

Project no. 222422
Project acronym: ECCell

Project title: Electronic Chemical Cell

Instrument: STREP/FET OPEN

Thematic Priority: Theme 3 Information and Communication Technologies

Deliverable n. 5.1:
UML specification of design space for ECCells.

Due date of deliverable: 15. 10. 2009
Actual submission date: 15. 10. 2009

Start date of project: 1.09.2008 Duration: 3 years

Organisation name of lead contractor for this deliverable:
University of Southern Denmark (SDU), Steen Rasmussen

1. Deliverable n. 5.1: UML specification of design space for ECCells.

Connecting the electronic chemical cell with the standardized modeling languages of
computer science requires us to define an interface between both worlds. Several patents
exemplify the need for a real-time modeling of micro-fluidic structures1,2,3 to cope with the
multiphase properties. Experience has taught us that this interface-specification can become
very complex. Thus a declaration was sought that conveys the most important connection-
points while allowing detailed physical and chemical modeling to be relegated to plug-in
“black box” modules. Any attempt to lift the physics and chemistry directly to the model
description level would elevate the task to defining the majority of aqueous solution and
surface physics and chemistry in UML, that is clearly at best achievable by the entire world
community. The general structure we adopt is therefore to confine the complicated physical
and chemical boundary conditions into black boxes with very general names and to exchange
these black boxes with new versions, if physics or chemistry are changing.
The vehicle chosen to specify this interface is the Unified Modeling Language (UML) plus a
special extension, call UML-real-time (UML-RT) to reflect the fact that dynamic physical and
chemical processes are to be described. Though UML is thought to be as comprehensive as
possible, the most recent specification4 is nearly 800 pages long, it still is concentrated on the
aspects of software-development. This has the consequences that the available tools largely
support the specification of software-routines and less so physical, chemical or other
mathematical model structures.

1.1 Introduction
UML is a graphical, object-oriented modelling language that allows one to specify and
document the artefacts of software systems. UML is widely used to express the general-
purpose software design models and is the de-facto standard object-oriented modelling
language. One important feature of UML, the raison d'être for choosing this language here,
stems from its built-in extensibility mechanisms: stereotypes, tag values and profiles5. These
allow one to adapt UML to fit the specificities of particular domains or to support a specific
analysis. Therefore, numerous UML profiles have been proposed in academia, by industry
and/or by (typically government) organizations dealing with standards in order to
accommodate the features of real-time software. Real-time software presents, moreover, some
specific characteristics. In addition to the timing constraints, an important characteristic of
real-time software stems from the interaction with the environment. This interaction is
inherently nondeterministic and highly concurrent. UML 2.0 presents some features that
support real-time aspects6 . For example, it supports the modelling of concurrency by
providing some concepts, including active objects, concurrent composite states and
concurrent operations.

1.2 Introduction
UML-RT is a real-time profile developed by Rational Software7. It uses the UML built-in
extensibility mechanisms to capture the concepts defined in the Realtime Object Oriented
Modeling (ROOM) Language8. In contrast with the previous profiles, UML/SPT4 and
UML/QoS9, UML-RT is not just meant to annotate a design model with information allowing
for quantitative analysis. It is a modeling language of its own. Indeed, UML-RT allows the
designer to produce models of complex, event-driven and possibly distributed real-time
systems. However, UML-RT does not support time and timing constraints modeling. UML-
RT is supported by a CASE tool called RationalRT10 that allows for automatic code

generation by compiling the models and linking them with a run-time system. UML-RT
includes constructs to model the structure and the behavior of real-time systems:

• Structure Modeling: UML-RT provides the designer with entities called capsules,
which are communicating active objects. The capsules interact by sending and
receiving messages through interfaces called ports. Furthermore, a capsule may have
an internal structure composed of other communicating capsules and so on. This
hierarchical decomposition allows the modeling of complex systems. The following
figure was created with BoUML, a public-domain CASE-tool, see section on BOUML.

• Behavior Modeling: The behavior is modeled by an extended finite state machine and
is visualized using UML state diagrams. These state
machines are hierarchical since a state could be
decomposed into other finite state machines. A
message reception triggers a transition in the state
machine. Actions may be associated with transitions
or the entry and/or the exit of a state. Similarly to the
two previous UML profiles, UML-RT lacks formal
foundations. UML-RT is, however, a basis for a very
active research work on schedulability analysis
applied to real-time software design models.

