 NB 2/99 Beginn 11.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mi 10:00-12:00 HGA 10 Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 08:00-10:00 ID 03/463 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 08:00-10:00 ID 03/411 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 10:00-12:00 ND 5/99 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 12:00-14:00 ID 03/471 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 12:00-14:00 ID 04/471 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 12:00-14:00 ID 04/459 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 12:00-14:00 ID 04/401 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 12:00-14:00 ID 03/411 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 14:00-16:00 NB 3/99 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do 14:00-16:00 NC 02/99 Beginn 13.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module: Mathematik 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150130</td>
<td>Mathematik I für Geowissenschaftler und SEPM</td>
<td>Mo 08:00-10:00 HZO 40 Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mo 10:00-12:00 HIB Beginn 10.10.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Püttmann, Annett</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module: Ingenieurmathematik 1 und 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematik für Geowissenschaftler</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematik für Geowissenschaftler (PO 2013)</td>
<td></td>
</tr>
</tbody>
</table>
Übungen zu Mathematik I für Geowissenschaftler und SEPM

<table>
<thead>
<tr>
<th>Übung</th>
<th>Di 10:00-12:00</th>
<th>NB 3/99</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Di 10:00-12:00</td>
<td>IA 1/53</td>
<td>Beginn 11.10.</td>
</tr>
<tr>
<td></td>
<td>Di 14:00-16:00</td>
<td>HNC 30</td>
<td>Beginn 11.10.</td>
</tr>
<tr>
<td></td>
<td>Mi 14:00-16:00</td>
<td>IA 1/135</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td></td>
<td>Mi 14:00-16:00</td>
<td>ND 6/99</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td></td>
<td>Do 08:00-10:00</td>
<td>NC 5/99</td>
<td>Beginn 13.10.</td>
</tr>
<tr>
<td></td>
<td>Do 10:00-12:00</td>
<td>IA 1/71</td>
<td>Beginn 13.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 14:00-16:00</td>
<td>IA 1/71</td>
<td>Beginn 14.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 14:00-16:00</td>
<td>NB 3/99</td>
<td>Beginn 14.10.</td>
</tr>
</tbody>
</table>

Die Übungen beginnen ab der zweiten Vorlesungswoche, am 18.10.2022. Für weitere Informationen siehe Hinweise zur Vorlesung über Mathematik I für Geowissenschaftler und SEPM.

Module: Ingenieurmathematik 1 und 2
Mathematik für Geowissenschaftler

Einführung in die Statistik für Geographen

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Di 08:00-10:00</th>
<th>HZO 40</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Di 08:00-10:00</td>
<td>HZO 90</td>
<td>Beginn 11.10.</td>
</tr>
</tbody>
</table>

HINWEIS: Der erste Termin der Veranstaltung am 11.10.2022 findet online über Zoom statt. Sie finden die Einladung dafür im Moodle-Kurs zur Veranstaltung. Beginn ist um 08:15 Uhr.

Beschreibung:
Beachten Sie unbedingt schon vor Beginn der Veranstaltung die Hinweise im Moodle-Kurs zur Veranstaltung, zu dem Sie sich spätestens ab 01.10.2022 ohne Kennwort anmelden können. Falls die Veranstaltung ganz oder teilweise in Zoom stattfinden müßte/würde finden Sie dort ebenfalls Informationen.

Module: Einführung in die Statistik (Schwerpunkt: Geographie)
Statistik
Statistik (2007)

Übungen zu Einführung in die Statistik für Geographen

<table>
<thead>
<tr>
<th>Übung</th>
<th>Mo 14:00-16:00</th>
<th>IA 1/135</th>
<th>Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Mi 08:00-10:00</td>
<td>IA 1/177</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 08:00-10:00</td>
<td>IA 1/135</td>
<td>Beginn 14.10.</td>
</tr>
</tbody>
</table>

Module: Einführung in die Statistik (Schwerpunkt: Geographie)
Statistik
Statistik (2007)

Mathematik 3 - Anwendungen

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mo 10:00-12:00</th>
<th>HGA 20</th>
<th>Beginn 17.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do 10:00-12:00</td>
<td>HZO 30</td>
<td>Beginn 13.10.</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Module: Mathematik 3

Übungen zu Mathematik 3 - Anwendungen

<table>
<thead>
<tr>
<th>Übung</th>
<th>Mo 12:00-14:00</th>
<th>ID 03/419</th>
<th>Beginn 17.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mo 14:00-16:00</td>
<td>ID 03/411</td>
<td>Beginn 17.10.</td>
</tr>
</tbody>
</table>

Module: Einführung in die Mathematik (Schwerpunkt: Biologie)
Mathematik

Mathematik für Biologen

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mi 14:00-16:00</th>
<th>HNC 10</th>
<th>Beginn 12.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SWS</td>
<td>Do 10:00-11:00</td>
<td>HNC 10</td>
<td>Beginn 13.10.</td>
</tr>
</tbody>
</table>

Module: Einführung in die Mathematik (Schwerpunkt: Biologie)
Mathematik
150144 **Angewandte Statistische Methoden für Biologen mit R**

<table>
<thead>
<tr>
<th>Modul</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>08:00-12:00</td>
<td>HZO 50</td>
<td>Einzeltermin am 06.02.</td>
</tr>
<tr>
<td>Di</td>
<td>08:00-12:00</td>
<td>HZO 50</td>
<td>Einzeltermin am 07.02.</td>
</tr>
<tr>
<td>Mi</td>
<td>08:00-12:00</td>
<td>HZO 50</td>
<td>Einzeltermin am 08.02.</td>
</tr>
<tr>
<td>Do</td>
<td>08:00-12:00</td>
<td>HZO 50</td>
<td>Einzeltermin am 09.02.</td>
</tr>
<tr>
<td>Fr</td>
<td>08:00-12:00</td>
<td>HZO 50</td>
<td>Einzeltermin am 10.02.</td>
</tr>
<tr>
<td>Mo</td>
<td>08:00-12:00</td>
<td>HZO 60</td>
<td>Einzeltermin am 13.02.</td>
</tr>
<tr>
<td>Di</td>
<td>08:00-12:00</td>
<td>HZO 70</td>
<td>Einzeltermin am 14.02.</td>
</tr>
<tr>
<td>Mi</td>
<td>08:00-12:00</td>
<td>HZO 70</td>
<td>Einzeltermin am 15.02.</td>
</tr>
</tbody>
</table>

Beschreibung:

Tag 1: Wiederholung/Schnellstart Statistischer Grundbegriffe;
Tag 2: Umgang mit R (Bedienung, Einlesen von Daten, einfache Grafiken, etc.);
Tag 3: Deskriptive Statistik mit R;
Tag 4: Schließende Statistik mit R (Testen);
Tag 5: Schließende Statistik mit R (Univariate lineare Regression, ANOVA, etc.);
Tag 6: Schließende Statistik mit R (Multivariate lineare Regression, ANOVA, etc.);
Tag 7: Fortgeschrittene Statistische Methoden mit R

Im Kurs werden jeweils Vorlesungseinheiten mit vorgeführten Beispielansetzungen am Rechner kombiniert, die dabei auf das jeweilige statistische Problem fokussiert sind. Dabei werden auch komplexe Fallstudien betrachtet, bei denen eine umfassende Betrachtung eines biologischen Problems von der experimentellen Planung bis zur abschließenden datengestützten Ergebnisinterpretation das Ziel ist.

Voraussetzungen:

Gute Grundkenntnisse in der Biologie und möglichst Grundkenntnisse aus der Vorlesung über Statistische Methoden für Biologen und andere Naturwissenschaftler.

Literaturhinweise:

Wird in der ersten Veranstaltung bekannt gegeben.

Module:

Angewandte statistische Methoden für Biologen mit R

150150 **Mathematik für Chemiker I**

<table>
<thead>
<tr>
<th>Modul</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>09:00-10:00</td>
<td>HNC 10</td>
<td>Beginn 10.10.</td>
</tr>
<tr>
<td>Fr</td>
<td>12:00-14:00</td>
<td>HNC 20</td>
<td>Beginn 14.10.</td>
</tr>
</tbody>
</table>

Module:

Mathematik (Schwerpunkt: Chemie)
Mathematik für Chemiker (PO 2009)
Mathematik für Chemiker (PO 2012)
Mathematik für Chemiker (PO 2017)
Mathematik für Chemiker und Biochemiker

150151 **Übungen zu Mathematik für Chemiker I**

<table>
<thead>
<tr>
<th>Modul</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>10:00-11:00</td>
<td>IA 1/181</td>
<td>Beginn 10.10.</td>
</tr>
<tr>
<td>Mo</td>
<td>10:00-11:00</td>
<td>IA 1/135</td>
<td>Beginn 10.10.</td>
</tr>
<tr>
<td>Mo</td>
<td>10:00-11:00</td>
<td>IA 1/109</td>
<td>Beginn 10.10.</td>
</tr>
<tr>
<td>Mo</td>
<td>10:00-11:00</td>
<td>IA 1/177</td>
<td>Beginn 10.10.</td>
</tr>
<tr>
<td>Mo</td>
<td>12:00-13:00</td>
<td>IA 1/135</td>
<td>Beginn 10.10.</td>
</tr>
<tr>
<td>Di</td>
<td>10:00-11:00</td>
<td>IA 1/181</td>
<td>Beginn 11.10.</td>
</tr>
<tr>
<td>Di</td>
<td>12:00-13:00</td>
<td>IA 1/63</td>
<td>Beginn 11.10.</td>
</tr>
</tbody>
</table>
Module: Mathematik (Schwerpunkt: Chemie)
Mathematik für Chemiker (PO 2009)
Mathematik für Chemiker (PO 2012)
Mathematik für Chemiker (PO 2017)
Mathematik für Chemiker und Biochemiker

<table>
<thead>
<tr>
<th>150151a</th>
<th>Ergänzungsaufgaben zu Mathematik für Chemiker I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung 1</td>
<td>Mo 11:00-12:00 IA 1/181 Beginn 10.10.</td>
</tr>
<tr>
<td>3 SWS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mi 10:00-11:00 IA 1/80 Beginn 10.10.</td>
</tr>
<tr>
<td></td>
<td>Di 10:00-11:00 IA 1/80 Beginn 10.10.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150160</th>
<th>Höhere Mathematik I (Vorlesung im Rahmen des Studiengangs Angewandte Informatik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Di 12:00-14:00 HZO 70 Beginn 11.10.</td>
</tr>
<tr>
<td>4 SWS</td>
<td>Do 14:00-16:00 HZO 50 Beginn 13.10.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150161</th>
<th>Übungen zu Höhere Mathematik I (im Rahmen des Studiengangs Angewandte Informatik)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung 2</td>
<td>Do 12:00-14:00 NB 02/99 Beginn 13.10.</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Do 12:00-14:00 NC 3/99 Beginn 13.10.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>150180</th>
<th>Statistische Beratung für Studierende und Wissenschaftler anderer Fakultäten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen im Mathematikstudium

Vorlesungen in den Studiengängen des Bachelor of Science in Mathematik (B.Sc.), Bachelor of Arts (B.A.), Master of Science in Mathematik (M.Sc.), Master of Education (M.Ed.)

Einführung in LaTeX für Mathematiker

<table>
<thead>
<tr>
<th>150050</th>
<th>Einführung in LaTeX für Mathematiker</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Block</td>
<td>Mo 08:00-17:00 IB 3/84. CIP-Pool Einzeltermin am 03.10.</td>
</tr>
<tr>
<td>CP</td>
<td>Fr 08:00-17:00 IB 3/84. CIP-Pool Einzeltermin am 07.10.</td>
</tr>
<tr>
<td></td>
<td>So 08:00-17:00 IB 3/84. CIP-Pool Einzeltermin am 09.10.</td>
</tr>
</tbody>
</table>

Beschreibung:
Die Fakultät für Mathematik bietet in der vorlesungsfreien Zeit einen kostenlosen dreitägigen LaTeX-Kurs für Mathematiker*innen an.

Ein eigenes Notebook wäre wünschenswert, ist aber keine Voraussetzung.

Voraussetzungen:
Die Grundvorlesungen (Modul 1 & 2) sollten bestanden sein (Ausnahmen nach Absprache möglich).

<table>
<thead>
<tr>
<th>150200</th>
<th>Analysis I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Di 10:00-12:00 HIA Beginn 11.10.</td>
</tr>
<tr>
<td>4 SWS</td>
<td>Do 10:00-12:00 HIA Beginn 13.10.</td>
</tr>
</tbody>
</table>

Beschreibung:

Literaturhinweise:

K. Königsberger: Analysis I, Springer
H. Heuser: Analysis I, Teubner

Module: B.A. Modul 1: Analysis I und II
B.Sc. Modul 1: Analysis I und II

Übungen zu Analysis I

<table>
<thead>
<tr>
<th>Übung</th>
<th>2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Übungen beginnen in der zweiten Vorlesungswoche. Übungstermine und Übungsräume siehe Moodle-Kurs.

Analysis II

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mo 10:00-12:00</th>
<th>HZO 50</th>
<th>Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do 12:00-14:00</td>
<td>HZO 80</td>
<td>Beginn 13.10.</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Voraussetzungen:

Gute Kenntnisse aus der Analysis I.

Literaturhinweise:

Literaturangaben erfolgen in der Vorlesung.

Module: B.A. Modul 1: Analysis I und II
B.Sc. Modul 1: Analysis I und II

Übungen zu Analysis II

<table>
<thead>
<tr>
<th>Übung</th>
<th>2 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis III

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Di 10:00-12:00</th>
<th>NB 02/99</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do 10:00-12:00</td>
<td>HZO 90</td>
<td>Beginn 13.10.</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Literaturhinweise:

- M. Barner und F. Flohr: Analysis II, de Gruyter.
- Th. Bröcker: Analysis II und III, Bibliographisches Institut.
- C. C. Pugh: Real Mathematical Analysis, Springer.
Module: B.A. Modul 4: Analysis III
B.Sc. Modul 6: Analysis III
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung

150205

Übungen zu Analysis III

<table>
<thead>
<tr>
<th>Übung</th>
<th>Mi 10:00-12:00</th>
<th>IA 1/177</th>
<th>Beginn 12.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Fr 14:00-16:00</td>
<td>IA 1/181</td>
<td>Beginn 14.10.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Terminierung der Übungen erfolgt über den Moodle-Kurs.

150206

Lineare Algebra und Geometrie I

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mo 10:00-12:00</th>
<th>HIA</th>
<th>Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS</td>
<td>Fr 10:00-12:00</td>
<td>HIA</td>
<td>Beginn 14.10.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eichelsbacher, Peter

Beschreibung:

Die Vorlesung wird von zweistündigen Übungen begleitet. In ihnen wird der Stoff der Vorlesung an Beispielen erläutert und vertieft.

Unter anderem werden folgende Themen in der Vorlesung behandelt:
- Reelle und komplexe Zahlen, Körper; Lineare Gleichungssysteme; Vektorräume und Lineare Abbildungen; Anfänge der Gruppentheorie; Restklassenbildung, Matrizen; Determinanten; charakteristisches Polynom und Minimalpolynom; Eigenwerte und Eigenvektoren; Euklidische und Unitäre Vektorräume.

Literaturhinweise:
Es gibt eine große Anzahl von einführenden Büchern zur Linearen Algebra und Geometrie. In der Vorlesung wird eine Auswahl der Literatur vorgestellt.

Module: B.A. Modul 2: Lineare Algebra und Geometrie I und II
B.Sc. Modul 2: Lineare Algebra und Geometrie I und II

150207

Übungen zu Lineare Algebra und Geometrie I

<table>
<thead>
<tr>
<th>Übung</th>
<th>2 SWS</th>
</tr>
</thead>
</table>

150210

Einführung in die Wahrscheinlichkeitstheorie und Mathematische Statistik

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Di 14:00-16:00</th>
<th>HID</th>
<th>Beginn 18.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS / 9 CP</td>
<td>Fr 12:00-14:00</td>
<td>HIB</td>
<td>Beginn 14.10.</td>
</tr>
<tr>
<td></td>
<td>Di 14:00-16:00</td>
<td>HIA</td>
<td>Einzeltermin am 11.10.</td>
</tr>
<tr>
<td></td>
<td>Mo 11:00-15:00</td>
<td>HNB</td>
<td>Einzeltermin am 13.02.</td>
</tr>
<tr>
<td></td>
<td>Do 12:00-16:00</td>
<td>HNB</td>
<td>Einzeltermin am 23.03.</td>
</tr>
</tbody>
</table>

Sambale, Holger

Im WiSe 22/23 beginnt die Vorlesung am 11.10.2022 um 14 Uhr in HIA

Beschreibung:

Voraussetzungen:
Analysis I-II, Lineare Algebra und Geometrie I-II

Literaturhinweise:
Literatur zur Vorlesung wird zu Beginn des Semesters bekannt gegeben.

Module: B.A. Modul 3: Einführung in die Wahrscheinlichkeitstheorie und Mathematische Statistik
B.Sc. Modul 8a: Einführung in die Wahrscheinlichkeitstheorie und Mathematische Statistik
Einführung in die Wahrscheinlichkeitstheorie und Statistik
150211 Übungen zu Einführung in die Wahrscheinlichkeitstheorie und Mathematische Statistik

<table>
<thead>
<tr>
<th>Übung</th>
<th>Di 10:00-12:00</th>
<th>IA 1/135</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Mi 10:00-12:00</td>
<td>IA 1/63</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td></td>
<td>Mi 14:00-16:00</td>
<td>IA 1/71</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td></td>
<td>Fr 10:00-12:00</td>
<td>IA 1/109</td>
<td>Beginn 14.10.</td>
</tr>
</tbody>
</table>

Heerten, Nils
Schiller, Tristan

Die aktuellen Termine der Übung entnehmen Sie bitte dem Moodle-Kurs der Veranstaltung.

150214 Algebra I

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mo 10:00-12:00</th>
<th>HZO 90</th>
<th>Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS / 9 CP Do 12:00-14:00</td>
<td>HZO 100</td>
<td>Beginn 13.10.</td>
<td></td>
</tr>
</tbody>
</table>

Kus, Deniz

Beschreibung:
Die Vorlesung wendet sich vor allem an Studierende mittlerer Semester, die die Anfängervorlesungen in Lineare Algebra I, II und Analysis I, II erfolgreich absolviert haben. Sie ist eine der Wahlpflichtveranstaltungen in den Bachelor- und Masterstudiengängen (sowohl 1-Fach als auch 2-Fach).

In der Vorlesung wird eine systematische Einführung in die Theorie der Gruppen, Ringe und Körper gegeben und einige der klassischen Anwendungen dieser Theorie dargestellt. Im Einzelnen werden die folgenden Themen behandelt.

(a) Gruppentheorie: Isomorphieätze, Permutationsgruppen, Gruppenwirkungen, auflösbare und einfache Gruppen, Sylow-Sätze;
(b) Ringtheorie: Integritätsringe, Hauptidealbereiche, Primfaktorzerlegung in Ringen und Polynomringen, Modultheorie;
(c) Körpertheorie: Minimalpolynom, algebraische Erweiterungen, separable und normale Körpererweiterungen, Galoisgruppen und Hauptsatz der Galoistheorie.

Darüber hinaus werden einige klassische Anwendungen der Galoistheorie diskutiert.

Voraussetzungen:
Gute Kenntnisse der Linearen Algebra und Geometrie I + II; Analysis I + II.

Literaturhinweise:
Wird in der Vorlesung bekannt gegeben.

Module: B.A. Modul 5: Algebra I
B.Sc. Modul 7a: Algebra I
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (aktive Teilnahme)
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Algebra
M.Sc. Modul 2 aus dem Gebiet Algebra
M.Sc. Modul 3 aus dem Gebiet Algebra
M.Sc. Modul 5: Spezialvorlesung

150215 Übungen zu Algebra I

<table>
<thead>
<tr>
<th>Übung</th>
<th>Di 12:00-14:00</th>
<th>NB 6/99</th>
<th>Beginn 11.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>Mi 08:00-10:00</td>
<td>NB 3/99</td>
<td>Beginn 12.10.</td>
</tr>
<tr>
<td></td>
<td>Mi 10:00-12:00</td>
<td>IA 1/181</td>
<td>Beginn 12.10.</td>
</tr>
</tbody>
</table>

150216 Gewöhnliche Differentialgleichungen

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mo 12:00-14:00</th>
<th>ND 6/99</th>
<th>Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS / 9 CP Fr 10:00-12:00</td>
<td>NB 02/99</td>
<td>Beginn 14.10.</td>
<td></td>
</tr>
</tbody>
</table>

Heinzner, Peter
Beschreibung:
Im einfachsten Fall ist die Lösung einer gewöhnlichen Differentialgleichung eine differenziebare Kurve, deren Ableitung in jedem Punkt durch die Differentialgleichung vorgegeben ist. Die Anwendungsbereiche von Differentialgleichungen sind äußerst vielseitig. Sie umfassen alle Naturwissenschaften, die Wirtschaftswissenschaften, die Ingenieurwissenschaften bis zur Informatik und den Sprachwissenschaften. In allen Bereichen der reinen Mathematik werden gewöhnlichen Differentialgleichungen zur Lösung verschiedenster Probleme herangezogen.
Im Mittelpunkt der Vorlesung stehen qualitative Eigenschaften von Differentialgleichungen. Es werden Existenz- und Eindeutigkeitsätze diskutiert, die unter geeigneten Bedingungen eindeutige Lösungen von Differentialgleichungen garantieren.

Die folgenden Themen werden behandelt
• Das Kausalitätsprinzip und Vektorfelder
• Lösungsansätze
• Lineare Vektorfelder und Jordansche Normalform
• Vektorfelder und Diffeomorphismen
• Existenz und Eindeutigkeit von Lösungen
• Konstanten der Bewegung
• Differentialgleichungen höherer Ordnung
• Stabilität von Lösungen

Voraussetzungen:
Die Vorlesung richtet sich an Studierende der Mathematik und Physik ab dem dritten Semester. Sie baut auf die Grundvorlesungen Analysis I, II und Lineare Algebra I, II auf.

Literaturhinweise:
Arnold, V.I.: Ordinary Differential Equation, Springer

Module:
- B.A. Modul 4: Gewöhnliche Differentialgleichungen
- B.Sc. Modul 9a: Gebiet Analysis (aktive Teilnahme)
- B.Sc. Modul 9a: Gebiet Analysis (mündliche Prüfung)
- B.Sc. Modul 9a: Gewöhnliche Differentialgleichungen
- M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
- M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
- M.Sc. Modul 1 aus dem Gebiet Analysis
- M.Sc. Modul 2 aus dem Gebiet Analysis
- M.Sc. Modul 3 aus dem Gebiet Analysis
- M.Sc. Modul 5: Spezialvorlesung

Funktionentheorie II

Vorlesung
4 SWS / 9 CP

Di 14:00-16:00 IA 1/181 Beginn 11.10. Cupit-Foutou, Stéphanie
Do 14:00-16:00 IA 1/181 Beginn 13.10.

Beschreibung:
Die Vorlesung ist eine Einführung in die Funktionentheorie mehrerer komplexer Veränderlicher und richtet sich an Studierende, die bereits über elementare Kenntnisse im Rahmen eines Seminars, einer Vorlesung oder eines Buches über Funktionentheorie einer komplexen Veränderlichen verfügen.

Voraussetzungen:

Literaturhinweise:
- Simon Donaldson: Riemann Surfaces, Oxford University Press
- Freitag/Busam: Funktionentheorie 1/2, Springer
- Rick Miranda: Algebraic Curves and Riemann Surfaces, American Mathematical Society
Beschreibung:
In dieser Vorlesung sollen die Grundlagen der Riemannschen Geometrie dargestellt werden. Im ersten Teil werden fundamentale Begriffe wie Riemannsche Mannigfaltigkeiten, Krümmung, Geodätsche, Exponentialabbildung und Jacobifelder eingeführt und an Beispielen erläutert. Im zweiten Teil stehen dann globale Aspekte im Vordergrund, welche die lokale Geometrie einer Mannigfaltigkeit mit ihrer globalen topologischen Struktur in Verbindung setzen.

Voraussetzungen:
Kenntnisse aus Kurven und Flächen sind hilfreich, aber keine Voraussetzung.

Literaturhinweise:
1. Riemannian Geometry; Do Carmo
2. Riemannian Geometry; Gallot, Hulin, Lafontaine
3. Riemannsche Geometrie im Grossen; Gromoll, Klingenberg, Meyer
4. Riemannian Geometry; Sakai
Literaturhinweise:

Module:
B.Sc. Modul 9a: Gebiet Analysis (aktive Teilnahme)
B.Sc. Modul 9a: Gebiet Analysis (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Analysis
M.Sc. Modul 2 aus dem Gebiet Analysis
M.Sc. Modul 3 aus dem Gebiet Analysis
M.Sc. Modul 5: Spezialvorlesung

150229 Übungen zu Wahrscheinlichkeitstheorie I
Übung
Do 14:00-16:00 IA 1/71 Beginn 13.10.
2 SWS Termine n. V.
Henning, Florian

150236 Algebraische Geometrie
Vorlesung
Di 10:00-12:00 IA 1/177 Beginn 11.10.
Do 10:00-12:00 IA 1/135 Beginn 13.10.

Beschreibung:
Die Vorlesung soll eine möglichst elementare Einführung in die Ideen und Methoden der algebraischen Geometrie sein. Vorausgesetzt werden Grundkenntnisse der Algebra; alle wichtigen Begriffe und Ergebnisse der kommutativen Algebra werden jedoch erwähnt oder mitentwickelt.

Voraussetzungen:
Analysis I II, Lineare Algebra I,II; wünschenswert: Algebra I

Module:
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Algebra
M.Sc. Modul 2 aus dem Gebiet Algebra
M.Sc. Modul 3 aus dem Gebiet Algebra
M.Sc. Modul 5: Spezialvorlesung

150237 Übungen zu Algebraische Geometrie
Übung
2 SWS Termine n. V.

150240 Elementargeometrie
Vorlesung
Di 14:00-16:00 HIB Beginn 11.10.
Mi 10:00-12:00 IA 1/109 Beginn 12.10.
Do 12:00-14:00 HZO 60 Beginn 13.10.
Do 14:00-16:00 IA 1/109 Beginn 13.10.

Beschreibung:
Inzidenzaussagen (z.B. "Je zwei verschiedene Punkte liegen auf einer Geraden")
Anordnungsaussagen (z.B. "Der Punkt C liegt zwischen den Punkten A und B") Kongruenzaussagen (z.B. "zwei Strecken sind gleichlang") Parallelitätsaussagen (z.B. "zwei Geraden sind parallel")
Zur vertiefenden Anschauung und zum Verständnis wird der eigenständige Gebrauch der interaktiven Geometriesoftware Cinderella (www.cinderella.de) empfohlen.

Voraussetzungen:
Lineare Algebra und Geometrie I,II

Literaturhinweise:
M. Aigner: Skript zur Vorlesung Geometrie (1978)
Module: B.A. Modul 5: Geometrie
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (aktive Teilnahme)
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung

150241 Übungen zu Elementargeometrie
Übung Mi 14:00-16:00 IA 1/63 Beginn 12.10.
2 SWS Do 12:00-14:00 IA 1/71 Beginn 13.10.

150248 Partielle Differentialgleichungen
Vorlesung Di 08:00-10:00 IA 1/135 Beginn 11.10.
4 SWS / 9 CP Do 08:00-10:00 IA 1/109 Beginn 13.10.

Beschreibung:

Voraussetzungen:
Analysis I-III

Literaturhinweise:
• Jürgen Jost, "Partielle Differentialgleichungen", Springer Graduate Texts in Mathematics.

Module: B.A. Modul 4: Partielle Differentialgleichungen
B.Sc. Modul 9a: Gebiet Analysis (aktive Teilnahme)
B.Sc. Modul 9a: Gebiet Analysis (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Analysis
M.Sc. Modul 2 aus dem Gebiet Analysis
M.Sc. Modul 3 aus dem Gebiet Analysis
M.Sc. Modul 5: Spezialvorlesung

150249 Übungen zu Partielle Differentialgleichungen
Übung Di 12:00-14:00 IA 1/177 Beginn 11.10.
2 SWS

150254 Introduction to high-dimensional statistics I
Vorlesung Di 14:00-16:00 IA 1/135 Beginn 18.10.
mit Übung Di 14:00-16:00 IA 1/177 Beginn 11.10.
4 SWS / 9 CP Do 14:00-16:00 IA 1/75 Beginn 13.10.
CP Do 14:00-16:00 NC 3/99 Beginn 13.10.

Beschreibung:
We discuss the concepts of sparsity and regularization in linear regression, graphical models, and principal-component analysis. We then turn to tuning-parameter calibration. We follow the book “Fundamentals of High-Dimensional Statistics: With Exercises and R Labs”, J. Lederer, Springer, 2022.

Voraussetzungen:
Einführung in die Wahrscheinlichkeit und Statistik oder ähnliche Vorlesung.

Module: M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung

150255 Vorlesung über Mannigfaltigkeiten und Transformationsgruppen II
Vorlesung Mi 12:00-14:00 NB 6/99 Beginn 12.10.

Heinzner, Peter
Beschreibung:

• Integration auf Mannigfaltigkeiten
• Integration über kompakte Gruppen
• Elementare Darstellungstheorie
• Slice Sätze für eigentliche Operationen Liescher Gruppen und Anwendungen

Voraussetzungen:

Die Vorlesung richtet sich an Studierende, die elementare Kenntnisse über differenzierbare Mannigfaltigkeiten haben.

Literaturhinweise:

Wird in der Vorlesung bekanntgegeben.

Module:

M.Sc. Modul 1 aus dem Gebiet Algebra
M.Sc. Modul 1 aus dem Gebiet Analysis
M.Sc. Modul 2 aus dem Gebiet Algebra
M.Sc. Modul 2 aus dem Gebiet Analysis
M.Sc. Modul 3 aus dem Gebiet Algebra
M.Sc. Modul 3 aus dem Gebiet Analysis
M.Sc. Modul 5: Spezialvorlesung

150256 Algebraische Topologie

Vorlesung
Mo 12:00-14:00 NC 6/99 Beginn 10.10. Schuster, Björn
4 SWS / 9 CP
Do 12:00-14:00 IA 1/109 Beginn 13.10.

