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1. Deliverable n. 5.1: UML specification of design space for ECCells. 
 
Connecting the electronic chemical cell with the standardized modeling languages of 
computer science requires us to define an interface between both worlds. Several patents 
exemplify the need for a real-time modeling of micro-fluidic structures1,2,3 to cope with the 
multiphase properties. Experience has taught us that this interface-specification can become 
very complex. Thus a declaration was sought that conveys the most important connection-
points while allowing detailed physical and chemical modeling to be relegated to plug-in 
“black box” modules. Any attempt to lift the physics and chemistry directly to the model 
description level would elevate the task to defining the majority of aqueous solution and 
surface physics and chemistry in UML, that is clearly at best achievable by the entire world 
community. The general structure we adopt is therefore to confine the complicated physical 
and chemical boundary conditions into black boxes with very general names and to exchange 
these black boxes with new versions, if physics or chemistry are changing. 
The vehicle chosen to specify this interface is the Unified Modeling Language (UML) plus a 
special extension, call UML-real-time (UML-RT) to reflect the fact that dynamic physical and 
chemical processes are to be described. Though UML is thought to be as comprehensive as 
possible, the most recent specification4 is nearly 800 pages long, it still is concentrated on the 
aspects of software-development. This has the consequences that the available tools largely 
support the specification of software-routines and less so physical, chemical or other 
mathematical model structures. 

1.1 Introduction 
UML is a graphical, object-oriented modelling language that allows one to specify and 
document the artefacts of software systems. UML is widely used to express the general-
purpose software design models and is the de-facto standard object-oriented modelling 
language. One important feature of UML, the raison d'être for choosing this language here, 
stems from its built-in extensibility mechanisms: stereotypes, tag values and profiles5. These 
allow one to adapt UML to fit the specificities of particular domains or to support a specific 
analysis. Therefore, numerous UML profiles have been proposed in academia, by industry 
and/or by (typically government) organizations dealing with standards in order to 
accommodate the features of real-time software. Real-time software presents, moreover, some 
specific characteristics. In addition to the timing constraints, an important characteristic of 
real-time software stems from the interaction with the environment. This interaction is 
inherently nondeterministic and highly concurrent. UML 2.0 presents some features that 
support real-time aspects6 . For example, it supports the modelling of concurrency by 
providing some concepts, including active objects, concurrent composite states and 
concurrent operations. 

1.2 Introduction 
UML-RT is a real-time profile developed by Rational Software7. It uses the UML built-in 
extensibility mechanisms to capture the concepts defined in the Realtime Object Oriented 
Modeling (ROOM) Language8. In contrast with the previous profiles, UML/SPT4 and 
UML/QoS9, UML-RT is not just meant to annotate a design model with information allowing 
for quantitative analysis. It is a modeling language of its own. Indeed, UML-RT allows the 
designer to produce models of complex, event-driven and possibly distributed real-time 
systems. However, UML-RT does not support time and timing constraints modeling. UML-
RT is supported by a CASE tool called RationalRT10 that allows for automatic code 



generation by compiling the models and linking them with a run-time system. UML-RT 
includes constructs to model the structure and the behavior of real-time systems: 

• Structure Modeling: UML-RT provides the designer with entities called capsules, 
which are communicating active objects. The capsules interact by sending and 
receiving messages through interfaces called ports. Furthermore, a capsule may have 
an internal structure composed of other communicating capsules and so on. This 
hierarchical decomposition allows the modeling of complex systems. The following 
figure was created with BoUML, a public-domain CASE-tool, see section on BOUML. 

• Behavior Modeling: The behavior is modeled by an extended finite state machine and 
is visualized using UML state diagrams. These state 
machines are hierarchical since a state could be 
decomposed into other finite state machines. A 
message reception triggers a transition in the state 
machine. Actions may be associated with transitions 
or the entry and/or the exit of a state. Similarly to the 
two previous UML profiles, UML-RT lacks formal 
foundations. UML-RT is, however, a basis for a very 
active research work on schedulability analysis 
applied to real-time software design models. 
 

1.3 State of the art 
Many publications concerning UML-RT try to formalize this approach 11. One approach is to 
map the semantics of UML-RT in to a formal language system 12 to realize a model-driven 
development for concurrent and distributed applications 13. A direct specification of a formal 
language based on UML-RT 14 restricts itself to the formalization of the capsule using the 
Structure Operational Semantics approach 15. The question on how to partition active objects 
on different parallel threads is another issue to be investigated 16,17. An attempt to consistently 
describe real-time aspects and resource-restrictions in UML-RT requires a restriction of every 
communication to the exchange of messages 18. In addition, actions are specific messages and 
not operators. Then they require that the messages used in the specified sequence diagrams 
must be subsets of the messages used in the state-charts and that the mere sequences of these 
messages must be recognized by the state-machines. This ensures that sequence-diagrams and 
state-charts can be proven to be syntactical and semantically consistent. Assuring port-
compatibility between different capsules 19  is realized using a Failures-Divergence 
Refinement tool 20,21. An extension of sequence-diagrams in UML-RT describes broadcasting 
scenarios 22. Instead of using UML-RT the specification of the OMG UML-SPT 6 is utilized 
to describe safety-critical real-time systems23. 

1.4 Tool-support 
There are many tools available to work with UML-diagrams. The general idea behind these 
tools is to utilize UML as the only entry-point of software-fragments. A problem recurring 
very often with software development is the divergence between modeling and accompanying 
coding of the software. Especially with large and long-lasting projects, the risk of loosing 
contact between the modeling and the coding is enormous. The reasons are communication 
problems -- semantic glitches -- and losing people or know-how.  
There are essentially two types of tools employed (also termed CASE-tools): commercial 
tools, like RationalRT (www.ibm.com) and public-domain tools, like BoUML, Umbrello, 



OMNet++, Eclipse. The advantages of commercial tools are the better support plus powerful 
features, the advantage of public-domain tools is the long term availability. Especially with 
projects being developed over many years, availability is the most important issue. Although, 
in principle, UML-projects can be transported between different tools via the XML Metadata 
Interchange24 (XMI) language, the details and versions always differ and, for large projects to 
be transferred from one tool to the next, they may require complete rewriting. Another 
advantage of public-domain tools is the independence from any specific company-strategies 
trying to maximize the companies’ profits1. For these reasons, we aim at using public-domain 
base tools and live with the comparatively minor support level supplied by the community. 
The following public-domain tools, among many others, are each available for a large number 
of operating systems: 
BoUML25: This tool was chosen here because it supports the definition of new profiles and 
has a stable user-interface. It is supported by SourceForge 
(http://sourceforge.net/projects/bouml) and still under active development. 

Umbrello: This tool is integrated in Linux KDE. Unfortunately, it merely supports UML-
1.4 and not UML-2. Profiles cannot be created. The code- and documentation-
generation capability seems to be poor. 

OMNet++26: This tool has a completely different background because it is targeted at 
modeling networks. Due to the similarity of concurrency and timing constraints 
between the Electronic Chemical Cell and the network metaphor and because an 
interface to UML-RT was developed 27 it also seems to be a viable alternative. It was 
not chosen here because the status of this interface is not really clear. 

Eclipse28: This is a really large integrated development environment (IDE) and is 
considered to be the standard for Java-software developers. It also has interfaces to 
other programming languages and UML-2. Because of being so complex and huge it 
was not considered at this moment but should be for future larger projects in the 
Electronic Chemical Cell-domain. 

1.5 Basic functionalities of electronic chemical cell machines 
The essence of the Electronic Chemical Cell machine is the intimate connection between the 
local biochemical, biophysical processes, happening concurrently inside a micro-fluidics 
environment at a particular cell location, and the individually dedicated electronic control 
hardware on the other side. This strong connection requires a very broad interface with many 
properties exchanged between the two worlds. A complete modeling of the whole process 
becomes extremely challenging because so many different effects are playing a role: physics, 
chemistry, surface-properties, electrical-properties, electro-chemical properties, multi-phase-
boarders and information transport processes. A comprehensive language would require one 
to describe more or less everything that is known in physics, chemistry, electronics, 
computer-science and biology. This is not possible. Even the restriction to the following 
language terms would pose a major international undertaking: 

Information processing properties 
 
Time, Timeout, Delay, State, Action 

                                                
1 Due to diminishing or overtaken companies or licensing fees we have lost several 
important code-bases in the last 15 years.  



