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1 Introduction

Quantised systems are continuous-variable systems, which sig-
nals can only be measured discretely through quantisers. The
input-output-behaviour of such systems is characterised by se-
quences of symbols or discrete values.
In previous works it has been shown that faults in quantised
systems can be diagnosed using a purely discrete model in form
of a stochastic automaton [2]. The behavioural relation of the
automaton can be determined automatically from a given state
space model of the continuous system. The stochastic automa-
ton has proven to be a type of model both powerful and sim-
ple to use. However, the drawback of this type of model is that
while being simple it can become too large to handle, especially
for coupled and complex systems. This is known in discrete-
event system theory asstate space explosion.
The project aims at reducing the complexity of the model of the
coupled quantised system by component-oriented modelling,
where each subsystem is represented by a stochastic automa-
ton. The overall model is, hence, an automata network, which
will then be used for fault diagnosis [1].

2 The automata network

An automata network consists of several stochastic automata
which are interconnected. Fig. 1 shows the network is not
limited to parallel systems, but can include serial and feedback
connections. The example illustrates that the coupling signals
need not be measurable and that each automaton can have
multiple inputs and outputs. This universality is necessary to
model existing industrial applications.

Figure 1: Automata network

A physical system usually consists of many components which
interact with each other. While the existing modelling approach

did not take this structure into consideration, in this project ev-
ery component will be modelled separately resulting in multi-
ple stochastic automata which will be interconnected according
to the physical system. It is clear that this approach demands
fewer resources, since independencies between the components
are regarded automatically.

3 Modelling the network

The ith stochastic automaton of the network is described by
the tupleAi(Nzi,Nvi,Nwi,Li ,zi0), whereNzi = {1,2, . . . ,Ni}
is the set of stateszi , Nvi = {1,2, . . . ,Mi} the set of inputsvi ,
Nwi = {1,2, . . . ,Ri} the set of outputswi andzi0 is the initial
condition of the automatonAi . The behavioural relation

Li = P(zip(k+1) = zi(k+1),wip(k) = wi(k)|
zip(k) = zi(k),vip(k) = vi(k)) (1)

describes the dynamics of the automaton. Items with the index
p are stochastic variables.

Automata may be connected in three different ways, namely
parallel, serial, and as a feedback connection (Fig. 2). For
the supervision of the overall process (marked by the grey
boxes in Fig. 2) it is necessary to analyse how the different
automata influence each other or in other words how the
stochastic dependencies of the partial models influences the
overall behaviour. The combination of partial models to get
the overall model is calledcomposition. However, the aim of
this project is not to calculate the overall model, since this
would destroy all the benefits of the network representation,
but to use composition rules to calculate the overall behaviour
directly.

(a) Parallel (b) Serial (c) Feedback

Figure 2: Connection types



The following composition rules show the complexity reduc-
tion of the system representation:
Parallel composition: Two parallel automata can be composed
as follows:
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= L1(z′1,w1|z1,v1) ·L2(z′2,w2|z2,v2). (2)

Serial composition: Two automata in a series connection can
be composed as follows:

L̃(z̃′,w2|z̃,v1) = ∑
s1

L1(z′1,s1|z1,v1) ·L2(z′2,w2|z2,s1). (3)

Feedback composition:An automaton with a feedback con-
nection can be transformed to an autonomous automaton as fol-
lows:

L̃(z̃′|z̃) = ∑
w1

L1(z′1,w1|z1,w1). (4)

4 State Observation

The aim of state observation is to reconstruct the current
state of the system of interest from input/output measurement
sequences. A model of the system in form of a automata
network is created and the state of the model is observed.
Since the model is guarenteed to be complete (model be-
haviour includes the system behaviour) the observation result
includes the current state of the system. Because the model is
nondeterministic usually the result is not unambiguous, but in-
stead a probability distribution over the state set is obtained [2].

As opposed to the solved observation problem of a single
stochastic automaton the observation of the automata network
has shown to be far more difficult. In case of parallel automata
(see Fig. 2) it has been proven that each automaton can be ob-
served independently. The overall probability distributionp of
the system can be calculated from the distributionspi of the
single automata using tensor algebra:

p(z̃(k)|Ṽ(0. . .k−1),W̃(0. . .k−1)) =
L1(k−1)p1(k−2)

⊗
L2(k−1)p2(k−2)

∑z1(k) L1(k−1)p1(k−2)
⊗

∑z2(k) L2(k−1)p2(k−2)
. (5)

This calculation uses far less resources than the observation
with a single large model. However, in case of the serial and
feedback connection the overall probability distribution cannot
be calculated from the single distributionspi since usually the
automata are not stochastically independent. Here the overall
distribution has to be calculated directly using the composition
rules.

5 Diagnosis

The aim of diagnosis is to find the faultf which causes the
plant to work outside the nominal operating point. Since this
makes it necessary to find the current operating point, the diag-
nosis task always includes an observation task.

To solve the observation task the automaton state is then ex-
tended to include the fault symbols:

ẑi :=
(

zi

fi

)
. (6)

Then the extended state ˆz is observed using the observation al-
gorithm. The diagnosis result is derived by projecting the cal-
culated probability distribution onto the fault space.

6 Experimental example

The experimental plant that will be used throughout the project
is the small-scale model of a power plant (Fig. 3). It consists of
two identical generators each driven by a turbine propelled by
air pressure. Each generator can produce power up to 300 W.
The generators can be operated independently or, after synchro-
nisation, as one unit. Strictly speaking, since both turbines are
connected to the same air-supply they are not completely inde-
pendent.
This plant is suitable for the project for several reasons. First
this plant is already complex enough to result in an unstruc-
tured automaton model which is too large to handle with to-
day’s computers since the behavioural relation contains approx-
imately 1011 transitions. Second fault scenarios can easily be
experimented. Additionally, since the plant consists of several
parts, which can be modelled separately, it is a perfect testbed
for the modelling, observation, and diagnosis of automata net-
works.

Figure 3: Physical model of a power plant
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