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1 Introduction

Modern communication technologies facilitate a flexible
exchange of information between autonomous agents via
a digital communication network. The control objective
of these multi-agent systems is to achieve a coordinated
behaviour of the individual agents.

Figure 1 shows the structure of a multi-agent system.
The physically uncoupled agents Σi, (i = 1, . . . , N), are
connected over a networked controller, which consists of
local control units Ci, (i = 1, . . . , N), and a communica-
tion network L.

Figure 1: Structure of a multi-agent system

A common control objective is the asymptotic synchroni-
sation of the output signals of the agents

lim
t→∞

|yi(t)− yj(t)| = 0, i, j = 1, . . . , N.

For deterministic communication networks, which might
be static or vary with time, there exist necessary and suf-
ficient conditions for the design of the networked controller
to ensure the asymptotic synchronisation (see [1] for a sur-
vey). In contrast, this project focuses on random commu-
nication networks. It is assumed that the occurrence of
links in the communication network at time t depends on
the outcome ω of a random experiment.

2 Communication Network

As depicted in Fig. 2, the random communication network
~G(t, ω) = (V, E(t, ω)) is modelled by a random sequence of

directed graphs {~G(i, ω), i ≥ 0}, each of which is active
over the time intervals [ti, ti+1). Any particular random

graph ~G(i, ω) is obtained independently of the other graphs

Figure 2: Random communication network modelled by a
random sequence of graphs

with the stationary probability distribution

Prob
(
~G(i, ω) = ~Gj

)
= pj ,

q∑
j=1

pj = 1

from a finite set of possible graphs Γ = {~G1, . . . , ~Gq}, where
L = {L1, . . . ,Lq} denotes the set of associated Laplacian
matrices. The switching times of the random communi-
cation network are either fixed with the switching of the
network topology at ti = i ·Ts or random, i.e the switching
times ti(ω) are the result of a random experiment. The
random communication network is described by the piece-
wise constant Laplacian matrix

L(t, ω) =

∞∑
i=0

L(i, ω)1[ti,ti+1)(t).

3 Multi-Agent System

The N agents of the multi-agent system are described by
the continuous-time state-space model

Σi :

{
ẋi(t) = Axi(t) + bui(t), xi(0) = xi0

yi(t) = cTxi(t), i = 1, . . . , N,
(1)

where xi is the state vector, ui the input signal and yi the
output signal of the i-th agent. The local control law of
the i-th agent feeds back the difference of its output signal
and the output signals of all neighbouring agents

Ci : ui(t) = −k
N∑
j=1

lij(t, ω)yj(t), i = 1, . . . , N. (2)

The overall closed-loop system is obtained by aggregating
the agents (1) and the local control laws (2):

Σ̄ :

{
ẋ(t) = (IN ⊗A−L(t, ω)⊗ kbcT)x(t)

y(t) = (IN ⊗ cT)x(t), x(0) = x0.
(3)



4 Project Aim

The aim of this project is to find new methods for the de-
sign of networked controllers of multi-agent systems with
regard to random communication links. In order to solve
this task the following two questions need to be answered:

1. Asymptotic behaviour: How can the synchroni-
sation of the agents be ensured in case of random
communication networks?

2. Transient behaviour: Can a specific choice of the
available communication links improve the conver-
gence rate?

Asymptotic behaviour. As the concept of pointwise
convergence as employed for deterministic systems is gen-
erally not applicable for stochastic systems, the concept of
almost sure convergence is used in which the convergence
has to occur for almost all outcomes ω of the random
experiment. Conditions on the design of the networked
controller need to be derived that ensure the almost sure
asymptotic synchronisation of the agents. Since the model
of the closed-loop system (3) depends on the time and the
outcome of an random experiment, a direct analysis of
this system is complicated. Instead, the feedback gain k
is designed so that the averaged closed-loop system

Σ̄ave :

{
˙̄x(t) = (IN ⊗A− E(L(t, ω))⊗ kbcT)x̄(t)

ȳ(t) = (IN ⊗ cT)x̄(t), x̄(0) = x0

synchronises. However, to ensure the almost sure synchro-
nisation of the agents, additional requirements are neces-
sary. Either the switching time intervals [ti, ti+1) of com-
munication network must be sufficiently small (see [2]) or
the controlled agents must satisfy some form of monotonic-
ity property (see [3]).

Transient behaviour. In order to improve the transient
behaviour of the agents, an information measure Di,ref is
introduced. The idea is that each agent sends not only
its output signal but also the corresponding information
measure to the neighbouring agents. Each local control
unit then selects the best available output signal based
on the information measure to control the agent. Hence,
the emerging communication structure among the agents
using only locally available information is the result of a
self-organising process.

5 Experiments

Consider N = 6 mobile robots as they are employed at the
experimental set-up SAMS whose movement is restricted
to a circular path as shown in Fig. 3. The control objec-
tive is the platooning of the robots, i.e. the distances di
between the robots need to be synchronised. The mobile
robots are described by the model

ẋi(t) =

−0.5 0 0.005
1 0 0
0 0 0

x(t) +

0.1
0
1

ui(t)

yi(t) =
(
0 1 0

)
xi(t), xi(0) = xi0.

Figure 3: Experimental set-up SAMS (left) and synchro-
nisation of the distances between mobile robots (right)

The communication network is modelled as a sequence
of Erdös-Rényi graphs. Any communication link point-
ing from one agent to another agent exists with the fixed
probability p = 0.02 in the network. The switching times
ti = i ·Ts of the random communication network are fixed
with Ts = 0.01 s. The feedback gain k = 15 of the local
controllers (2) is designed in a way that the agents synchro-
nise over the average communication network E(L(t, ω)).

Since the random communication network fulfils the re-
quirement of sufficiently fast switching, the distances be-
tween the robots synchronise, as shown in Fig. 4, which
results in the desired platooning of the robots. In par-
ticular, the platooning emerges even though only a few
communication links are active at each time step.
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Figure 4: Distances (top) and position (middle) of the
mobile robots and the number of active communication
links over time (bottom)
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