Physical properties 
Infrastructure: Electrode, Wall 
Particles: Molecule, Vesicles, Beads, Ensembles 
Geometry: Area, Channel, Volume, Center of ensemble, Position 
Mechanical properties: Velocity, Mass, Viscosity, Friction, Force 
Thermodynamic properties: Temperature, Pressure 
Electrical properties: Charge, Field, Potential, Conductivity 
Surface properties: zeta-Potential, Contact angle, Adhesion 

Chemical properties 
Physico-chemical: pH, Ionic strength, Salt-concentration, Material concentration 
Kinetic properties: Forward reaction, Reversible reaction, Catalyzed reaction, Michaelis-
Menten kinetic 

Basic microfluidic functionalities 
Ensemble operations: Fluid focusing, Pulse forming, Mixing, Splitting, Separation 
Sequence operations: Interleaving (used with droplets or cells), Sorting (used with droplets or 
cells), Dosing, Marking 
Basic reaction mechanisms for informational molecules: 
Informational sequence handling: Cutting, Ligation, Cleavage 
Sequence specific interactions: Hybridization, Association, Dissociation, Dissolving, 
Precipitation 
Higher order functional or structural properties: Catalysis through structure, Interference, 
Gelation, Clustering, DNA-networks 
Sequence information management: Coding, Crossover 
Additional house-keeping functions: Washing, Shielding, Compartmentalizing, Detection 
 
The tacit assumption behind these terms is not to try a physical, chemical correct mapping of 
reality into the model but to restrict the modeling to the most important features and boundary 
conditions. These means that the ab initio predictive capability of such a model would be 
rather weak but with these terms appropriately parametrized the model should be feasible for 
usual experiments. As is obvious, in the current state of the project, with only these few man 
months available for doing the modeling even such a restricted modeling is not possible. 
Therefore, it was decided to only model the regulatory part in the first instance and to reduce 
the interface to only electrode-potentials, intensities and impedances. All physico-chemical 
effects will be subsumed below the operators for getting or setting these properties. 
Furthermore, it was initially assumed that we do not have a complex micro-fluidic flow-
geometry but a simple two-dimensional regular array of rectangular electrodes. This 
simplification also eases the development of simulation tools that can be utilized for the 
development of control-algorithms. 

1.6 The UML-specification realized and the model 
In the following, a sketch of the UML-model will be presented and motivated. The full, so far 



specified, model is attached as a pdf-file that has been directly generated by the utilized 
modeling tool BoUML. Even this strongly reduced model is not yet fully functional. Ideally, 
per bush-button, a fully executable C++ program should be generated which would be able to 
operate the micro-fluidic hardware. This control-software already exists and to write it a 
second time would be an intolerable drain on resources. Nevertheless, it is useful to build a 
UML description of the model, because it clarifies the concepts and points to weaknesses in 
the current implementation of the control-software. 

 
The top-level description of the model is shown in the upper figure. The micro-fluidic system 
is abstracted via a class called Vessel. This vessel is equipped with electrodes, as already 
mentioned a regular array of rectangular electrodes, an arbitrary number of sensors, additional 
regulators or controllers and the chemical environment represented by the class Fluidic. What 
happens in the chemistry, or what effects the asserted potentials and impedances will have on 
physics and chemistry, is not modeled at all. All dynamical chemical and physical changes are 
subsumed in the black boxes of the intensities of the sensors. This means for example that the 
operator getIntens must somehow reflect internally what happens in the physico-chemical 
system. In the current implementation, the sensors are derived from fluorescence observed via 
a special EMCCD camera. A simulator for this system has to accept the following parameters: 
a set of electrodes, a set of sensors and additional parameters of the system to be simulated. 
The geometric information is already included in definition of the electrodes and sensors, as 
can be seen in the figure and the full specification. 
To clarify the role of a regulator, the following figure is presented. Per Vessel, arbitrarily 
many regulators can be defined and operated in parallel. Each capsule is accompanied with 
ports mediating between the inner world of the capsule and the outside environment. 



Furthermore, these ports realize a signal transduction. Attached to each port is a protocol. It is 
assumed here that the ports are only allowed binary communications. The protocol defines 
which types of signals are allowed. 