Beschreibung:

Voraussetzungen:

Analysis I und II, Lineare Algebra I und II. Grundkenntnisse in Topologie sind wünschenswert, können aber nach Absprache während der Semesterferien erlernt werden.

Literaturhinweise:

A. Hatcher, Algebraic Topology
T. tom Dieck, Algebraic Topology

Module:

B.Sc. Modul 9b: Gebiet Algebra/Geometrie (aktive Teilnahme)
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Algebra
M.Sc. Modul 2 aus dem Gebiet Algebra
M.Sc. Modul 3 aus dem Gebiet Algebra
M.Sc. Modul 5: Spezialvorlesung

150257 Übungen zu Algebraische Topologie

Übung
Di 16:00-18:00 IA 1/109 Beginn 11.10.
2 SWS
Mi 14:00-16:00 NB 5/99 Beginn 12.10.
Termine werden noch bekannt gegeben

150262 Kombinatorik

Vorlesung
Mo 10:00-12:00 IA 1/63 Beginn 10.10. Dorpalen-Barry, Galen Anna
4 SWS
Do 10:00-12:00 IA 1/177 Beginn 13.10. Stump, Christian

Beschreibung:

Voraussetzungen:

Lineare Algebra I & II. Grundkenntnisse in Algebra sind wünschenswert.
Literaturhinweise:

- Bona - "A Walk Through Combinatorics"
- Stanley - "Enumerative Combinatorics, Volume 1"
- Ardila - "Algebraic and geometric methods in enumerative combinatorics"
- Martin - "Lecture Notes on Algebraic Combinatorics"
 https://jlmartin.ku.edu/CombinatoricsNotes.pdf

Module: B.Sc. Modul 9b: Gebiet Algebra/Geometrie (aktive Teilnahme)
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Algebra
M.Sc. Modul 2 aus dem Gebiet Algebra
M.Sc. Modul 3 aus dem Gebiet Algebra
M.Sc. Modul 5: Spezialvorlesung

150263 Übungen zu Kombinatorik
Übung Di 14:00-16:00 IA 1/75 Beginn 11.10.
2 SWS Fr 10:00-12:00 IA 1/75 Beginn 14.10.

150266 Numerik gewöhnlicher Differentialgleichungen
Vorlesung Mo 14:00-16:00 IA 1/71 Beginn 10.10.
4 SWS / 9 Fr 12:00-14:00 IA 1/109 Beginn 14.10.
CP Hierbei handelt es sich um die Numerik I, die nun in "Numerik gewöhnlicher Differentialgleichungen" umbenannt wird.

Beschreibung:
Differentialgleichungen beschreiben eine Beziehung zwischen einer gesuchten Funktion und ihren Ableitungen und sind in Natur-, Ingenieur- und Wirtschaftswissenschaften, zunehmend aber auch in Sozialwissenschaften und der Medizin zur Beschreibung von Phänomenen und Prozessen weitverbreitet. Da explizite Lösungsformeln nur in wenigen Ausnahmefällen zur Verfügung stehen, ist eine computergestützte approximative Lösung essentiell.

In dieser Vorlesung beschäftigen wir uns mit:
- den theoretischen Grundlagen zur Lösung von Differentialgleichung für Anfangs- und Randwertprobleme;
- numeenden Algorithmen zu deren Lösung (Runge-Kutta-Verfahren und Mehrschrittverfahren);
- Konvergenz und Stabilität;
- Fehlerkontrolle und Schrittweitensteuerung;
- Lösungsmethoden für steife Differentialgleichungen und strukturendhaltende Verfahren für Hamiltonsche Systeme.

Die Vorlesung konzentriert sich auf die Lösung von Differentialgleichungen in einer Variablen und bildet damit die Grundlage für weiterführende Vorlesungen zu partiellen Differentialgleichungen.

Voraussetzungen:
- Analysis I - III
- Lineare Algebra I, II
- Einführung in die Numerik

Literaturhinweise:

- Sören Bartels: Numerik 3x9, Springer, 2016
- Deuflhard, Bornemann: Numerische Mathematik 2, deGruyter, 2008

Module: B.Sc. Modul 9c: Gebiet Angewandte Mathematik (aktive Teilnahme)
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung

150267 Übungen Numerik gewöhnlicher Differentialgleichungen
Übung Di 10:00-12:00 IA 1/71 Beginn 11.10.
2 SWS
Variational Methods for differential equations

Vorlesung
- Mo 10:00-12:00 IA 1/71 Beginn 10.10.
- Mi 10:00-12:00 IA 1/75 Beginn 12.10.

Die Vorlesung richtet sich an M.Sc. Studierende.

Beschreibung:

In this course we will introduce several variational and topological tools that allow us to deal with certain classes of differential equations admitting a variational formulation (such as e.g. Hamiltonian systems). These include: the minimax theorem of Ambrosetti-Rabinowitz, the Leray-Schauder degree, the theory of (fractional) Sobolev spaces, etc. If time permits we will also briefly discuss Aubry-Mather theory. As an application we will give a proof of the celebrated Weinstein conjecture for contact type hypersurfaces in \mathbb{R}^{2n}, the Gromov non-squeezing theorem, and the Arnold conjecture on the $2n$-dimensional torus, as well as some results on the existence of periodic motions for charged particles in magnetic fields. The course is essentially based on the book “Hofer, Zehnder - Symplectic invariants and Hamiltonian dynamics” and will be entirely taught in english. Other references will be given at a later stage.

Module:
- M.Sc. Modul 1 aus dem Gebiet Analysis
- M.Sc. Modul 2 aus dem Gebiet Analysis
- M.Sc. Modul 3 aus dem Gebiet Analysis
- M.Sc. Modul 5: Spezialvorlesung

Vorlesung über Liesche Gruppen

Vorlesung
- Di 12:00-14:00 NB 02/99 Beginn 11.10.
- Mi 10:00-12:00 NB 2/99 Beginn 12.10.

Die Vorlesung richtete sich an Studierende der Mathematik (oder Physik). Weitere Hinweise sind im Moodle-Kurs zu finden.

Beschreibung:

Voraussetzungen:

Analysis I,II; Lineare Algebra I und II.

Literaturhinweise:

Wird noch bekanntgegeben, siehe Moodle-Kurs.

Module:
- B.Sc. Modul 9b: Algebra I
- M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
- M.Sc. Modul 1 aus dem Gebiet Algebra
- M.Sc. Modul 2 aus dem Gebiet Algebra
- M.Sc. Modul 3 aus dem Gebiet Algebra
- M.Sc. Modul 5: Spezialvorlesung

Mathematische Grundlagen in „Data Science“

Vorlesung
- Mi 08:30-10:00 NB 6/99 Beginn 12.10.
- Fr 08:30-10:00 HZO 60 Beginn 14.10.

Die Vorlesung richtet sich an Studierende, mit guten Kenntnissen aus den Veranstaltungen Wahrscheinlichkeitslehre I und Statistik I (oder vergleichbaren Vorlesungen) und grundlegenden Kenntnissen aus dem Bereich Numerik.

Beschreibung:

Voraussetzungen:

Die Vorlesung richtet sich an Studierende, mit guten Kenntnissen aus den Veranstaltungen Wahrscheinlichkeitslehre I und Statistik I (oder vergleichbaren Vorlesungen) und grundlegenden Kenntnissen aus dem Bereich Numerik.
Literaturhinweise:

Literatur wird in der Vorlesung bekannt gegeben.

Module:
- B.Sc. Modul 9c: Gebiet Angewandte Mathematik (aktive Teilnahme)
- B.Sc. Modul 9c: Gebiet Angewandte Mathematik (mündliche Prüfung)
- M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 5: Spezialvorlesung

<table>
<thead>
<tr>
<th>150282</th>
<th>Darstellungstheorie assoziativer Algebren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Mi 10:00-12:00 IA 1/71 Beginn 12.10.</td>
</tr>
<tr>
<td>mit Übung</td>
<td>Fr 10:00-12:00 IA 1/177 Beginn 14.10.</td>
</tr>
<tr>
<td>4 SWS</td>
<td>Vorlesung mit integrierter Übung</td>
</tr>
</tbody>
</table>

Boos, Magdalena

Beschreibung:

Voraussetzungen:

Lineare Algebra T.2 und Algebra 1.

Literaturhinweise:

Assem, Simson und Skowronski "Elements of the representation theory of associative algebras" (Vol. 1. Techniques of representation theory)

Module:
- B.Sc. Modul 9b: Algebra I
- M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
- M.Sc. Modul 1 aus dem Gebiet Algebra
- M.Sc. Modul 2 aus dem Gebiet Algebra
- M.Sc. Modul 3 aus dem Gebiet Algebra
- M.Sc. Modul 5: Spezialvorlesung

<table>
<thead>
<tr>
<th>150293</th>
<th>Einführung in die Methoden des Data Science B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>Mo 08:30-10:00 HZO 100 Beginn 10.10.</td>
</tr>
</tbody>
</table>

Bissantz, Nicolai
Beschreibung:

In diesem Kurs
- lernen Sie die Grundlagen und fortgeschrittene Methoden der angewandten Statistik und statistischen Datenanalyse.
- die Benutzung der Programmiersprache R für die statistische Datenanalyse
- die Benutzung der Programmiersprache R für die stochastische Simulation bspw. von statistischen Verfahren, die Sie im Rahmen Ihrer Bachelor-, Masterarbeit oder Promotion entwickeln.

Hinweis: R ist frei verfügbar und wird von Grund auf eingeführt

In den Übungen wird die praktische Umsetzung der in der Vorlesung besprochenen Verfahren geübt.

Kriterium für Leistungsnachweis: Regelmäßige erfolgreiche Bearbeitung der praktischen Übungen und eines Beispieldatensatzes.

Anrechenbarkeit:
- Als Modul 5 als Statistikpraktikum mit 10 CP des 1. Fach B.Sc.-Studiengangs Mathematik erworben werden, wenn sowohl Data Science A im Wintersemester als auch Data Science B im Sommersemester erfolgreich abgeschlossen werden
- Als Modul 10 mit 5 CP des 1-Fach B.Sc.-Studiengangs Mathematik wenn beabsichtigt ist, die Bachelorarbeit in der Stochastik, Statistik oder Informatik zu schreiben
- Im 2-Fach B.A. Mathematik mit 5CP als Seminar.
- Im Optionalbereich mit 5CP. Besonders geeignet für Masterstudierende und Doktoranden aus den MINT-Fächern, die sich auch für einen tieferen Einblick in die algorithmischen Verfahren des Data Science interessieren. Voraussetzung für die Teilnahme ist ein mathematisches Vorwissen auf dem Niveau der Mathematik-Vorlesungen für eines der ingenieur- oder naturwissenschaftlichen Fächer. Für den Optionalbereich stehen 5 Plätze zur Verfügung.
- Andere Studierende wenden sich bitte an den Dozenten für R Rückfragen zur Belegung des Kurses.
- Kriterium für den Leistungsnachweis ist die Bearbeitung von Übungsaufgaben in der Veranstaltung und die Auswertung eines Datensatzes mit Vorstellung der Ergebnisse in einem kurzen Vortrag.
- 15 Teilnehmerplätze verfügbar (Anmeldung und Anfragen per Email an lehreservice-angewandte-statistik@rub.de)

Literaturhinweise:
Wird in der ersten Veranstaltung bekannt gegeben. Es werden Folien bzw. Skript zur Vorlesung in Moodle zur Verfügung gestellt.

Module:
Einführung in die Methoden des Data Science B
B.Sc. Modul 5: Statistikpraktikum

150294 Praktische Übungen zu Einführung in die Methoden des Data Science B

<table>
<thead>
<tr>
<th>praktische Übung</th>
<th>n.V.</th>
<th>Bissantz, Nicolai</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Hinweis zu den Übungen zur Veranstaltung: Siehe Hinweise zur Vorlesung über Computerbasiertes statistisches Rechnen und stochastische Simulation.

Module:
Einführung in die Methoden des Data Science B

Vorlesungen im Mathematik-Studium sowie für Studierende der Angewandten Informatik, der Informatik, der Natur- und Ingenieurwissenschaften

150304 Datenbanksysteme

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mo 14:00-16:00 HNC 20 Beginn 10.10.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>4 SWS / 9 CP HZO 50 Beginn 14.10.</td>
</tr>
</tbody>
</table>

Beschreibung:
Nach einer inhaltlichen Übersicht werden unter anderem die Themen Abfragesprachen, Abfrageoptimierung, Entwurfstheorie, Deduktionssysteme, Fehlerbehandlung und Parallelität vertiefend behandelt.

Voraussetzungen:
Abgesehen vom grundsätzlichen Verständnis der imperativen Programmierung werden nur wenige Vorkenntnisse aus anderen Lehrveranstaltungen erwartet.

Literaturhinweise:
Hauptliteraturstelle ist A.Kemper/A.Eickler, Datenbanksysteme, 10. Auflage, De Gruyter, 2015. Es wird aber vereinzelt auch auf Originalliteratur zurückgegriffen werden, die in der Vorlesung genannt wird.
Module: B.Sc. Modul 9c: Gebiet Angewandte Mathematik (aktive Teilnahme)
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (mündliche Prüfung)
Datenbanksysteme
M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung
M.Sc. Nebenfach Modul 1
Wahlfächer MS NeSys
Wahlpflichtfächer Informatik MS ITS
Wahlpflichtfächer Informatik MS NeSys

150305 Übungen zu Datenbanksysteme

<table>
<thead>
<tr>
<th>Übung</th>
<th>Mi 08:00-10:00</th>
<th>Mi 10:00-12:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HZO 100</td>
<td>Beginn 12.10.</td>
<td>ND 03/99</td>
</tr>
<tr>
<td>Neuhaus, Alexander</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beginn wird in der Vorlesung bekanntgegeben.

Beschreibung:
Die Einteilung der Übungsgruppen erfolgt in der Vorlesung.

150308 Diskrete Mathematik I

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>Mi 16:00-18:00</th>
<th>Mi 12:00-14:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIB Beginn 11.10.</td>
<td>HIB Beginn 12.10.</td>
<td></td>
</tr>
<tr>
<td>Schuster, Björn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Voraussetzungen:
Elementare Grundkenntnisse in Analysis und linearer Algebra.

Literaturhinweise:
Die Vorlesung orientiert sich an den Büchern
Steger, A.: Diskrete Strukturen (Band 1), Springer, 2001
Schickinger, T.; Steger, A.: Diskrete Strukturen (Band 2), Springer, 2001

Module: B.A. Modul 5: Diskrete Mathematik I
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (aktive Teilnahme)
B.Sc. Modul 9b: Gebiet Algebra/Geometrie (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung

150309 Übungen zu Diskrete Mathematik I

<table>
<thead>
<tr>
<th>Übung</th>
<th>Mi 10:00-12:00</th>
<th>Mi 10:00-12:00</th>
<th>Do 08:00-10:00</th>
<th>Do 08:00-10:00</th>
<th>Do 08:00-10:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeume, Thomas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

212002 Informatik 3 - Theoretische Informatik

<table>
<thead>
<tr>
<th>Vorlesung mit Übung</th>
<th>Mo 16:00-18:00</th>
<th>Di 10:00-12:00</th>
<th>Do 08:00-10:00</th>
<th>Do 10:00-12:00</th>
<th>Do 12:00-14:00</th>
<th>Do 14:00-16:00</th>
<th>Fr 08:00-10:00</th>
<th>Fr 10:00-12:00</th>
<th>Fr 10:00-12:00</th>
<th>Fr 14:00-16:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeume, Thomas</td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung:

Die Vergabe der Leistungspunkte ist studiengangsabhängig:

* B.Sc. Informatik, B.Sc. ITS (PO 2020 & PO 2022), B.Sc. AI (PO 2020 & PO 2022): 8 CP
* M.Sc. ITS (PO 2013), B.Sc. Mathematik: 9 CP

Voraussetzungen:

Elementare Grundkenntnisse in Mathematik und Informatik; ebenso nützlich aber nicht zwingend nötig ist die Vertrautheit mit mindestens einer Programmiersprache.

Literaturhinweise:

Module:

- B.Sc. Modul 9b: Gebiet Algebra/Geometrie (aktive Teilnahme)
- B.Sc. Modul 9b: Gebiet Algebra/Geometrie (mündliche Prüfung)
- B.Sc. Nebenfach Informatik: Modul 4
- Informatik 3
- M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
- Wahlpflichtfächter Informatik MS ITS
- Wahlpflichtfächter Informatik MS NeSys

Symmetrische Kryptanalyse

<table>
<thead>
<tr>
<th>Vorlesung</th>
<th>mit Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di 10:15-11:45</td>
<td>Beginn 11.10.</td>
</tr>
</tbody>
</table>

2 SWS / 5 CP

Leander, Nils-Gregor

Beschreibung:

Die Vorlesung richtet sich an Studierende der Mathematik, ITS und AI.

Ziele:

Die Studierenden haben ein vertieftes Verständnis für die Sicherheit symmetrischer Chiffren.

Inhalt:

Voraussetzungen:

Kryptographie

Module:

- M.Sc. Modul 1 aus dem Gebiet Algebra
- M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
- M.Sc. Modul 5: Spezialvorlesung
- M.Sc. Nebenfach Modul 2
Vorlesung Di 12:00-14:00 NB 5/99 Beginn 11.10.
mit Übung Di 14:00-16:00 NB 5/99 Beginn 11.10.
4 SWS / 5 CP Fr 10:00-12:00 NB 5/99 Beginn 14.10.
Fr 12:00-14:00 HZO 60 Beginn 14.10.

Beschreibung:

Voraussetzungen:
Grundkenntnisse der Linearen Algebra und Wahrscheinlichkeitstheorie sind von Vorteil.

Literaturhinweise:
http://www.deeplearningbook.org

Module:
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (aktive Teilnahme)
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (mündliche Prüfung)
B.Sc. Nebenfach Informatik: Modul 4
M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung
M.Sc. Nebenfach Informatik

Kryptographie
Vorlesung Mo 12:00-14:00 HZO 70 Beginn 17.10.
mit Übung Mo 14:00-16:00 NB 5/99 Beginn 10.10.
6 SWS / 8 CP Mo 16:00-18:00 NB 02/99 Beginn 10.10.
Di 12:00-14:00 NC 02/99 Beginn 11.10.
Di 14:00-15:30 HZO 70 Beginn 18.10.
Di 16:00-18:00 HZO 80 Beginn 11.10.

Beschreibung:

Themenübersicht:
- Sichere Verschlüsselung gegenüber KPA-, CPA- und CCA-Angreifern
- Pseudozufallsfunktionen und -permutationen
- Message Authentication Codes
- Kollisionsresistente Hashfunktionen
- Blockchiffren
- Konstruktion von Zufallszahlgeneratoren
- Diffie-Hellman Schlüsselaustausch
- Trapdoor Einwegpermutationen
- Public Key Verschlüsselung: RSA, ElGamal, Goldwasser-Micali, Rabin, Paillier
- Einwegsignaturen
- Signaturen aus kollisionsresistenten Hashfunktionen
- Random-Oracle Modell

Module:
B.Sc. Modul 8d: Kryptographie I + II
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (aktive Teilnahme)
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (mündliche Prüfung)
M.Ed. Modul 3: Fachwissenschaftliche Vertiefung
M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung
Quantum Information and Computation

Vorlesung
Mi 10:00-12:00 Vorlesung MC1/30 - MC1/31 Beginn 12.10.

Übung
Mi 14:00-16:00 Übung MC1/30 - MC1/31 Beginn 12.10.

4 SWS / 5 CP

Beschreibung:

This course will give an introduction to quantum information and quantum computation from the perspective of theoretical computer science.

Topics to be covered will likely include:
- Fundamentals of quantum computing: quantum bits, states and operations
- The power of quantum entanglement: nonlocal games
- Entanglement as a resource: superdense coding and teleportation
- Quantum circuit model of computation
- Quantum computing with oracles: Deutsch-Jozsa, Bernstein-Vazirani, Simon
- Quantum Fourier transform and phase estimation
- Shor's factoring algorithm
- Grover's search algorithm and beyond: how to solve SAT on a quantum computer?
- From no cloning to quantum money: a peek at quantum cryptography

The course should be of interest to students of computer science, mathematics, physics, and related disciplines. Students interested in a BSc or MSc project in quantum information, computing, cryptography, etc. are particularly encouraged to participate.

