
SDL/Virtual Prototype Co-design for Rapid
Architectural Exploration of a Mobile Phone

Platform

Shadi Traboulsi, Felix Bruns, Anas Showk, David Szczesny, Sebastian Hessel,
Elizabeth Gonzalez, and Attila Bilgic

Institute for Integrated Systems, Ruhr-University of Bochum
D-44780 Bochum, Germany

{shadi.traboulsi, felix.bruns, anas.showk, david.szczesny,

sebastian.hessel, elizabeth.gonzalez, attila.bilgic}@is.rub.de

Abstract. In this paper we present a new hardware/software co-design
methodology for embedded systems, where software components written
in Specification and Description Language (SDL) execute on a soft-model
of a hardware platform, a so called Virtual Prototype (VP). The proposed
approach enables fast exploration of different hardware and software de-
sign options at high level of abstraction in order to make early system
design decisions. We prove our approach by considering the Long Term
Evolution (LTE) communication stack as a use case for the architectural
exploration of our mobile terminal. The open source L4/Fiasco microker-
nel is deployed as a Real-Time OS to run the modem application repre-
sented by the LTE SDL-modelled protocol stack. We profile and analyze
the system performance by measuring average and maximum packet pro-
cessing times under various hardware and software conditions. Thereby,
we are able to rapidly obtain an efficient design point that provides 80 %
packet processing speedup against other unoptimized implementations
while meeting the required timing constraints and maintaining a good
balance between area and power consumption.

Key words: hardware/software co-design, rapid system prototyping,
design-space exploration, mobile terminal, SDL.

1 Introduction

The complexity of embedded systems is increasing over time due to the integra-
tion of more and more functionalities into a single chip, which is supported by
the advances in fabrication technology. Nowadays, these systems are made up of
heterogeneous architectures consisting of a broad range of IP modules like em-
bedded processors, accelerator blocks, interface modules, a memory subsystem,
and a communication infrastructure through which these blocks can interact for
the exchange of data and synchronization.

Embedded systems like mobile phones have serious power constraints because
of their limited battery life time. Moreover, these systems often have real-time

246 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

characteristics. For instance, communication devices have to process a certain
number of packets per second in order to guarantee no degradation in the sys-
tem’s efficiency and quality of service. In addition, reducing the chip area is an
important aspect in chip design due to its impact on chip cost. The metrics
introduced above (power, performance and area) influence the selection of an
appropriate system architecture based on given constraints and their trade-off
figures. System constraints, together with the degree of system’s complexity, de-
termine the effort needed to optimize hardware and software components of the
system.

To be able to define system bottlenecks at an early stage of system develop-
ment, describing hardware and software at high level of abstraction is mandatory.
SystemC, a recent hardware modelling language, has gained a lot of attention
for describing hardware components at high level of granularity for the purpose
of design exploration [1]. On the software side, formal description techniques
such as the Specification and Description Language (SDL) provide simplicity
and modularity needed to cope with complex modern software applications.

In this paper we present a new methodology that bridges software and hard-
ware development as both impact the fulfilment of system constraints. The pro-
posed methodology combines modular and abstract software design using SDL
with system-level hardware design based on virtual prototyping (VP). This al-
lows for optimizing and customizing the whole system at a high level of abstrac-
tion, where simulations are faster and the potential for optimization is larger
compared to low level detailed implementations.

The rest of the paper is organized as follows. In the following section we give
an overview about co-design and modelling methods from literature. Section 3
describes our SDL/VP co-design approach. An abstract design of a mobile phone
system with its VP and software stack is demonstrated in Sects. 4 and 5. As a
case study, we demonstrate in Sect. 6 the usage of the proposed methodology
for architectural exploration of the reference mobile system. Section 7 concludes
the paper and gives an outlook on future work.

2 Related Work

There is currently much research being done in the area of Hardware/Software
(Hw/Sw) co-design. Many approaches have been proposed that rely on different
concepts. Interplay of processes describing a whole system is modelled in [2]
using performance networks, where system workload and services of resources
are described as event and resource streams, respectively. These two stream
types interact in performance components that are connected to a network to
analyze resource loads. This method can only be used for initial steps of system
partitioning and mapping of tasks into specific resources. It is very abstract
and does not provide any mechanism for evaluating the impact of hardware and
software variations on system performance.