 
A regulator is a state-machine that looks for the fluorescence intensities to surpass certain 
thresholds and, in case of an expected event, switches to the next state. Upon switching to the 
next state, a pre-specified set of pins is activated or deactivated. In the following figure, such 
an automaton is shown. Its task is to concentrate charged material at a certain region in the 
micro-fluidic-system via the activation of certain electrodes. When a sufficient intensity is 
detected, a following regulator is activated to continue with the processing. 



 
Each state of this automaton is a state-machine that waits for the arrival of a threshold-
crossing-event and then activates some electrodes and provides the signal for the next state of 
the regulator-automaton. In the following figure, the state's inner state-machine is depicted. 
As long as no threshold (the upper threshold B or the lower threshold A) is crossed, the inner 
state-machine cycles in the entry-section. If no event occurs a timeout is generated. When the 
desired event occurs, a delay-line with a certain delay is activated. After this time, the 
electrodes are activated or deactivated according to the parameters of the regulator-automaton. 

 
A further example is shown in the following figure. A travelling wave is generated. This is 
not realized via simply switching electrodes on and off but via smart regulators that detect 
whether the expected material really arrived. These smart regulators not only detect a 



malfunction of the travelling wave process, they also are able to realize pulse-forming and 
thus avoid the inherent problem of dispersion. 

 

1.7 The Electronic Cell and Electronic Genomes 
For us to be able to consider the electronic control structure as “belonging” to the electronic 
cell, it is necessary to have a definition of cell ownership. The simplest structure of this type 
is a space associated one: co-localization of chemicals with the region of application of 
electronic control (electrodes and sensors) control creates the connection between the 
chemicals and the control program. While other exotic modes of connection (e.g. pattern 
based) are conceivable, for the moment we intend to stay with this most obvious choice of 
topo-association. In principle this can be electronically or chemically determined or both. The 
chemical determination requires a mechanism of deducing a spatial location from a spatial 
sensor pattern. If there is only one cell in the system, then a sufficient algorithm would find 
the center of intensity from the sensor array (when fluorescence intensity is proportional to 
concentration) and then establish a region (e.g. linear, circular or rectangular depending on 
microfluidic structures) of a fixed size about this center. A more elaborate algorithm would 
also compute the range of the cell region. An electronic determination may associate the 
boundary of a cell with a particular pattern of electrode states (a field barrier preventing 
boundary crossing of key components analogously to a lipid membrane preventing material 
exchange). When more than one association between chemicals and electronic regulators 
must be established, this is relatively straightforward in the cases where cell sizes are fixed or 
the boundaries are clearly recognizable. It is clear that the definition of the boundary 
codetermines the behaviour of the system, so that simple physical principles are likely to 
prove the most apt for later evolution. 
The model hierarchy above already contains (through inheritance) a location in each of its 
elements. A topo-association as described above comes into force when for example these 
locations are treated as relative to a center of mass of replicating molecules. In a particularly 
simple case, imagine a molecular amplification process combined with an electrophoretic 
separation, product isolation and split control program. The control program will walk such a 



set of amplified molecules via travelling wave electrophoresis along a certain path, with its 
sensors and electrodes virtually staying within a fixed distance of the center of mass of the set 
of molecules during movement, and the pulse-forming regulators virtually moving together 
with the majority of molecules. Of course, this process can be codetermined by the chemical 
properties (migration and reaction rates determining location and quantities) so that for 
example the initiation time, transport rates and splitting events are codetermined by the 
chemistry (e.g. splitting via reaction –diffusion non-linearity’s in an electric field). Thus these 
processes can be achieved with a suitable control of electrodes or happen autonomously as a 
side effect of the regulator algorithms. 
Having the moving controllers with the center of masses of molecule collections it is easy to 
consider also the parameters of these controllers moving together with the molecules virtually. 
If now, after each separation- or splitting-event these parameters are slightly changed by 
random perturbations, an evolving population is already instantiated and evolution sets in to 
optimize the parameters. Parameter sets that are bad for replication yield diminishing sets of 
molecules, which of course causes the deletion of the moving controllers and their associated 
parameters. This reflects death in the evolving system. The electronic genome concept thus 
involves a second type of genetic information associated with the cell: i.e. that involved in 
specifying the parameters and/or structure of the regulatory control program. 
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