1.3 State of the art
Many publications concerning UML-RT try to formalize this approach 11. One approach is to
map the semantics of UML-RT in to a formal language system 12 to realize a model-driven
development for concurrent and distributed applications 13. A direct specification of a formal
language based on UML-RT 14 restricts itself to the formalization of the capsule using the
Structure Operational Semantics approach 15. The question on how to partition active objects
on different parallel threads is another issue to be investigated 16,17. An attempt to consistently
describe real-time aspects and resource-restrictions in UML-RT requires a restriction of every
communication to the exchange of messages 18. In addition, actions are specific messages and
not operators. Then they require that the messages used in the specified sequence diagrams
must be subsets of the messages used in the state-charts and that the mere sequences of these
messages must be recognized by the state-machines. This ensures that sequence-diagrams and
state-charts can be proven to be syntactical and semantically consistent. Assuring port-
compatibility between different capsules 19 is realized using a Failures-Divergence
Refinement tool 20,21. An extension of sequence-diagrams in UML-RT describes broadcasting
scenarios 22. Instead of using UML-RT the specification of the OMG UML-SPT 6 is utilized
to describe safety-critical real-time systems23.

1.4 Tool-support
There are many tools available to work with UML-diagrams. The general idea behind these
tools is to utilize UML as the only entry-point of software-fragments. A problem recurring
very often with software development is the divergence between modeling and accompanying
coding of the software. Especially with large and long-lasting projects, the risk of loosing
contact between the modeling and the coding is enormous. The reasons are communication
problems -- semantic glitches -- and losing people or know-how.
There are essentially two types of tools employed (also termed CASE-tools): commercial
tools, like RationalRT (www.ibm.com) and public-domain tools, like BoUML, Umbrello,

OMNet++, Eclipse. The advantages of commercial tools are the better support plus powerful
features, the advantage of public-domain tools is the long term availability. Especially with
projects being developed over many years, availability is the most important issue. Although,
in principle, UML-projects can be transported between different tools via the XML Metadata
Interchange24 (XMI) language, the details and versions always differ and, for large projects to
be transferred from one tool to the next, they may require complete rewriting. Another
advantage of public-domain tools is the independence from any specific company-strategies
trying to maximize the companies’ profits1. For these reasons, we aim at using public-domain
base tools and live with the comparatively minor support level supplied by the community.
The following public-domain tools, among many others, are each available for a large number
of operating systems:
BoUML25: This tool was chosen here because it supports the definition of new profiles and
has a stable user-interface. It is supported by SourceForge
(http://sourceforge.net/projects/bouml) and still under active development.

Umbrello: This tool is integrated in Linux KDE. Unfortunately, it merely supports UML-
1.4 and not UML-2. Profiles cannot be created. The code- and documentation-
generation capability seems to be poor.

OMNet++26: This tool has a completely different background because it is targeted at
modeling networks. Due to the similarity of concurrency and timing constraints
between the Electronic Chemical Cell and the network metaphor and because an
interface to UML-RT was developed 27 it also seems to be a viable alternative. It was
not chosen here because the status of this interface is not really clear.

Eclipse28: This is a really large integrated development environment (IDE) and is
considered to be the standard for Java-software developers. It also has interfaces to
other programming languages and UML-2. Because of being so complex and huge it
was not considered at this moment but should be for future larger projects in the
Electronic Chemical Cell-domain.

1.5 Basic functionalities of electronic chemical cell machines
The essence of the Electronic Chemical Cell machine is the intimate connection between the
local biochemical, biophysical processes, happening concurrently inside a micro-fluidics
environment at a particular cell location, and the individually dedicated electronic control
hardware on the other side. This strong connection requires a very broad interface with many
properties exchanged between the two worlds. A complete modeling of the whole process
becomes extremely challenging because so many different effects are playing a role: physics,
chemistry, surface-properties, electrical-properties, electro-chemical properties, multi-phase-
boarders and information transport processes. A comprehensive language would require one
to describe more or less everything that is known in physics, chemistry, electronics,
computer-science and biology. This is not possible. Even the restriction to the following
language terms would pose a major international undertaking:

Information processing properties

Time, Timeout, Delay, State, Action

1 Due to diminishing or overtaken companies or licensing fees we have lost several
important code-bases in the last 15 years.

Physical properties
Infrastructure: Electrode, Wall
Particles: Molecule, Vesicles, Beads, Ensembles
Geometry: Area, Channel, Volume, Center of ensemble, Position
Mechanical properties: Velocity, Mass, Viscosity, Friction, Force
Thermodynamic properties: Temperature, Pressure
Electrical properties: Charge, Field, Potential, Conductivity
Surface properties: zeta-Potential, Contact angle, Adhesion

Chemical properties
Physico-chemical: pH, Ionic strength, Salt-concentration, Material concentration
Kinetic properties: Forward reaction, Reversible reaction, Catalyzed reaction, Michaelis-
Menten kinetic

Basic microfluidic functionalities
Ensemble operations: Fluid focusing, Pulse forming, Mixing, Splitting, Separation
Sequence operations: Interleaving (used with droplets or cells), Sorting (used with droplets or
cells), Dosing, Marking
Basic reaction mechanisms for informational molecules:
Informational sequence handling: Cutting, Ligation, Cleavage
Sequence specific interactions: Hybridization, Association, Dissociation, Dissolving,
Precipitation
Higher order functional or structural properties: Catalysis through structure, Interference,
Gelation, Clustering, DNA-networks
Sequence information management: Coding, Crossover
Additional house-keeping functions: Washing, Shielding, Compartmentalizing, Detection

The tacit assumption behind these terms is not to try a physical, chemical correct mapping of
reality into the model but to restrict the modeling to the most important features and boundary
conditions. These means that the ab initio predictive capability of such a model would be
rather weak but with these terms appropriately parametrized the model should be feasible for
usual experiments. As is obvious, in the current state of the project, with only these few man
months available for doing the modeling even such a restricted modeling is not possible.
Therefore, it was decided to only model the regulatory part in the first instance and to reduce
the interface to only electrode-potentials, intensities and impedances. All physico-chemical
effects will be subsumed below the operators for getting or setting these properties.
Furthermore, it was initially assumed that we do not have a complex micro-fluidic flow-
geometry but a simple two-dimensional regular array of rectangular electrodes. This
simplification also eases the development of simulation tools that can be utilized for the
development of control-algorithms.

1.6 The UML-specification realized and the model
In the following, a sketch of the UML-model will be presented and motivated. The full, so far

specified, model is attached as a pdf-file that has been directly generated by the utilized
modeling tool BoUML. Even this strongly reduced model is not yet fully functional. Ideally,
per bush-button, a fully executable C++ program should be generated which would be able to
operate the micro-fluidic hardware. This control-software already exists and to write it a
second time would be an intolerable drain on resources. Nevertheless, it is useful to build a
UML description of the model, because it clarifies the concepts and points to weaknesses in
the current implementation of the control-software.

The top-level description of the model is shown in the upper figure. The micro-fluidic system
is abstracted via a class called Vessel. This vessel is equipped with electrodes, as already
mentioned a regular array of rectangular electrodes, an arbitrary number of sensors, additional
regulators or controllers and the chemical environment represented by the class Fluidic. What
happens in the chemistry, or what effects the asserted potentials and impedances will have on
physics and chemistry, is not modeled at all. All dynamical chemical and physical changes are
subsumed in the black boxes of the intensities of the sensors. This means for example that the
operator getIntens must somehow reflect internally what happens in the physico-chemical
system. In the current implementation, the sensors are derived from fluorescence observed via
a special EMCCD camera. A simulator for this system has to accept the following parameters:
a set of electrodes, a set of sensors and additional parameters of the system to be simulated.
The geometric information is already included in definition of the electrodes and sensors, as
can be seen in the figure and the full specification.
To clarify the role of a regulator, the following figure is presented. Per Vessel, arbitrarily
many regulators can be defined and operated in parallel. Each capsule is accompanied with
ports mediating between the inner world of the capsule and the outside environment.

Furthermore, these ports realize a signal transduction. Attached to each port is a protocol. It is
assumed here that the ports are only allowed binary communications. The protocol defines
which types of signals are allowed.

A regulator is a state-machine that looks for the fluorescence intensities to surpass certain
thresholds and, in case of an expected event, switches to the next state. Upon switching to the
next state, a pre-specified set of pins is activated or deactivated. In the following figure, such
an automaton is shown. Its task is to concentrate charged material at a certain region in the
micro-fluidic-system via the activation of certain electrodes. When a sufficient intensity is
detected, a following regulator is activated to continue with the processing.

Each state of this automaton is a state-machine that waits for the arrival of a threshold-
crossing-event and then activates some electrodes and provides the signal for the next state of
the regulator-automaton. In the following figure, the state's inner state-machine is depicted.
As long as no threshold (the upper threshold B or the lower threshold A) is crossed, the inner
state-machine cycles in the entry-section. If no event occurs a timeout is generated. When the
desired event occurs, a delay-line with a certain delay is activated. After this time, the
electrodes are activated or deactivated according to the parameters of the regulator-automaton.

A further example is shown in the following figure. A travelling wave is generated. This is
not realized via simply switching electrodes on and off but via smart regulators that detect
whether the expected material really arrived. These smart regulators not only detect a

malfunction of the travelling wave process, they also are able to realize pulse-forming and
thus avoid the inherent problem of dispersion.

1.7 The Electronic Cell and Electronic Genomes
For us to be able to consider the electronic control structure as “belonging” to the electronic
cell, it is necessary to have a definition of cell ownership. The simplest structure of this type
is a space associated one: co-localization of chemicals with the region of application of
electronic control (electrodes and sensors) control creates the connection between the
chemicals and the control program. While other exotic modes of connection (e.g. pattern
based) are conceivable, for the moment we intend to stay with this most obvious choice of
topo-association. In principle this can be electronically or chemically determined or both. The
chemical determination requires a mechanism of deducing a spatial location from a spatial
sensor pattern. If there is only one cell in the system, then a sufficient algorithm would find
the center of intensity from the sensor array (when fluorescence intensity is proportional to
concentration) and then establish a region (e.g. linear, circular or rectangular depending on
microfluidic structures) of a fixed size about this center. A more elaborate algorithm would
also compute the range of the cell region. An electronic determination may associate the
boundary of a cell with a particular pattern of electrode states (a field barrier preventing
boundary crossing of key components analogously to a lipid membrane preventing material
exchange). When more than one association between chemicals and electronic regulators
must be established, this is relatively straightforward in the cases where cell sizes are fixed or
the boundaries are clearly recognizable. It is clear that the definition of the boundary
codetermines the behaviour of the system, so that simple physical principles are likely to
prove the most apt for later evolution.
The model hierarchy above already contains (through inheritance) a location in each of its
elements. A topo-association as described above comes into force when for example these
locations are treated as relative to a center of mass of replicating molecules. In a particularly
simple case, imagine a molecular amplification process combined with an electrophoretic
separation, product isolation and split control program. The control program will walk such a

set of amplified molecules via travelling wave electrophoresis along a certain path, with its
sensors and electrodes virtually staying within a fixed distance of the center of mass of the set
of molecules during movement, and the pulse-forming regulators virtually moving together
with the majority of molecules. Of course, this process can be codetermined by the chemical
properties (migration and reaction rates determining location and quantities) so that for
example the initiation time, transport rates and splitting events are codetermined by the
chemistry (e.g. splitting via reaction –diffusion non-linearity’s in an electric field). Thus these
processes can be achieved with a suitable control of electrodes or happen autonomously as a
side effect of the regulator algorithms.
Having the moving controllers with the center of masses of molecule collections it is easy to
consider also the parameters of these controllers moving together with the molecules virtually.
If now, after each separation- or splitting-event these parameters are slightly changed by
random perturbations, an evolving population is already instantiated and evolution sets in to
optimize the parameters. Parameter sets that are bad for replication yield diminishing sets of
molecules, which of course causes the deletion of the moving controllers and their associated
parameters. This reflects death in the evolving system. The electronic genome concept thus
involves a second type of genetic information associated with the cell: i.e. that involved in
specifying the parameters and/or structure of the regulatory control program.

1 CA 2582470 A1 (WO 2006/040554 A1) Compartmentalised combinatorial chemistry
by microfluidic control Medical Research Council GB, Harvard College US, Priority:
12.10.2004
2 US 2007/0003442 A1, Electronic control of fluidic species Harvard University,
Cambridge, Priority: 23.02.2006
3 WO 2007/090531 A1, Arrangement for generating liquid flows and/or particle flows,
method for producing and operating said arrangement and use of the latter,
Forschungszentrum Karlsruhe GmbH, Priority: 03.02.2006

4 Grady Booch, Ivar Jacobson, Jim Rumbaugh OMG Unified Modeling Language
Specification, 2003 An Adopted Formal Specification of the Object Management Group, Inc.

5 Abdelouahed Gherbi and Ferhat Khendek UML Profiles for Real-Time Systems and
their Applications, J. of Object Technology 5:149-169 2006

6 OMG Object Management Group UML® Profile For Schedulability, Performance,
And Time, Version 1.1, 2005

7 B. Selic and J. Rumbaugh. Using UML for Modeling Complex Real-Time Systems.
March 1998 White-paper p. 1-22, and Branislav Selic Using UML for modeling complex
real-time systems, LNCS Languages, Compilers, and Tools for Embedded Systems 1474:250-
260 1998

8 B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling. John
Wiley and Sons, 1994.

9 UML Profile for Modeling QoS and FT Characteristics and Mechanisms Specification,
v1.1, 2008 p. 1-92 OMG Object Management Group

10 http://www-
01.ibm.com/software/rational/announce/rose/?S_TACT=105AGX23&S_CMP=ROSE (now
from IBM, accessed Okt. 2009)

11 R. Grosu, M. Broy, B. Selic, Gh. Stefanescuz Towards a Calculus for UML-RT
Specifications, Object-Oriented Programming Systems, Languages and Applications,
OOPSLA, 1998
12 J. C. P. Woodcock and A. L. C. Cavalcanti The semantics of circus, LNCS 2272:184-
203 2002
13 Rodrigo Ramos, Augusto Sampaio, Alexandre Mota Rigorous Development with
UML-RT, 19th Brazilian Contest on Dissertations and Thesis (CTD'06), SBC 2006 p. 1-5
14 Michael von der Beeck A Formal Semantics of UML-RT, LNCS: Model Driven
Engineering Languages and Systems 4199:768-782 2006
15 G. D. Plotkin A Structural Approach to Operational Semantics, DAIMI FN-19 1981 p.
1-132 University of Aarhus
16 Zonghua Gu and Zhimin He Real-Time Scheduling Techniques for Implementation
Synthesis from Component-Based Software Models, Lecture Notes in Computer Science:
Component-Based Software Engineering 3489:235-250 2005

17 Z. Gu and K. G. Shin Synthesis of Real-Time Implementation from UML-RT Models,
LNCS: Component-Based Software Engineering 3489:235-250 2005

18 Jochen M. Küster and Joachim Stroop Consistent Design of Embedded Real-time
Systems with UML-RT, Object-Oriented Real-Time Distributed Computing, 2001 p. 31-40
IEEE
19 Paul Whittaker, Michael Goldsmith, Kirk Macolini, Tim Teitelbaum Model Checking
UML-RT Protocols., Workshop Formal Design Techniques for Real-Time UML 2000
20 Formal Systems http://www.fsel.com/

21 A. W. Roscoe Model-checking CSP in A classical mind: essays in honour of C. A. R.
Hoare p. 353 - 378 1994

22 Ingolf Krüger, Wolfgang Prenninger, Robert Sandner Deriving Architectural
Prototypes for a Broadcasting System using UML-RT, Eds. P. Kruchten, Proceedings 1st
ICSE Workshop on Describing Software Architecture with UML 2001 Rational Software
23 Werner Damm, Bernhard Josko, Amir Pnueli, Angelika Votintseva A discrete-time
UML semantics for concurrency and communication in safety-critical applications, Science of
Computer Programming 55:81–115 2005

24 XML Metadata Interchange:
http://www.omg.org/technology/documents/formal/xmi.htm

25 B. Pagès at http://bouml.free.fr
26 http://www.omnetpp.org

27 András Varga, Rudolf Hornig AN OVERVIEW OF THE OMNeT++ SIMULATION
ENVIRONMENT, 1st International Workshop on OMNeT++ 2008

28 The integrated development environment eclipse also has an UML-modeling facility
at http://www.eclipse.org/modeling/mdt/?project=uml2

	SDU D5.1.pdf
	5_1_UML specification of design space for ECCells..pdf