Several co-design tools are developed throughout research. Cosyma [3] is an
environment that enables a C-based description of an embedded system’s tasks

SDL/VP Co-design for Rapid Architectural Exploration 247

and their interconnection. It transforms the system behaviour into an Extended
Syntax (ES) graph, which is then used for determining the mapping of system
tasks into software and hardware resources. Software parts are converted to C
code and hardware blocks are generated in a HardwareC language. Estimations
for both software and hardware metrics are then obtained by simulating the
object code with Register Transfer Level (RTL) hardware models and their syn-
thesized counterparts, respectively. A similar approach is followed in [4], where
hardware partitions are memory-mapped with an interface through interrupt
lines to the controlling software and estimations are computed in cycles per byte
for comparison with predefined cost and performance parameters. Another work
in [5] uses Co-design Finite State Machines (CFSM) to describe both hardware
and software parts of a system. Iterative evaluation is then performed for the sake
of system partitioning. The next step involves conversion of software partitions
into C routines and mapping the hardware parts into an abstract description,
which is then refined through logic synthesis to represent the final implemented
hardware. Another language suitable for co-design is called SpecChart [6]. De-
velopment of hardware and software estimators for this language is carried out
by researchers. Particularly, software estimation is based on a generic proces-
sor model, while hardware estimations are based on several area models [7, 8].
These tools perform system partitioning at very abstract level in a first step,
while evaluation is performed at low level in the second step. Hence, they are
able to make very accurate estimations. However, they suffer from low simulation
speed, which in turn slows down the convergence of finding a suitable system
configuration.

Transaction level models (TLM) [9] have the advantages of decoupling func-
tionality from communication between system blocks to meet short simulation
times. TLMs are used for different purposes depending on the level of abstraction
they are applied at [10]. In [11], TLM is used in a trace-based simulator, where
processing times of software routines running on a processor or Central Process-
ing Unit (CPU) are expressed as delay functions and memory reads/writes are
mapped to bus latencies. This mechanism only allows for identification of hard-
ware architecture timing bottlenecks without any indication on meeting absolute
constraints. Moreover, this method overly abstracts software representation and
hence does not account well for impacts from the software side. Ptolemy [12] is
a design framework that targets the modelling, simulation and design of embed-
ded systems by considering different models of computation, however, with the
main focus on specification and code generation. Click [13] is an approach for
specifying packet processing functionalities in an efficient way, however, without
providing means for evaluation of their performance on specific system architec-
tures.

In contrast to the above concepts, which either focus on software or hard-
ware modelling, our methodology is based on a medium level of abstraction,
where modelling of full software functionality is abstracted using SDL and the
description of virtual hardware prototyping models is based on SystemC/C++.

248 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

3 The Design Methodology

The design problem of a parameterizable System-on-Chip (SoC) can be formu-
lated as a search problem. As software and hardware are the two main com-
ponents that build a whole SoC, each design point (dn) can be defined as a
combination of software and hardware parameters reflecting their architectural
design variations. As an example, we assume that both hardware and software
designs depend on two parameters each, and that each of these parameters has
two possible assignments. Therefore, we will have in this case 24 = 16 different
design points forming a so called search space (S) as shown in Fig. 1. Notice
that out of these points we have only six design points that meet our system’s
multi-objective functions, and hence they form a solution space (R).

Downlink

Generate
IP packets

MAC_UL

RLC_UL

PDCP_UL Hw Platform

CoMET

 Reset Timer
 Log Timer value

Metrix

Tcl Automation Script
L4/Fiasco

Protocol Stack

Profiling Setup

PDCP_DL

RLC_DL

MAC_DL

T1 Interrupt
latency

….

t3t2t1 tn
Software
threads

Uplink

air interface

Downlink

T2T1

T2

1- Set SDL Model

2- Configure HW

3- Run Simulation

4- Post-process results
- compute avg. time
- compute max. time

Search Space

d = (P1,P2,P3,P4)

X

X

X

X

X

X

X

X

X

X X
Search space

Solution space

Design point

d4

d15

d5

d8 d9

d10

d12d6

d13
d11

d14

Power constraint Timing constraint Area constraint

Solution set

Search set

Combination of hardware and software

To reduce the complexity of such a search, we take hardware variations and then apply
software variation on promising design points (i.e, meeting or close to meet the constraints)

X

X

X

X
X

d0 d1

d7

d2

d3

X

X

X

X

X

X

X

X

X

X X

Search space
(S)

Solution space (R)

d4

d15

d5

d8 d9

d10

d12d6

d13
d11

d14

Power constraint Timing constraint

X

X

X

X
X

d0 d1

d7

d2

d3

Area constraint

Fig. 1. System design problem viewed as a searching problem.

Searching for design points belonging to the solution space in complicated
SoCs cannot be done in an exhaustive manner due to an exponential number of
design points. Moreover, estimating performance metrics for each configuration
requires costly simulation and analysis of the system. Some evolutionary algo-
rithms are used in [14] to reduce searching complexity. As finding an efficient
heuristic is not the focus of our work, we use a simple heuristic that first con-
siders the hardware dimension and then performs software variations only on
promising hardware design points: those that are close or meet the system ob-
jective functions. This approach does not necessarily lead to an optimal solution,
but to a local optimum that fulfils the given constraints.

The proposed flow for SDL/VP co-design is depicted in Fig. 2. Starting with
system specifications and intended functionality, an initial partitioning of system
tasks between hardware and software can be made. The design of software appli-
cations is carried out in SDL with an abstract style of modelling, from which C
code is generated. SDL applications are then integrated together with a selected
Real-Time Operating System (RTOS) and the required device drivers forming
the whole software part of an embedded system. On the other hand, a VP repre-
senting the hardware system architecture can be constructed from off-the-shelf

SDL/VP Co-design for Rapid Architectural Exploration 249

building blocks like processors and proprietary modules such as hardware ac-
celerators, in addition to the memory sub-system, on-chip interconnects and In-
put/Output blocks. The binary of the software component is then co-simulated
with the developed VP. During simulation, profiling takes place by monitoring
special system events based on selected target figures like software processing
time, power consumption and memory usage. Analysis of simulated hardware
and software design variations can then be performed by comparing the evalua-
tion results against given system constraints. In case of the constraints are not
met, further configurations are applied to hardware and/or software components
before starting another iteration to evaluate the new system design point. An-
other possibility is to migrate some system tasks from software to hardware and
vice versa to satisfy performance and area constraints, respectively.

 Processors
 Memory
 Interconnects
 IO Blocks
 Hw Accel

 SDL Applications

 Real-Time OS
 Device Drivers

Co-simulate

PR
O

FILE

- Execution time
- Relative power
- Memory usage
- etc.

Targets

Hw/Sw
Partitioning

Software

Virtual HwSy
st

em
 F

un
ct

io
na

lit
y

SystemC

Off-shelf

UplinkPktGen

Downlink

Generate 2 IP
packets

Protocol stack setup

PDCP_UL

RLC_UL

MAC_UL

MAC_DL

RLC_DL

RF interface

PDCP_DL

Interrupt
emulation

time

T2

T2

T1

T1

Hw Platform

CoMET

 Reset Timer
 Log Timer value

Metrix

1- Set binary

2- Configure Hw

3- Run simulation for
100ms

4- post-process results
- compute avg. Time
- compute WCET

Tcl Automation Script
L4 Fiasco

Protocol Stack

SDL-VP Co-design Flow

Profiling Setup

 SDL Modeling

code generation

Fig. 2. Embedded system SDL/Virtual Prototype co-design flow.

The VP can be configured by selecting different hardware blocks to achieve
a certain data or signal processing task. Thus, it can switch between candi-
dates such as Digital Signal Processors (DSPs), Application Specific Instruction
Set Processors (ASIPs) and general purpose processors. CPUs can also be cus-
tomized by modifying their Arithmetic Logic Unit (ALU), pipeline architecture,
cache associativity and size. The memory sub-system can also be investigated for
various sizes, hierarchies and read/write latencies. The on-chip communication
infrastructure can be configured to use different bus standards and arbitration
schemes, or a network-on-chip topology. These configurations will help to eval-
uate the impact of hardware architecture on the metrics of interest. The design
of different blocks in a VP is usually performed at relatively high abstraction
levels based on SystemC/C++ which can be gradually refined as soon as the
solution space is defined and reduced. This is especially required for area esti-

250 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

mations which are dependent on transistor libraries and hence can be precisely
determined only at low implementation levels.

Software partitions can be modelled in SDL in terms of communicating pro-
cesses, where each process is specified as a set of interconnected abstract Finite
State Machines (FSM). In this way, we achieve a clear and abstract way of mod-
elling software by focusing on program semantics rather than the language itself.
Modification of software at this level is much faster than at lower levels. For in-
stance, different implementations of the algorithm can change the functionality
per process and its interaction with other processes. Other optimizations at this
level could be reducing SDL process communication overhead and memory ac-
cesses, and distributing software tasks among SDL processes in order to exploit
locality of data and instructions. SDL modelling might also be useful to cope
with software challenges associated with next-generation multi-core embedded
systems. For example, the number of software threads and the way they com-
municate and synchronize, and the degree of parallelism is highly influenced by
the number of available SDL processes and their interconnections.

The proposed co-design flow employs combined software and hardware mod-
elling at reasonable abstraction level, allowing the capturing of accurate infor-
mation for system-level analysis and identification of design points that meet
specified objective functions. Moreover, it provides means for Hw/Sw partition-
ing in modern SoCs as well as for optimization of both software and hardware
within the same design flow. This approach also provides implicit verification
of software and bridges the gap between software and hardware design method-
ologies. After finding a suitable design point, hardware refinement towards pure
VHDL can be made for final chip tape-out and SDL generated code can be op-
tionally replaced with pure C-code for efficiency considerations. As a use case,
we will present in the following sections the hardware and software design of
a simple mobile phone system and its architectural exploration based on the
proposed methodology.

4 Virtual Hardware Platform

We build a VP of a mobile phone platform using tools from VaST Systems
Technology Corporation [15]. This platform is intentionally designed to be based
on a multi-core processor, which enables us to perform future investigations
about parallelism opportunities for high data rate communication standards.
Within the context of this paper, this platform is used as a single-core system,
where only one of the available cores is activated.

The architecture of our platform is inspired from the RealView PB11MPCore
baseboard provided by ARM [16]. A simplified block diagram of our VP is de-
picted in Fig. 3. Standard building blocks like processor and interconnects, are
taken from the model library provided by the tool vendor. An ARM11 MPCore
processor realizes four ARM11 cores, which are representative for state-of-the-art
processors in mobile phones [17]. Each of these processors is equipped with an
L1 data and instruction cache and a local timer. A snoop control unit is used to

SDL/VP Co-design for Rapid Architectural Exploration 251

AXI Crossbar Bus

Dynamic Memory
Controller

Static Memory
Controller

UART

Timer

L2 Cache

Console

> booting Fiasco
> loading LTE PS
> ...

DDR

AXI2AHB
Bus Bridge

AHB2AXI
Bus Bridge

AXI2AHB
AHB2APB

Interrupt
lines CPU0

I$ D$

CPU1

I$ D$

CPU2

I$ D$

CPU3

I$ D$

Snoop Control Unit

AXI0 AXI1

ARM11 MPCore

DMAC

TX/RX

FlashSRAM

Fig. 3. Hardware architecture of mobile phone platform built in a Virtual Platform.

maintain the coherency between processors’ local L1 data caches. A distributed
interrupt controller (not shown in Fig. 3) is responsible for dispatching input
interrupt lines into the corresponding cores. Each of the four cores features an
eight-stage datapath pipeline and a Memory Management Unit (MMU) to sup-
port virtual memory. Moreover, the processor subsystem contains a L2 cache to
improve the performance of data intensive applications.

The platform employs different kinds of memory blocks. Flash memory is
used to hold the device firmware or boot code, which initializes the system : for
example, configuring the L2 cache and memory controllers. The firmware then
gives control to the operating system which runs from the RAM.

This Double Data Rate Synchronous Dynamic RAM (DDR) is used as an
external main memory of the system. The operating system and applications
running above are executed from this memory. The read and write latencies of
this memory are adjusted according to the state-of-the-art mobile phone plat-
form [18]. In addition, an internal SRAM memory offers low access latencies
and hence can be used to store small and time-critical data and/or code. Static
and dynamic memory controllers implement the interface protocol required for
reading and writing data to Flash and DDR memories, respectively.

To off-load the processor, the Direct Memory Access Controller (DMAC)
is used for performing efficient burst transfers from and to the IO blocks. The
DMAC has an associated device driver software for configuration. The Trans-
mit/Receive (TX/RX) is an IO block that implements the physical interface for
transmitting and receiving data frames, for instance through an Ethernet port.
Once a data frame is received, the TX/RX block signals the DMA requesting a
data transfer to memory. After that, the DMA copies the data from the TX/RX
block to a predefined location in memory. When the copy is completed, the DMA

252 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

controller raises an interrupt notifying the processor that a radio frame exists
in memory and is ready to be fetched and processed. Upon transmission, the
processor triggers DMA transfers from memory to the TX/RX block by writing
to its configuration register.

System components communicate and exchange data through a high speed
crossbar bus. Other busses with different standards and speed rates are con-
nected to the main bus using bus bridges. The bus bridge allows translation
between distinct bus protocols. The AMBA High-performance Bus (AHB) is
used for internal memory and the DMAC, whereas the Advanced Peripheral
Bus (APB) is used to connect low speed peripherals, such as timer and UART.
The timer can be used for the scheduling functionality of the operating system,
however, in our case the core’s internal timer is used for this purpose. User
interaction is provided by a console connected to the UART.

5 Software Stack

The stack representing the software component of our mobile phone platform is
made up of two parts. The Long Term Evolution (LTE) communication subsys-
tem for decoding and processing of data packets, and the L4/Fiasco microkernel
as an RTOS on top of which the protocol stack executes. These two software
entities and their details are illustrated in the following subsections.

5.1 LTE Modem Application

The modem application in our case represents the layer 2 (L2) functionality of
the LTE protocol stack. It is divided into uplink and downlink processing paths,
representing the communication protocol from mobile phone to base station and
vice versa, respectively. Both uplink and downlink consist of the Medium Access
Control (MAC), the Radio Link Control (RLC), and the Packet Data Conver-
gence Protocol (PDCP) sublayers [19]. As part of abstract software modelling,
the SDL model of the modem application implements data plane sublayers in
several concurrent processes communicating through signals. Control plane pro-
cessing is not considered since it does not have much impact on the data pro-
cessing time. Fig. 4 shows the processing tasks implemented in the SDL model.

When a transport block is received at the mobile terminal, MAC process-
ing starts by applying the Hybrid Automatic Repeat Request (HARQ) process,
which retransmits transport blocks for error recovery. When a correct transport
block is decoded, header processing starts by decoding the MAC header to ex-
tract data like logical channel Identification (LCID) and the Service Data Unit
(SDU) length. Afterwards, the downlink shared transport channel is mapped
into corresponding control and traffic logical channels, which realize the inter-
face with the RLC sub-layer. Consequently, it demultiplexes MAC SDUs into
their corresponding logical channels. In the opposite direction, i.e. uplink pro-
cessing, inverse operations are performed starting with multiplexing of MAC

SDL/VP Co-design for Rapid Architectural Exploration 253

Cost Speed

PowerMemoryThreaded SDL

Cache Size

Core frequency,

Memory latency

Hardware

Microkernel (L4 Fiasco)

LTE modem
application

L4 Runtime Environment

L4Linux Kernel

Calendar Video player

Threads Tasks IPC

User mode

Priviledged
processor mode

PDCP
Packet forwarding

RLC
Concatenation/Segmentation
Packet reordering
Header processing

MAC
Header processing
Multiplexing/DeMultiplexing
Channel mapping
Hybrid ARQ

IP packet

. . .

MAC SDUMAC
Header

PDCP PDCP
Header

RLC
Header

RLC SDU RLC SDU

IP packet

PDCP PDCP
Header

Transport Block

Fig. 4. Implemented functionality of the modem subsystem in SDL.

SDUs and ending with header generation to form the transport block ready for
transmission.

Data processing continues at the RLC sub-layer after data is passed from the
MAC sublayer. First, the RLC header is decoded and then segmentation pro-
cessing is applied by unpacking an RLC Protocol Data Unit (PDU) into RLC
SDUs, or portion of SDUs. This process depends also on the size of the packets.
If the transport block is small, due to bad channel conditions, the RLC SDU may
be split among several RLC PDUs. As out-of-order packets might be produced
during handover, packet order is corrected in RLC by reordering the packets
based on the sequence number carried out in the RLC header. These operations
summarize the unacknowledged mode of RLC processing. Fig. 5 illustrates the
architecture of the RLC entity in the downlink direction. This entity demulti-
plexes packet data into different modes of RLC processing implemented in three
different processes. The communication of these processes with the rest of the
system is performed using SDL messages via the SDL channels. As an example,
the Acknowledged Mode process AM RLC Rx is described using an Extended
Finite State Machine (EFM). For space reasons, the LTE SDL system is not
fully demonstrated in this paper.

The PDCP sub-layer is implemented as packet forwarding in our investi-
gations, but will be extended in the future enabling complete L2 modelling in
SDL. According to LTE specifications, two transport blocks should be processed
in 1 ms leading to a processing budget of 0,5 ms per transport block. Performance
analysis of LTE protocol processing in [20] shows that 13 % of this time is occu-
pied by MAC and RLC sublayer processing. This means the timing requirements
for our architectural exploration in section 6 must be set to 65µs.

SDL modelling and code generation of the previously described protocol stack
functionality is performed using the IBM Rational tool, SDL Suite [21]. By
setting the operating system interface option to POSIX, we are able to generate
code capable to run on L4/Fiasco microkernel, which supports the same API
standard. The size of the SDL kernel itself accounts for 11,000 lines of code and
hence will impose some overhead on the generated SDL software system.

254 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

Fig. 5. The RLC downlink block architecture and its Acknowledged Mode process
behavior.

SDL/VP Co-design for Rapid Architectural Exploration 255

5.2 The L4/Fiasco Microkernel

The modem application in our mobile phone system runs on top of L4/Fiasco
based operating system [22]. The latter is composed of two layers, the L4/Fiasco
microkernel and the L4 runtime environment (L4Re) as shown in Fig. 6. The
selection of such a modern operating system which adopts the concept of mi-
crokernels is due to the fact that microkernels can act as robust RTOSs. For
instance, microkernels aim at running only the most necessary functionality in
the processor privileged mode. Hence, it requires smaller code size which re-
duces complexity and percentage of errors in the privileged mode. Moreover, mi-
crokernels offer good isolation characteristics by separating the communication
subsystem from untrusted components like freeware applications. In addition, it
supports virtualization by allowing the execution of general purpose operating
systems like embedded Linux, where mobile applications like calendar and video
codec can run, together with a proprietary RTOS responsible for executing the
communication protocol in a mobile phone. The services of each layer of the
deployed OS will be illustrated in the following.

AXI Crossbar Bus

Dynamic Memory
Controller

Static Memory
Controller

UART

Timer

L2 Cache

Console

> booting Fiasco
> loading LTE PS
> ...

DDR

AXI2AHB
Bus Bridge

AHB2AXI
Bus Bridge

AXI2AHB
AHB2APB

Interrupt
lines CPU0

I$ D$

CPU1

I$ D$

CPU2

I$ D$

CPU3

I$ D$

Snoop Control Unit

AXI0 AXI1

ARM11 MPCore

DMAC

TX/RX

FlashSRAM

Hardware

L4/Fiasco Microkernel

LTE modem
application

L4 Runtime Environment

L4Linux Kernel

Calendar Video
player

Threads Tasks IPC

User mode

Privileged
processor mode

Fig. 6. The L4/Fiasco based operating system.

The L4/Fiasco microkernel is the only component running in processor priv-
ileged mode and is responsible for managing the underlying hardware. Based
on its nature, it provides a minimal set of mechanisms like tasks, threads, and
Interprocess Communication (IPC). Fiasco kernel services are implemented in
terms of kernel objects. A task comprises an address space where one or more
threads can execute. Multiple threads within a task are scheduled by Fiasco’s
priority-based and preemptive scheduler. An IPC kernel object provides the basic
communication mechanism in L4- based systems and is used mainly for trans-
mitting arbitrary data between threads. On the other hand, the L4Re offers a
basic set of abstractions and services, which are useful to implement user- level
applications on top of the L4/Fiasco microkernel. It consists of a set of libraries
mainly responsible for memory and IO resource management.

256 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

In this work, we consider only the SDL model of the protocol stack as an
application to execute directly on top of the L4Re and the microkernel, which
in turn provides real-time capabilities.

6 Architectural Exploration Case Study

As a case study we apply the proposed methodology for exploring the impact
of different hardware and software architectural parameters on system perfor-
mance. The objective of this exploration is to analyze the mobile phone platform.
So, the focus here is to see how the execution time of the protocol stack is influ-
enced by different selected parameters. Particularly, the main goal of this case
study is the customization of processor and memory subsystem in order to meet
the timing constraint of 65µs previously derived in subsection 5.1.

The parameters selected for system exploration are core frequency, memory
latency, cache size, and the number of threads realized by our SDL model. These
parameters have impact on system metrics. As the power of a CMOS-based chip
grows linearly with the operating frequency, higher processor frequencies will
result in more power consumption. On the other hand, this will improve the
speed of our system as the processor will be able to handle more instructions
within a fixed period of time, thus shortening the protocol stack execution time.
Note that the frequency of a processor is not the only deciding factor for system
performance. Actually the latter depends on the nature of the application being
executed since the processor has always to communicate with memory. There-
fore, it makes sense to investigate the impact of memory response or read/write
latency on our objective function. This parameter representing memory through-
put has also a linear impact on power consumption. Another important aspect
is to find a suitable L1 cache size. Actually, large cache sizes should shorten
the packet processing time by exploiting both spatial and temporal locality of
program code and packet data. This however happens at the expense of in-
creasing the chip area resulting in a higher fabrication cost. As an architectural
software design parameter, we increase the thread density of our protocol stack
SDL model. Threads have impact on systems memory and performance as each
thread is assigned a dedicated stack in memory and has to be managed by the
operating system. However, threads are also useful for exploiting concurrency
and parallelism in a system as long as the application allows it. Although we
know how these design parameters impact the system, it is still unclear how
huge this impact is. This is going to be illustrated within the rest of this section.
This study will also allow us to see the trade-off between different metrics, which
contributes to making our final design decisions.

Figure 7 shows the profiling setup and demonstrates how the processing times
are measured. The whole system is simulated with a cycle-approximate level of
accuracy using CoMET from VaST. We run the generated code of the SDL-
modelled protocol stack on top of the L4/Fiasco based operating system, which
in turn executes on the designed hardware platform. In this study, IP packets’
payload is generated in software. The data is then passed to the uplink data plane

SDL/VP Co-design for Rapid Architectural Exploration 257

processing which outputs a valid transport block as it would be received from a
base station via the air interface. After that, the downlink part of the stack is
triggered to process the transport block before it signals the IP data generation
process to start further iterations. In this way we are able to investigate both
processing paths at the same time.

Downlink

Generate
IP packets

MAC_UL

RLC_UL

PDCP_UL Hw Platform

Simulation

 Reset Timer
 Log Timer value

Profiling

Tcl Automation Script
L4/Fiasco

Protocol Stack

Profiling Setup

PDCP_DL

RLC_DL

MAC_DL

T1 Interrupt
latency

….

t3t2t1 tn
Software
threads

Uplink

air interface

Downlink

T2T1

T2

1- Set SDL Model

2- Configure HW

3- Run Simulation

4- Post-process results
- compute avg. time
- compute max. time

Search Space

d = (P1,P2,P3,P4)

X

X

X

X

X

X

X

X

X

X X
Search space

Solution space

Design point

d4

d15

d5

d8 d9

d10

d12d6

d13
d11

d14

Power constraint Timing constraint Area constraint

Solution set

Search set

Combination of hardware and software

To reduce the complexity of such a search, we take hardware variations and then apply
software variation on promising design points (i.e, meeting or close to meet the constraints)

X

X

X

X
X

d0 d1

d7

d2

d3

X

X

X

X

X

X

X

X

X

X X

Search space
(S)

Solution space (R)

d4

d15

d5

d8 d9

d10

d12d6

d13
d11

d14

Power constraint Timing constraint

X

X

X

X
X

d0 d1

d7

d2

d3

Area constraint

Fig. 7. Simulation and profiling setup for evaluation of several design configurations
with respect to the execution time.

As our objective function is to meet the timing requirements with respect
to the protocol stack execution time, timer tags are integrated into the stack’s
generated code enclosing both uplink and downlink processing paths. Timing
measurements are performed by waiting for the timer tags during simulation
to start and stop corresponding timers leading to the measurements of the up-
link and downlink processing times. A Tcl automation script controls the whole
evaluation process which starts by selecting the SDL model which adheres to
the software design parameter. Afterwards, it adapts the hardware architecture
according to the assigned hardware parameter values and runs the simulation
where the performance profiling is also made. The evaluation ends by post- pro-
cessing the recorded timer values. Since different packet processing iterations
have different processing times, mainly due to different hardware states, we col-
lect the processing time for hundreds of iterations and post-process them to
compute the average and maximum processing time per packet.

Having four design parameters each with wide range of values will result in
a huge number of combinations or design points. To reduce the number of de-
sign points, we select parameter values within the range, which is acceptable for
embedded systems. For instance, the core frequency can be assigned to two pos-
sible values 210 MHz and 350 MHz. However, the (read,write) memory latency
parameters are assigned to (16,12) or (4,3) cycles at a reference frequency of

258 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

100 MHz. For the cache size, we consider four distinct values (8, 16, 32, and 64
kbytes) which are realistic candidates in a typical mobile device. For the software
parameter, we design SDL models with different number of running threads (1,
2, 6, and 17) by distributing the functionality of the MAC and RLC sublayers
into a higher number of SDL processes. In this use case, we are not concerned
with efficient mapping of SDL processes into concurrent worker threads. This
analysis will be carried out later on when dealing with multicore architectures
in order to explore and exploit parallelism in the modem application.

We apply the heuristic of considering design points with hardware variations
under stable software conditions. Particularly, we set the number of threads to
one and vary all other hardware parameters. As a second step, we vary software
parameters only on the set of design points showing good results from the first
evaluation step. The uplink and downlink processing times corresponding to
design points d0 to d15 considered in the first evaluation step are depicted in
Fig. 8. In this figure the design points are grouped according to their cache size.

From the results, we can notice that the achieved processing times are short-
ened with higher data caches reaching 44µs for uplink and 33µs for downlink
at core frequency of 210 MHz and memory (read,write) latency of (16,12) cy-
cles. By increasing the processing frequency to 350 MHz, the execution time of
both uplink and downlink is reduced by 10 % and 35 % at a cache size of 8 kB
and 64 kB, respectively. This shows that for small caches with large number of
misses, the system performance is limited by the memory response rather than
processor speed. This is justified in the third bar where the memory latency is
reduced to 25 %, leading to 40 % reduction in processing time at 8 kB cache size,
and only 10 % reduction at 16 kB. In plot (c), the maximum execution time per
design configuration point is depicted. Design points with a cache size of 32 kB
and 64 kB are the only configurations which fulfil or almost fulfil the timing con-
straints. On the other hand, a small gain of 9µs can be observed by doubling the
cache size from 32 kB to 64 kB under the same frequency and memory latency.
This shows that design points with a 64 kB cache size are not worth to consider
due to their area overhead in comparison with the performance gain they can
bring. As a result, only design points based on 32 kB cache, i.e. d6 − d8, are
considered in the next evaluation step.

As a second step, we apply different variations of threaded SDL models into
design points d6−d8. As Fig. 9 shows, the downlink execution time increases by
45 % with configuration of two threads, and much larger with 6 and 17 threads.
It is obvious that we will not gain performance with higher number of threads
due to thread management overhead without possibility for parallelism since
the protocol stack is running on one core. However, we realize that the impact
of thread management is quite huge in a single core and this has to do with
the overhead of thread management coming from the SDL kernel as well as the
L4/Fiasco based operating system. This architectural exploration and analysis
allows us to highlight this issue, which should be taken into consideration for
further optimization especially when executing the stack on several cores.

SDL/VP Co-design for Rapid Architectural Exploration 259

0

20

40

60

80

100

120

8 16 32 64

Instruction and Data Cache Size (kB)

U
p

li
n

k
 E

x
e
c
u

ti
o

n
 T

im
e
 (

u
s
)

f = 210 MHz, Mem(R,W) = (16,12) cycles
f = 350 MHz, Mem(R,W) = (16,12) cycles
f = 350 MHz, Mem(R,W) = (4,3) cycles

0

20

40

60

80

100

120

140

8 16 32 64

Instruction and Data Cache Size (kB)

D
o

w
n

li
n

k
 E

x
e
c
u

ti
o

n
 T

im
e
 (

u
s
)

0

20
40

60

80
100

120

140

160
180

200

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

Design point

M
a

x
im

u
m

 E
x

e
c

u
ti

o
n

 T
im

e
 (

u
s

)

uplink downlink

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

(b)

d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11

(a)

(c)

Fig. 8. Evaluation of several design points through variation of hardware parameters.
Average execution time is shown in subplots (a) and (b), whereas plot (c) shows the
maximum execution time of both uplink and downlink processing.

260 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

Finally, we select the design point d7, where the processor with a 32 kB cache
operates at 350 MHz and the memory (read,write) latency is (16,12) cycles at
100 MHz. In addition, the single threaded SDL model is selected. This configura-
tion achieves an average execution time which meets the timing constraints and
is on average 80 % faster than other design configurations (see Fig. 8). Moreover,
it provides a good balance between area and power costs.

0 100 200 300 400 500 600 700 800

core freq = 350 MHz
Mem(R,W) = (4,3) cycles

core freq = 350 MHz
Mem(W,R)= (16,12) cycles

core freq = 210 MHz
Mem(R,W) = (16,12) cycles

Execution Time (us)

1 thread 2 threads 6 threads 17 threads

0 100 200 300 400 500 600 700

core freq = 350 MHz
Mem(R,W) = (4,3) cycles

core freq = 350 MHz
Mem(W,R)= (16,12) cycles

core freq = 210 MHz
Mem(R,W) = (16,12) cycles

Execution Time (us)

1 thread 2 threads 6 threads 17 threads

d6

d7

d8

Fig. 9. Evaluation of different SDL threaded models at 32 kB cache size.

7 Conclusion

In this paper we propose a hardware/software co-design flow for embedded sys-
tems. Within this flow, software components are abstractly modelled using SDL,
while hardware components are emulated in software using the concept of virtual
prototyping. This approach allows for fast and early investigations of several de-
sign options for both hardware and software due to the low effort and high speed
associated with such modelling techniques. To prove our methodology, an archi-
tectural exploration of a mobile phone platform is considered. We demonstrate
an SDL-modelled LTE protocol stack, an L4/Fiasco based RTOS, and a designed
virtual prototype of a mobile terminal. We customize the processor and memory
subsystem of the platform by rapidly obtaining a suitable design configuration
which meets the required timing constraints and provides 80 % packet process-
ing speedup compared to other unoptimized implementations. In addition, the
achieved design parameters provide a balanced power/area consumption trade-
off. For further study, different Hw/Sw partitioning configurations can be applied
and evaluated in a similar way. As a future work, we will adapt the software part
to make efficient utilization of multi-core architectures and make further investi-
gations about the performance gain, power consumption and scalability of such
a multi-core based communication system.

SDL/VP Co-design for Rapid Architectural Exploration 261

Acknowledgement. The authors acknowledge the excellent cooperation with
all partners within the ICT-eMuCo project and the support by the European
Commission. Further information is available on the project web-site:
http://www.emuco.eu.

References

1. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer
Academic Publishers, Boston (2002)

2. Thiele, L., Wandeler, E.: Performance Analysis of Distributed Embedded Systems.
In: Zurawski, R. (ed.), Embedded Systems Handbook. CRC Press (2005)

3. Ernst, R., Henkel, J., Benner, T.: Hardware-Software Cosynthesis for Microcon-
trollers. IEEE Design & Test of Computers, 10(4), 64–75.(1993)

4. