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1 Introduction
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Figure 1: Structure of a discretely controlled system.

Discretely controlled continuous systems (DCCS) represent an
important class of hybrid systems with many applications in
power electronics, process engineering and robotics. They ap-
pear as a control loop of a continuous plant and a discrete-event
controller (Fig. 1). The plant dynamics

ẋ(t) = f (x(t) , d(t) ,q(t)) , x(0) = x0 (1)

depend on the activated mode of operation q(t) ∈ Q and are in-
fluenced by disturbances d(t). The discrete controller imple-
ments a state-dependent switching law to trigger mode transi-
tions in the plant, such that specifications r(t) imposed on the
continuous state x(t) are met.
A central control task of DCCS concerns the stabilization
of stationary periodic operations, which map into p-periodic
limit cycles Γ in the state space (see Fig. 2). Each limit
cycle Γ can be characterized by its periodic mode sequence
QΓ = (q̄?0 . . . q̄

?
p−1) and the associated switch points XΓ =

{x̄?
(
q̄?0

)
, . . . , x̄?

(
q̄?p−1

)
}.

In general, orbital stability must be achieved by timing mode
transitions properly, as the mode order is fixed through Γ.
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Figure 2: Stabilizing switching planes for a limit cycle Γ.

2 Project goals
During operation, the discrete controller generates a sequence{
(q̄?k , t̄(k))

}∞
k=0

of mode-time-pairs. The mode sequence is en-
coded in the autonomous discrete-event switching logic, while

suitable transition times t̄(k) are determined by the event gen-
erator that drives the latch D (Fig. 1). The latter component
implements a static event function Φ, which specifies a switch-

ing surface configuration
{
S

(
q̄?k

)}p−1
k=0

in the state space (Fig. 2).
A mode transition q̄?k → q̄?k+1 is triggered, whenever the cor-
responding switching condition Φ(x, q̄?k ) = 0 is satisfied, i.e.
when the state trajectory x(t) intersects with the surface

S
(
q̄?k

)
=

{
x : Φ(x, q̄?k ) = 0

}

at the switch point x̄(k). The goal of this project is to determine

an event function Φ, i.e. a configuration
{
S

(
q̄?k

)}p−1
k=0

, such that
the control loop behaves optimally for all x0 ∈ X0 with respect
to a smooth performance measure

J(x0, t̄N) =

N−1∑

k=0



t̄(k+1)∫

t̄(k)

Lk(x(t))dt +φk(x̄(k))

+φT (x̄(N)) , (2)

which adequately reflects
1. transient performance requirements,
2. the stationary objective of local orbital stability and
3. robustness.

Minimization of (2) must be achieved under constraints

t̄(k) ≤ t̄(k + 1) (3)
ψ(x̄(N)) ≤ 0 (4)

on the state trajectory and the switching times.

3 Approximation of optimal surfaces
As a consequence of feedback control, all switching times
t̄(k) = t̄(k,Φ, x0, d(t)) depend on the event function, the initial
condition and the disturbances. Hence, minimizing (2) for all
possible x0 over the event function Φ constitutes an intractable
endeavor.
As a remedy, we propose to approximate the optimal function
Φ?(x,q) in the relevant region of the state space by a piecewise
affine function

Φ̃?(x,q) = nT
i (q)x−di(q), if x ∈ Ωi (5)

where the partition-dependent parameters ni(q) and di(q) rep-
resent a locally optimal switching plane in the state space. The
associated switching surface

S̃?
(
q̄?k

)
=

{
x : Φ̃?(x, q̄?k ) = 0

}

is, hence, a polygonal approximation of the true optimal surface
(Fig. 3). As important properties, this polygonal representation
can be stored efficiently and allows for a fast and reliable de-
tection of switching events.



Figure 3: Polygonal representation of a switching surface.

4 Successive surface polygonization
Before the determination of Φ̃?, the existence of a time-
invariant optimal event function Φ? must be ensured.
Proposition 1. The optimal control problem (2)-(4) admits a
time-invariant event function Φ?, i.e. a stationary optimal
switching surface configuration, if the final time t̄(N) is a de-
cision variable and the cost and constraint components Li, φi
and ψ are smooth time-invariant functions.
Given the existence of stationary optimal surfaces S?

(
q̄?k

)
,

the sought polygonal approximations can be sequentially
determined by application of numerical predictor-corrector-
continuation methods, which aim at systematically covering
a functionally specified, complex-shaped surface by a simplex
mesh. Such procedures are well-suited for the design task at
hand, due to the following properties:

• They only explore the relevant state space fraction.
• They enable an active precision control by adjusting the

mesh distance according to the surface geometry.

They repeatedly execute three basic operations:

1. Determination of an anchor point x̄?0(k+1) ∈ S?(q̄?k ),
2. Determination of tangent planes T ?(x̄?j (k+1) , q̄?k ),
3. Projection of candidate points x̄ j(k+1) ∈
T ?(x̄?j (k+1) , q̄?k ).

All steps require solving the open-loop constrained transi-
tion time optimization problem (2)-(4) by second-order meth-
ods [2]. The successive unfolding is illustrated in Fig. 4. The
determination of the anchor point x̄?0(1) is followed by com-
puting the tangent plane T ?(x̄?0(1),0) to the unknown optimal
surface S?(0). Subsequently, candidate points x̄ j(0) are chosen
along the tangent plane at a predetermined edge distance ∆e.

Figure 4: Unfolding of an optimal switching surface.

After the projection onto S?(0), these points become anchor
points themselves and must be expanded recursively.
Once S̃?(0) covers the relevant state-space region, unfolding
the surface can be stopped. Obviously, the approximate and
true switching surfaces coincide at all vertices. In between, the
planar approximation can be made as accurate as desired by
reducing the mesh distance.
By implementing the resulting polygonal switching planes and
for a suitable choice for the criterion (2), the control loop ex-
hibits the desired properties. In particular, the switching sur-
faces result in an optimal loop behavior for a large set of ini-
tial states, they generate the optimal response to unknown dis-
turbances and ensure adequate robustness of the implemented
controller with respect to model uncertainties.

5 Application example
The polygonal surfaces depicted in Fig. 5 constitute approx-
imations of the optimal switching surfaces for a hybrid ther-
mal control process realized at the experimental manufacturing
plant [1]. The primary process goals are to maintain the tem-
perature θB(t) of a metal block around a desired value and to en-
force a periodic stationary operation (red orbit in Fig. 5). This
is to be achieved by controlling the heat energy flow via prop-
erly timed transports of two aluminium elements in between a
heating unit and the block.
Figure 5 also illustrates the accomplishment of the specified
objectives by implementation of the computed surfaces. The
depicted sample state trajectory (blue solid line) quickly settles
to a desired periodic orbit (thick red line), which is enclosed
by the switching surfaces. The depicted transient evolution is
optimal with respect to the chosen performance measure.

Figure 5: Optimal switching surfaces for the FESTO process.
The sample trajectory (blue line) converges to the desired limit
cycle (red orbit).
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