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1 Discretely controlled systems
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Figure 1: Structure of a discretely controlled continuous system

Discretely controlled continuous systems (DCCS) represent a
relevant class of hybrid systems with many applications in pro-
cess engineering, power electronics and robotics.
As shown in Fig. 1, such systems constitute a control loop com-
posed of a continuous plant subject to disturbances d(t) and a
discrete-event controller, which periodically switches the plant
among its modes of operation q ∈ Q to meet specifications im-
posed on the continuous state x(t) or the output y(t). For each
mode q, the plant exhibits different continuous dynamics

ẋ(t) = f (x(t) , d(t) ,q(t)) , x(0) = x0 (1)
y(t) = h(x(t) , d(t) ,q(t)) . (2)

The plant’s modes are typically designed, such that at proper
operation, the mode signal q(t) periodically cycles through a
finite sequence QΓ =

(
q̄?0 . . . q̄

?
p−1

)
.

2 Project goals
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Figure 2: Stationary periodic operation of a DCCS

This project focusses on the stationary control of periodically
operated DCCS (Fig. 2). Given the plant dynamics (1), (2),
the control task is to find a controller that initially drives the
plant’s state x(t) into a specified terminal region XT and there
enforces asymptotic convergence towards a predetermined p-
periodic limit cycle Γ. This must be achieved by solely adjust-
ing a mode’s activation duration from its nominal value τ̄?

(
q̄?k

)
.

The design procedure must explicitly account for effects of dis-
turbances, large parameter variations and bounds on the switch-
ing frequency. Excessive degrees of design freedoms may be
exploited to maximize the convergence rate,the robustness or
to obey safety constraints on the continuous flow. Due to re-
source limitations, the control law must be a simple, explicit
expression.

3 Control loop structures of DCCS
Two complementary approaches are considered here.
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Figure 3: General control loop structure of DCCS

Stationary control by means of static switching surfaces.
The discrete controller is structured into an event generator and
a deterministic switching logic or mode selector (Fig. 3). The
switching logic encodes the discrete transition structure, i.e. the
set Q′(q) of admissible successor modes to each q ∈ Q. Con-
cerning periodically operated DCCS, Q′(q̄?k ) =

{
q̄?k+1

}
is a sin-

gleton and the mode selector degenerates into an autonomous
cyclic automaton.
The event generator constantly evaluates an event function
Φ(x, q), which encodes information about when to switch.
Upon satisfaction of Φ(x, q) = 0, an impulse clk(t̄(k)) = 1 is
triggered at the switching instant t̄(k), causing a mode transi-
tion. The set

S (q) = {x |Φ(x, q) = 0}
of all states x̄ satisfying the switching condition of mode q,
constitutes a static switching surfaces in state space. The main



design issue is to find static surfaces S (q), which guarantees
desired loop properties.

Stationary control by means of dynamic switching surface
adjustment. The primary control loop can be augmented by
an additional outer control loop, whose central component is a
switching surface controller (SSC, Fig. 3), which acts on the
event generator at runtime. The SSC dynamically adjusts the
event function parameters, thereby affecting the orientation and
location of nominal switching surfaces S0 (q) (Fig. 4). The cen-
tral idea is to pick simple nominal switching planes

S0 (q) =
{
x | nT

0(q) x−d0(q) = 0
}

and exploit the supplementary control input for the dynamic
local reconstruction of more complex switching surfaces by
adjusting the orientations nT

0(q) as well as the positions d0(q).
Here, the design concentrates on the model-based derivation of
the switching surface controller.
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Figure 4: On-line adjustment of switching surfaces

4 Design of static switching planes
The key element for obtaining a model that explicitly reflects
the effect of the design parameters nT(q) and d(q) on the evo-
lution of x(t), is to sample the system behavior at switching
instants t̄(k). In theory, this sampled description is achieved by
the embedded map [1]
(
x̄(k+1) q̄(k+1) τ̄(k+1)

)
T = H

((
x̄(k) q̄(k) τ̄(k)

)
T
)

(3)

with x̄(k) , q̄(k) , τ̄(k) denoting the switch point, the activated
mode and the activation duration of this mode at the k-th
switching. Although a closed form expression of (3) typically
does not exist, the map’s continuous part Hx can still be ex-
panded as a first-order Taylor series

δx̄(k+1) =
dHx
dx

(
x̄?(k) , q̄(k) , τ̄?(k)

)
δx̄(k)(

I− f
(
x̄?(k+1) , q̄(k)

)
nT(q̄(k))

nT(q̄(k)) f (x̄?(k+1) , q̄(k))

)
dx̄?(k+1)

dx̄?(k)
δx̄(k) ,

with δx̄(k) = x̄(k)− x̄?(k) denoting the deviation from the limit
cycle. An iterated application of the embedded map over a
complete cycle QΓ yields a linear approximation

δx̄ (c+1) =
dPx
dx

(
x̄?(q̄ (c)) , q̄ (c) , τ̄?(q̄ (c))

)
δx̄ (c) , (4)

of a return map P. As shown in [3], map (4) can be interpreted
in terms of a discrete-time periodic linear system

ζ(k+1) = A(k)ζ(k) + b(k)u(k) (5)
u(k) = −kT(k)ζ(k) (6)

with static state feedback, where kT(k) is uniquely related to
the normal nT

(
q̄?k

)
, iff the constraint kT(k) f

(
x̄?

(
q̄?k+1

)
, q̄?k

)
= 1

is satisfied. This equivalence allows to conclude about local
orbital stability of Γ from the eigenvalues of the monodromy
matrix of (5) as well as to apply well developed methods from
periodic control systems for solving the original problem [3].

5 Switching surface controller design
Given nominal switching planes, another locally valid linear
periodic model can be derived that enables the model-based
design of a switching surface controller [2] for stabilizing the
limit cycle Γ. Since using a linear approximation of (3) in the
design, both control strategies result in a similar loop perfor-
mance, i.e. they complement each other. However, by combin-
ing the static plane design with a different synthesis approach
for the SSC offers a strong potential for significantly enlarging
Γ’s region of attraction. To compensate for varying parame-
ters, an on-line adjustment of the event function parameters is
indispensable anyway.

6 Application example
Both design approaches can be applied to stabilize the periodic
operation of a DC-DC boost converter in continuous conduc-
tion mode. The static switching surface design results in the
switching planes depicted in Figure 5(a). Alternatively, parax-
ial nominal switching planes S0 (q) can be adjusted on-line by a
SSC to stabilize the otherwise marginally stable limit cycle. A
sample execution for this control approach is depicted in Fig-
ure 5(b), where the point x̄(k) to the left are off the nominal
plane S0 (1) due to the interference of the SSC.

(a) static switching surfaces (b) switching sequence under appli-
cation of SSC

Figure 5: Stabilized limit cycle of a DC-DC Boost converter
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