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1 Introduction
Optimal control represents a major subject of classical con-
trol theory, primarily, because optimization provides an intu-
itive and systematic methodology for tuning controller param-
eter in situations, where the number of design freedoms largely
exceeds the number required to meet the system specs. Re-
cently, optimization was also heavily applied to switched and
discretely controlled continuous systems (DCCS).
The latter constitutes a subclass of hybrid systems, where the
state x(t) of a continuous plant is regulated by switching among
discrete modes of operations q ∈ Q at appropriate instants of
time t̄(k) (Fig. 1). A mode transition induces structural changes
to the plant dynamics

ẋ(t) = f (x(t) , d(t) ,q(t)) , x(0) = x0 (1)
y(t) = h(x(t) , d(t) ,q(t)) . (2)

resulting in a different behavior at each mode, which is ex-
ploited to influence the future evolution of x(t). As an essen-
tial property, the functionality of a DCCS requires a prolonged
switching action, such that at stationary operation, x(t) evolves
either chaotically or periodically.
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Figure 1: Structure of a discretely controlled continuous system

2 Project goals
Event-driven switching laws map into a static switching sur-
face configurations in state space (Fig. 2). A mode transition is
triggered, whenever the state x(t) intersects with one of these
surfaces. The aim of this project is to utilize standard opti-
mization tools for a goal-oriented design of static switching
planes of DCCS. The considered task is, given the plant dy-
namics (1), (2) and a predetermined limit cycle Γ (see Fig. 2)
to be executed at stationary operation, find a static switching
plane configuration, which guarantees

1. local orbital stability of Γ,

2. a desired transient loop behavior and

3. robustness.

The main difficulty of optimal control is to reformulate the orig-
inal problem as a meaningful constrained convex optimization
problem. Whereas in classical control theory, optimality is typ-
ically related to minimizing the gain of a performance channel
with physical meaning, defining optimality with respect to the
orientation of switching planes is much less well understood
and needs to be analyzed in initially.
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Figure 2: Stabilizing switching planes for a limit cycle Γ.

3 Design of optimal switching planes
In [2] it was shown that designing stabilizing switching planes
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for a given Γ can be equivalently solved by designing a periodic
state feedback controller for a constrained periodic system

ξ(k+1) = A(k)ξ(k) + b(k)u(k) (4)
u(k) = −kT(k)ξ(k) (5)
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Thus, after some moderate extensions, all results of optimal
control of discrete-time periodic systems (LQP-control) be-
come available for solving the original problem. The classical
LQP-problem setting (generalized H2 problem) is as follows:

Minimize J =
1
2

∞∑

k=0

[
ξT(k)Q(k)ξ(k) + u(k)ru(k)

]
(9)

subject to:
1. ξ(k+1) = A(k)ξ(k) + b(k)u(k) (10)
2. u(k) = −kT(k)ξ(k) (11)
3. P(k) = P(k+p) � 0 (12)

4. − P(k) + (•)T P(k+1)
(
A(k)− b(k) kT(k)

)
� 0 (13)



where J is the quadratic cost function with user-specified
weights Q(k) = Q(k+p) � 0, r(k) = r(k+p) ≥ 0. Although the
analytic solution to (9)-(13), which involves a periodic Matrix-
Ricatti-Equation

P(k) = Q(k) + AT(k) P(k+1) A(k)

− [•]T
(
r(k) + bT(k) P(k+1) b(k)

)−1 [
bT(k) P(k+1) A(k)

]
,

provides valuable insight into the properties of the solution, it is
beneficial to instead consider an equivalent LMI reformulation
and solve this semidefinite program numerically by means of
interior point methods.

Theorem 1. Any solution P(k), kT(k) to the classical LQP-
problem (9)-(13) for given weights Qb(k) , r(k) is also a unique
solution to the semidefinite program

Minimize
1
p

p−1∑

k=0

tr(W(k)) (14)

subject to:

1. ξ(k+1) = A(k)ξ+ b(k)u(k) + bw(k)w(k) (15)
2. u(k) = −kT(k)ξ(k) (16)

3. (•)T
(

Q̃(k) r̃(k)
)

=

(
Q(k) 0
0T r(k)

)
(17)

4.


−X(k) A(k) X(k+1) + b(k) lT(k) bw(k)
(•)T −X(k+1) 0
(•)T (•)T −1

 � 0 (18)

5.
(

W(k) Q̃(k) + r̃(k) lT(k)
(•)T −X(k+1)

)
� 0 (19)

where bw(k) can be chosen arbitrarily and the relations P(k) =

X−1(k) and kT(k) = −kT(k) X−1(k) hold for all k.

The advantage here is that the minimal constraint set (15)-(19)
can be extended by additional convex constraints in order to ac-
count not only for orbital stability, but also for all other design
objectives listed under Sec. 2.
To explicitly account for the algebraic constraints (8) the fol-
lowing result proves to be valuable.

Lemma 1. The constraints (8) are satisfied, iff
det

(
A(k)− b(k) kT(k)

)
= 0 holds for every k.

It shows that any solution kT(k) to the LQP-problem satis-
fies (8) under the following necessary and sufficient condition.

Theorem 2. A solution to the LQP-problem explicitly satisfies
the constraints (8), if and only if r(k) = 0, ∀k, whereas Q(k)
may be chosen arbitrarily.

4 Optimality criteria of DCCS
Since all desired loop properties of Sec. 2. uniquely map into
convex constraints, there still exists a whole family of admissi-
ble switching plane configurations, provided that the constraint
set is satisfiable at all. To find the best possible configuration
among these, additional desired properties such as

• insensitivity to uncertainties in the event localization

• insensitivity to parameter variations in the plant dynamics

• a guaranteed mode transition in finite time

• a large region of attraction

need to be identified and related to a convex cost function.
A major source of disturbances are uncertainties in the event
localization, which may have drastic effects on the orbital sta-
bility of Γ (see [1]). Since they cannot be avoided in a digital
controller implementation, it is vital to minimize their influ-
ence.
Furthermore considerable parameter variations frequently oc-
cur in the plant, which should affect the stationary operation as
little as possible. A plane configuration that robustly stabilizes
Γ can be determined by solving a robust periodic state feedback
problem. Keeping conservatism in the solution as low as possi-
ble requires a good and compact representation of the uncertain
model. However, parameter variations also cause the limit cy-
cle Γ to shift in the state space. The aim of avoiding large shifts
must again be translated into a suitable cost criterion.
To explicitly consider the last two critical items in the design
is indeed very complicated, as these cannot be represented by
convex costs or constraints. Hence, suitable relaxations must
be found.

5 Application example
The design of optimal switching planes can be applied to sta-
bilize the periodic operation of a DC-DC boost converter in
continuous conduction mode. The static switching surface de-
sign results in the switching planes depicted in Figure 3. These
planes guarantee local orbital stability, a fast local transient re-
sponse (multipliers magnitude |mi|< 0.3) and minimize the sen-
sitivity to event localization errors. The latter is achieve by
maximizing the impact angle with the limit cycle Γ.
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Figure 3: Stabilizing switching planes for a DC-DC boost con-
verter minimizing the sensitivity to event localization errors.
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