Abschlussprüfung; schriftlich oder mündlich in Abhängigkeit der Teilnehmerzahl

Voraussetzungen:

Familiarity with linear algebra, discrete probability, and theoretical computer science, each at the level of a first BSc course; we will briefly remind you of the more difficult bits in class. Some experience with precise mathematical statements and rigorous proofs. No background in physics is required.

Literaturhinweise:

Lecture notes and video recordings of the lectures will be provided.

In addition, the following references can be useful for supplementary reading:
- O'Donnell, Quantum Computation and Quantum Information, course material (2018)
- de Wolf, Quantum Computing: Lecture Notes, arxiv:1907.09415 (2022)

Module: B.Sc. Modul 9c: Gebiet Angewandte Mathematik (aktive Teilnahme)
B.Sc. Modul 9c: Gebiet Angewandte Mathematik (mündliche Prüfung)
B.Sc. Nebenfach Informatik: Modul 4
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung
M.Sc. Nebenfach Informatik

Quantum Cryptography

Vorlesung
Mo 14:00-16:00 MC 1/54 Vorlesung Beginn 10.10.

4 SWS / 5 CP

Walter, Michael

Malavolta, Giulio
Learning Outcomes
You will learn fundamental concepts, algorithms, protocols, and results in quantum (and quantum-resistant) cryptography. After successful completion of this course, you will know how to generalize cryptographic concepts to the quantum setting, how quantum algorithms can attack well-known cryptographic protocols, and how to design and analyze classical and quantum protocols for protecting classical and quantum data against quantum adversaries. You will be prepared for a research or thesis project in this area.

Content
This course will give an introduction to the interplay of quantum information and cryptography, which has recently led to much excitement and insights – including by researchers at CASA right here on our very own campus. We will begin with a brief introduction to both fields and discuss in the first half of the course how quantum computers can attack classical cryptography and how to overcome this challenge – either by protecting against the power of quantum computers or by leveraging the power of quantum information. In the second half of the course, we will discuss how to generalize cryptography to protect quantum data and computation.

Topics to be covered will likely include:
* Basic quantum computing
* Basic cryptography
* Quantum attacks on classical cryptography
* Quantum random oracles and compressed oracle technique
* Quantum-resistant cryptography in light of the NIST competition
* Classical vs quantum information
* Quantum money
* Quantum key distribution
* Quantum complexity theory
* Quantum pseudorandomness
* From classical to quantum fully homomorphic encryption
* Classical verification of quantum computation
* Quantum rewinding

This course should be of interest to students of computer science, mathematics, physics, and related disciplines. Students interested in a Master's project in quantum or quantum-resistant cryptography, quantum information, quantum computing, and similar are particularly encouraged to participate.

Prüfungsformen
Modulabschlussprüfung; schriftlich oder mündlich je nach Teilnehmendenzahl.

Literaturhinweise:

Lecture notes and video recordings of the lectures will be provided. In addition, the following references can be useful for supplementary reading:
- Dakshita Khurana, Quantum Cryptography, course material (2022)

Module:
M.Sc. Modul 1 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 2 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 3 aus dem Gebiet Angewandte Mathematik
M.Sc. Modul 5: Spezialvorlesung
M.Sc. Nebenfach Informatik

Proseminare

150408 Proseminar zur Projektiven Geometrie
Proseminar Fr 08:00-10:00 IA 1/75 Beginn 14.10.

Beschreibung:

Die Projektive Geometrie ist eine natürliche Verallgemeinerung der affinen Geometrie, die schon seit der Antike studiert wird. Anwendungen wie die Perspektive in der bildenden Kunst sind aus em täglichen Leben zahlreich bekannt. Im Proseminar sollen die Grundlagen und erste Sätze der projektiven Geometrie erarbeitet werden.

Voraussetzungen:

Bestandenes Modul Lineare Algebra I + II

150412 Proseminar Repetitorium Analysis 2
Proseminar Di 12:00-14:00 ND 6/99 Beginn 11.10.
2 SWS Do 12:00-14:00 NC 2/99 Beginn 13.10.

Vorbesprechung am 28.09.2022 um 10:00 in IB 3/73
Beschreibung:
Wir vertiefen ausgewählte Themen zur Analysis 2.

Voraussetzungen:
Bestandenes Modul Analysis I + II

Literaturhinweise:
Forster, Königsberger, Walter, Werner

Seminare

Studierende im Bachelor of Arts- und Bachelor of Science-Studiengang erhalten 4 CP und Studierende im Master of Science Studiengang 6 CP.

150500 Seminar Stochastische Geometrie
Beschreibung:

Voraussetzungen:
Vorausgesetzt werden fundierte und anwendungsbereite Kenntnisse der maßtheoretischen Wahrscheinlichkeitstheorie.

150504 Seminar zur Zahlentheorie
Beschreibung:

Voraussetzungen:
Analysis I; Lineare Algebra I, Zahlentheorie.

Literaturhinweise:
Bundschuh: Zahlentheorie; weitere Literatur wird eventuell noch bekanntgegeben.

Module: B.A. Modul 7: Seminar
M.Sc. Modul 4: Zwei Seminare

150505 Seminar Introduction to pseudo-reductive groups
Interested parties should contact Prof. Rörhrle direct via gerhard.roehrle@rub.de.

Rörhrle, Gerhard
Sercombe, Damian
This seminar is a study of reductive linear algebraic groups in the sense of Borel-Tits, and their actions on affine varieties. Let G be an algebraic k-group over an arbitrary field k. Then G is said to be pseudo-reductive if the largest k-defned connected smooth normal unipotent subgroup of G is trivial. Tits introduced pseudo-reductive groups to the literature in some courses at the College de France in 1993 and 1994.

They have come dramatically to the fore in recent years thanks to the monograph [CGP15], many of whose results were used in B. Conrad's proof of the finiteness of the Tate-Shafarevich sets and Tamagawa numbers of arbitrary linear algebraic groups over global function fields [Con12]. The main result of the monograph [CGP15] asserts that unless one is in some special situation over a field of characteristic 2 or 3, then any pseudo-reductive group is standard. This means it arises after a process of modifi cation of a Cartan subgroup of a certain Weil restriction of scalars of a given connected reductive group. See also the recent followup monograph by Conrad and Prasad [CP16]. The goal of the seminar is to give an insight into this class of pseudo-reductive groups and in particular their abundance by means of Weyl restrictions. The principal sources are [CGP15] and [CP16].

Voraussetzungen:

Requirements: Solid background in algebra, group theory, field theory, and basic concepts from the theory of linear algebraic groups.

Literaturhinweise:

Beschreibung:

Das Thema des Seminars ist ein wichtiger und weitgehender Zusammenhang zwischen der Darstellungstheorie von reduktiven Gruppen und der symplektischen Geometrie.

Voraussetzungen:

Elementare Kenntnisse über Mannigfaltigkeiten oder der algebraischen Geometrie

Beschreibung:

Voraussetzungen:

erfolgreiche Teilnahme an der Vorlesung "Kommutative Algebra"
Seminar Topologische Datenanalyse

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Laures, Gerd</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Voraussetzungen:

Es wird erwartet, dass die Teilnehmer bereits Grundkenntnisse in Topologie mitbringen. Es ist empfehlenswert die Vorlesung Algebraische Topologie bereits gehört zu haben oder begleitend zu besuchen.

Module:

- B.A. Modul 7: Seminar
- M.Sc. Modul 4: Zwei Seminare

Seminar über ausgewählte Themen der Funktionalanalysis

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bramham, Barney</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

Dieses Seminar behandelt ausgewählte Themen aus der Funktionalanalyse. Mögliche Themen der Vorträge sind:
- Die Variationsrechnung: Existenz von Geodäten.
- Dualität zwischen Existenz und Eindeutigkeit in lineare Probleme.
- Der Satz von Krein-Milman.
- Der Satz von Riesz-Kakutani.
- Der Ergodensatz von Neumann.
- Der Schauder Fixpunktsatz.
- Fredholm Theorie.
- Leray-Schauder Grad.
- Satz von Milman.
- Anwendungen auf der partiellen oder gewöhnlichen Differentialgleichungen

Voraussetzungen:

Literaturhinweise:

- Lax, Peter: Functional Analysis.
- Deimling, Klaus: Nonlinear Functionalanalysis.
- Reed und Simon: Functional Analysis, Volume I
- Brezis, H: Functional Analysis, Sobolev Spaces and Partial Differential Equations

Module:

- B.A. Modul 7: Seminar
- M.Sc. Modul 4: Zwei Seminare

Seminar über Differentialtopologie

<table>
<thead>
<tr>
<th>Seminar</th>
<th>Seminar richtet sich an Studierende des B.A., B.Sc. und M.Sc. Interessierten melden sich bei alberto.abbondandolo@rub.de vor dem 31.08.2022.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbondandolo, Alberto</td>
<td></td>
</tr>
</tbody>
</table>

Beschreibung:

In diesem Seminar wird besprochen, wie Begriffe aus der Theorie differenzierbarer Funktionen helfen können, die Topologie von Mannigfaltigkeit zu verstehen.

Voraussetzungen:

Analysis I und II, Lineare Algebra I und II. Außerdem sollten die Studierende Analysis III und/oder Kurven und Flächen besucht haben.
Literaturhinweise:
• J. Milnor: Topology from the differentiable viewpoint, Princeton University Press
• T. Bröcker, K. Jänich: Einführung in der Differentialtopologie, Springer
• M. W. Hirsch: Differential Topology, Springer

Module: B.A. Modul 7: Seminar
M.Sc. Modul 4: Zwei Seminare

150512 Seminar über Markov-Ketten
Seminar ZOOM-Vorbesprechung: 2. September 2022 um 14:00, der Link findet sich im Moodle-Kurs.

Beschreibung:

Voraussetzungen:
Anfängervorlesungen, EWS.
Die W-Theorie 1 ist nützlich, aber nicht notwendig.

Literaturhinweise:
Brémaud: Markov Chains
Gibbs Fields, Monte Carlo Simulation and Queues
2020 2nd edition, Springer
Frei erhältlich als ebook über die Ruhr-Universität.

150515 Seminar zu Statistik: Optimal Subsampling

Beschreibung:

Voraussetzungen:
Analysis 1-3 und Funktionentheorie

Literaturhinweise:
Geigers, Zehmisch: “A Course on Holomorphic Discs”

150516 Seminar Holomorphe Kurven
Seminar Vorbesprechung: 07.10.2022, 11:00 bis 12:00, IB 3/73.

Beschreibung:

Voraussetzungen:
Analysis 1-3 und Funktionentheorie

Literaturhinweise:
Geigers, Zehmisch: “A Course on Holomorphic Discs”
Seminar über Maschinelles Lernen und Differentialgleichungen

Das Seminar richtet sich an Studierende des B.A., B.Sc. und M.Sc. Interessierte Studierende melden sich bitte per E-Mail an Katharina Kormann (k.kormann@rub.de). Am 15.07.2022 um 09:00 Uhr findet eine Vorbesprechung statt, freie Plätze werden aber auch nach diesem Termin noch vergeben.

Beschreibung:

Voraussetzungen:

Seminar über Funktionentheorie

InteressentInnen melden Sie sich bitte bis zum 31.08.2022 per Email bei PD Dr. Stéphanie Cupit-Foutou (stephanie.cupit@rub.de).

Beschreibung:
Im Seminar sollen ausgewählte Ergänzungen, Vertiefungen und Anwendungen zur Funktionentheorie I behandelt werden.

Voraussetzungen:
Funktionentheorie I

Module: B.A. Modul 7: Seminar
M.Sc. Modul 4: Zwei Seminare

Doktoranden Seminar: "Reading course on holomorphic curves"

We are learning some of the analysis behind the theory of pseudo-holomorphic curves and Floer theory. This course continues from last semester, but you do not have to have taken part last semester to join in now. Anyone is welcome, also just to listen, but it's probably best if you have taken the courses Differential Geometrie I and

Beschreibung:
Wir besprechen aktuelle Forschungsresultate in der symmetrischen Kryptographie.
Seminare ohne Modulzuordnung und Arbeitsgemeinschaften

150570 SPP Research Seminar Ruhr: Interacting Particle Systems and Random Geometries
Seminar Online, the talks are individually announce on the webpage https://sites.google.com/view/ips-rg/home. Thäle, Christoph

Beschreibung:
The goal of this research seminar is to bring researchers working on topics related to Interacting Particle Systems and Random Geometries together. This seminar is an activity of the DFG priority program SPP2265 Random Geometric Systems. For further details see https://sites.google.com/view/ips-rg/home.

150575 Arbeitsgemeinschaft über symplektische und differentialgeometrische Methoden in Dynamischen Systemen
Arbeitsgemeinschaft Do 14:00-16:00 IA 1/177 Beginn 13.10.
2 SWS
Abbondandolo, Alberto
Bramham, Barney
Knieper, Gerhard
Suhr, Stefan
Zehmisch, Kai

Praktika

150580 Informatik-Praktikum
Praktikum Begrenzte Teilnehmerzahl 4 SWS / 10 CP
Korthauer, E.

Beschreibung:

Voraussetzungen:

Module: B.Sc. Modul 5: Informatikpraktikum
Nebenfach Praktikum

150582 Berufsfeldpraktikum MINT - Schulprojekte der besonderen Art
Praktikum Do 10:00-12:00 IA 1/109 Beginn 13.10.
5 CP Rolka, Katrin

Beschreibung:

Hinweis: Zulassungsvoraussetzung zum M.Ed.-Studium ist ein Berufsfeldpraktikum im Umfang von 4 Wochen, was mit diesem Praktikum erfüllt wird.

Voraussetzungen:
Lineare Algebra und Analysis
Literaturhinweise:
Werden in der Veranstaltung bekannt gegeben.

150583 Berufsfeldpraktikum: Methoden und Strategien der Mathematik – Schulprojekte der besonderen Art

Praktikum
Kallweit, Michael
5 CP
31.08.2022 per E-Mail an michael.kallweit@rub.de

Beschreibung:
Bei diesem Praktikum handelt es sich um die Umsetzung von Projekten mit Schüler*innen (SEK II) an der Gesamtschule Hattingen oder ggfs. anderen Schulen im Umkreis.

Voraussetzungen:
Lineare Algebra und Analysis

Literaturhinweise:
Werden in der Veranstaltung bekannt gegeben.

Didaktik der Mathematik

150600a Vorbereitungsseminar zum Praxissemester (1)

Seminar
Denkhaus, Gabriele
2 SWS / 3 CP
Do 16:00-18:00 IA 1/53 Beginn 13.10.
Eine Teilnahme ist nur in Verbindung mit dem Begleitseminar zum Praxissemester im SoSe 2023 möglich.

Beschreibung:
• Treffen didaktischer und methodischer Entscheidungen auf der Grundlage einer fachwissenschaftlichen Analyse der zu vermittelnden Inhalte
• Gestaltung von schüler- und problemorientierten Lehrprozessen (Öffnung von Unterricht; Förderung selbstständigen Lernens; Diagnose und individuelle Förderung) und Lernprozessen (Erkunden und Lösung mathematischer Probleme; Modellieren und Anwenden; Argumentieren und Beweisen; Kommunizieren; Einsatz von Medien und Werkzeugen)
• Beobachtung und Analyse von Mathematikunterricht anhand der im Seminar erarbeiteten didaktischen Kriterien, Überprüfung, Reflexion und Weiterentwicklung von Unterrichtsansätzen und Unterrichtsmethoden unter Berücksichtigung fachlicher Erkenntnisse.
eCampus-Anmeldung bis zum 23.09.2022.

Voraussetzungen:
• Absolviertes 1.Fachsemester M.Ed.
• Eine Teilnahme ist nur in Verbindung mit dem Begleitseminar zum Praxissemester im SoSe 2023 möglich.

Module: M.Ed. Modul 2: Praxismodul

150600b Vorbereitungsseminar zum Praxissemester (2)

Seminar
Reeker, Holger
2 SWS / 3 CP
Do 16:00-18:00 IA 1/135 Beginn 13.10.
Eine Teilnahme ist nur in Verbindung mit dem Begleitseminar zum Praxissemester im SoSe 2023 möglich.
Beschreibung:

Inhalte der Veranstaltung sind die Erarbeitung grundlegender Kriterien zur Planung, Durchführung und Analyse von Mathematikunterricht und die Konzeption von Unterrichtsprojekten. Die Teilnehmer/innen werden aufgebaut auf einer fachlichen Analyse Unterrichtsprojekte zu ausgewählten Themen des Unterrichts der Sek I und Sek II erarbeiten. Die Unterrichtssequenzen werden in der Seminargruppe und nach Möglichkeit an einer Schule als Gruppenhospitalisation exemplarisch durchgeführt und ausgewertet. Folgende Planungs- und Handlungskompetenzen sollen dabei entwickelt werden:

- Treffen didaktischer und methodischer Entscheidungen auf der Grundlage einer fachwissenschaftlichen Analyse der zu vermittelnden Inhalte
- Gestaltung von Schüler- und problemorientierten Lehrprozessen (Öffnung von Unterricht; Förderung selbständigen Lernens; Diagnose und individuelle Förderung) und Lernprozessen (Erkennen und Lösung mathematischer Probleme; Modellieren und Anwenden; Argumentieren und Beweisen; Kommunizieren; Einsatz von Medien und Werkzeugen)

eCampus-Anmeldung bis zum 23.09.2022.

Voraussetzungen:

- Absolviertes 1. Fachsemester M.Ed.
- Eine Teilnahme ist nur in Verbindung mit dem Begleitseminar zum Praxissemester im SoSe 2023 möglich.

Module: M.Ed. Modul 2: Praxismodul

150600c Vorbereitungsseminar zum Praxissemester (3) Brüning, Martin
Seminar 2 SW / 3 CP

Beschreibung:

Inhalte der Veranstaltung sind die Erarbeitung grundlegender Kriterien zur Planung, Durchführung und Analyse von Mathematikunterricht und die Konzeption von Unterrichtsprojekten. Die Teilnehmer/innen werden aufgebaut auf einer fachlichen Analyse Unterrichtsprojekte zu ausgewählten Themen des Unterrichts der Sek I und Sek II erarbeiten. Die Unterrichtssequenzen werden in der Seminargruppe und nach Möglichkeit an einer Schule als Gruppenhospitalisation exemplarisch durchgeführt und ausgewertet. Folgende Planungs- und Handlungskompetenzen sollen dabei entwickelt werden:

- Treffen didaktischer und methodischer Entscheidungen auf der Grundlage einer fachwissenschaftlichen Analyse der zu vermittelnden Inhalte
- Gestaltung von Schüler- und problemorientierten Lehrprozessen (Öffnung von Unterricht; Förderung selbständigen Lernens; Diagnose und individuelle Förderung) und Lernprozessen (Erkennen und Lösung mathematischer Probleme; Modellieren und Anwenden; Argumentieren und Beweisen; Kommunizieren; Einsatz von Medien und Werkzeugen)

eCampus-Anmeldung bis zum 23.09.2022.

Voraussetzungen:

- Absolviertes 1. Fachsemester M.Ed.
- Eine Teilnahme ist nur in Verbindung mit dem Begleitseminar zum Praxissemester im SoSe 2023 möglich.

Module: M.Ed. Modul 2: Praxismodul

150603 Lehren und Forschen im Schülerlabor Rolka, Katrin
Seminar Do 12:00-14:00 IA 1/109 Beginn 11.10.

Beschreibung:

Voraussetzungen:
Absolviertes 2-Fach BA Studium oder Übergangsemester.

Literaturhinweise:
Literaturhinweise werden in der Veranstaltung bekannt gegeben.

Module: M.Ed. Modul 1: Einführung und Vertiefung in die Fachdidaktik

150607 Didaktik der Analysis
Vorlesung
Fr 10:00-12:00 IA 1/135 Beginn 14.10. Kallweit, Michael
Beschreibung:

Voraussetzungen:
Absolviertes 2-Fach B.A. Studium oder ggf. letztes B.A.-Semester.

Module: M.Ed. Modul 1: Einführung und Vertiefung in die Fachdidaktik

150608 Übungen zu Didaktik der Analysis
Übung
Mi 14:00-16:00 IA 1/75 Beginn 19.10. Kallweit, Michael
Beschreibung:
Diese Übung wird ergänzend zur Vorlesung Didaktik der Analysis angeboten. Es werden Einblicke in aktuelle Schulbücher gegeben und konkrete Aufgaben bearbeitet und unter didaktischen Aspekten analysiert.

Module: M.Ed. Modul 1: Einführung und Vertiefung in die Fachdidaktik

150613 Begleitseminar zum Praxissemester (1)
Seminar
Fr 14:00-16:00 IA 1/53 Beginn 28.10. Denkhaus, Gabriele
Beschreibung:
Inhalt des Begleitseminars zum schulpraktischen Teil des Praxissemesters:
• Analyse von Mathematikunterricht anhand didaktischer Kriterien; Entwicklung von Beobachtungsaufträgen zu Fragestellungen, die sich aus den thematischen Schwerpunkten des vorbereitenden Seminars herleiten lassen
• Planung, Gestaltung und Reflexion eigenen Unterrichts
• Herstellen eines Bezugs zwischen Theorie und Praxis von Schule
• Ausgestaltung (Planung, Durchführung und Auswertung) von forschen Lernprozessen in Form von Studien-/Unterrichtsprojekten
• Anwendung ausgewählter Methoden bildungswissenschaftlicher und fachdidaktischer Forschung in begrenzten eigenen Untersuchungen
• Präsentation und Dokumentation der Studien-/ Unterrichtsprojekte
eCampus-Anmeldung bis zum 23.09.2022.

Voraussetzungen:
Absolviertes 2. Fachsemester M.Ed. und abgeschlossenes Vorbereitungsseminar zum Praxissemester.

Module: M.Ed. Modul 2: Praxismodul

150614 Begleitseminar zum Praxissemester (2)
Seminar
Fr 14:00-16:00 IA 1/109 Beginn 14.10. Reeker, Holger
Beschreibung:

Inhalt des Begleitseminars zum schulpraktischen Teil des Praxissemesters:

- Analyse von Mathematikunterricht anhand didaktischer Kriterien; Entwicklung von Beobachtungsaufträgen zu Fragestellungen, die sich aus den thematischen Schwerpunkten des vorbereitenden Seminars herleiten lassen
- Planung, Gestaltung und Reflexion eigenen Unterrichts
- Herstellen eines Bezugs zwischen Theorie und Praxis von Schule
- Ausgestaltung (Planung, Durchführung und Auswertung) von forschenden Lernprozessen in Form von Studien-/Unterrichtsprojekten
- Anwendung ausgewählter Methoden bildungswissenschaftlicher und fachdidaktischer Forschung in begrenzten eigenen Untersuchungen
- Präsentation und Dokumentation der Studien-/Unterrichtsprojekte
eCampus-Anmeldung bis zum 23.09.2022.

Voraussetzungen:

Absolviertes 2. Fachsemester M.Ed. und abgeschlossenes Vorbereitungsseminar zum Praxissemester.

Module: M.Ed. Modul 2: Praxismodul

150615 Begleitseminar zum Praxissemester (3)
Seminar 2 SWS / 3 CP Fr 14:00-16:00 IA 1/135 Beginn 14.10. Brüning, Martin

Beschreibung:

Inhalt des Begleitseminars zum Schulpraktischen Teil des Praxissemesters:

- Analyse von Mathematikunterricht anhand didaktischer Kriterien; Entwicklung von Beobachtungsaufträgen zu Fragestellungen, die sich aus den thematischen Schwerpunkten des vorbereitenden Seminars herleiten lassen
- Planung, Gestaltung und Reflexion eigenen Unterrichts
- Herstellen eines Bezugs zwischen Theorie und Praxis von Schule
- Ausgestaltung (Planung, Durchführung und Auswertung) von forschenden Lernprozessen in Form von Studien-/Unterrichtsprojekten
- Anwendung ausgewählter Methoden bildungswissenschaftlicher und fachdidaktischer Forschung in begrenzten eigenen Untersuchungen
- Präsentation und Dokumentation der Studien-/Unterrichtsprojekte
eCampus-Anmeldung bis zum 23.09.2022.

Voraussetzungen:

Absolviertes 2. Fachsemester M.Ed. und abgeschlossenes Vorbereitungsseminar zum Praxissemester.

Module: M.Ed. Modul 2: Praxismodul

150616 Didaktik der Geometrie in der Sekundarstufe I
Seminar Di 14:00-16:00 2 SWS IA 1/109 Beginn 11.10. Reese, Wolfgang

Beschreibung:

Literaturhinweise:

- Kernlehrpläne für die Gesamtschule und das Gymnasium – Sekundarstufe I in Nordrhein-Westfalen, Ritterbach Verlag, Frechen 2019
- Beiträge in ausgewählten Fachzeitschriften

Module: M.Ed. Modul 1: Einführung und Vertiefung in die Fachdidaktik

150623 Einführung in die Mathematikdidaktik

Vorlesung Di 10:00-12:00 IA 1/109 Beginn 11.10. Rolka, Katrin

Beschreibung:

Anrechenbar ist die Veranstaltung für das Teilgebiete D.

Voraussetzungen:
Absolviertes 2-Fach BA Studium oder Übergangssemester.

Literaturhinweise:
Literaturhinweise werden in der Veranstaltung bekannt gegeben.

Module: M.Ed. Modul 1: Einführung und Vertiefung in die Fachdidaktik

150636 Einsatz digitaler Medien im Mathematikunterricht

Vorlesung Do 14:00-16:00 IA 1/53 Beginn 13.10. Kallweit, Michael
2 SWS In Rahmen dieser Veranstaltung kann der Software-Kompetenz-Nachweis erworben werden.

Beschreibung:

Voraussetzungen:
Absolviertes 2-Fach B.A. Studium oder ggf. letztes B.A.-Semester

Module: M.Ed. Modul 1: Einführung und Vertiefung in die Fachdidaktik

Oberseminare / Kolloquien

150900 Oberseminar über Algebraische Lie Theorie
Oberseminar Mo 16:00-18:00 IA 1/109 Beginn 10.10. Kus, Deniz
2 SWS Reineke, Markus
Röhre, Gerhard

Module: M.Sc. Modul 5: Spezialvorlesung
<table>
<thead>
<tr>
<th>No.</th>
<th>Oberseminar/Kurs Name</th>
<th>Oberseminar/Tag</th>
<th>Oberseminar/Ort</th>
<th>Oberseminar/Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>150905</td>
<td>Oberseminar Kombinatorik</td>
<td>Oberseminar</td>
<td></td>
<td>Stump, Christian</td>
</tr>
<tr>
<td>150917</td>
<td>Oberseminar über Mathematische Statistik im Informationszeitalter (Forschungsgruppe 5381)</td>
<td>Oberseminar</td>
<td></td>
<td>Dette, Holger</td>
</tr>
<tr>
<td>150931</td>
<td>Oberseminar CASA: Differential Privacy</td>
<td>Oberseminar</td>
<td></td>
<td>Dette, Holger</td>
</tr>
<tr>
<td>150901</td>
<td>Oberseminar über Mathematische Physik und Stochastik</td>
<td>Oberseminar n. V.</td>
<td></td>
<td>Külske, Christoph</td>
</tr>
<tr>
<td>150902</td>
<td>Oberseminar über Algebraische Geometrie</td>
<td>Oberseminar</td>
<td></td>
<td>Kus, Deniz</td>
</tr>
<tr>
<td>150904</td>
<td>Oberseminar über Wahrscheinlichkeitstheorie und Anwendungen</td>
<td>Oberseminar</td>
<td></td>
<td>Dehling, Herold</td>
</tr>
<tr>
<td>150907</td>
<td>Oberseminar Statistik</td>
<td>Oberseminar n.V.</td>
<td></td>
<td>Dette, Holger</td>
</tr>
<tr>
<td>150908</td>
<td>Oberseminar Topologie</td>
<td>Oberseminar</td>
<td></td>
<td>Laures, Gerd</td>
</tr>
<tr>
<td>150910</td>
<td>Oberseminar über Komplexe Analysis</td>
<td>Oberseminar</td>
<td></td>
<td>Heinzner, Peter</td>
</tr>
<tr>
<td>150911</td>
<td>Oberseminar über Komplexe Geometrie</td>
<td>Oberseminar</td>
<td></td>
<td>Heinzner, Peter</td>
</tr>
<tr>
<td>150912</td>
<td>Oberseminar zur Numerik</td>
<td>Oberseminar n. V.</td>
<td></td>
<td>Henning, Patrick</td>
</tr>
</tbody>
</table>

Module: M.Sc. Modul 5: Spezialvorlesung
<table>
<thead>
<tr>
<th>Code</th>
<th>Seminar Title</th>
<th>Day</th>
<th>Time</th>
<th>Room</th>
<th>Start Date</th>
<th>Lecturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>150915</td>
<td>Oberseminar Probability and Geometry</td>
<td>Di</td>
<td>12:00-14:00</td>
<td>IA 1/75</td>
<td>Beginn 11.10.</td>
<td>Thäle, Christoph</td>
</tr>
<tr>
<td>150916</td>
<td>Oberseminar über Dynamische Systeme</td>
<td>Di</td>
<td>16:00-18:00</td>
<td>IA 1/53</td>
<td>Beginn 11.10.</td>
<td>Abbondandolo, Alberto</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bramham, Barney</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Knieper, Gerhard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Suhr, Stefan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zehmisch, Kai</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150925</td>
<td>Oberseminar Mathematikdidaktik</td>
<td>Mi</td>
<td>12:00-14:00</td>
<td>IA 1/109</td>
<td>Beginn 12.10.</td>
<td>Rolka, Katrin</td>
</tr>
<tr>
<td>150926</td>
<td>Oberseminar Arrangements and Symmetries</td>
<td>Mo</td>
<td>14:00-16:00</td>
<td>IA 1/177</td>
<td>Beginn 10.10.</td>
<td>Röhrle, Gerhard</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stump, Christian</td>
</tr>
<tr>
<td>150929</td>
<td>Oberseminar Mathematical Theories of Machine Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lederer, Johannes</td>
</tr>
</tbody>
</table>

Module: M.Sc. Modul 5: Spezialvorlesung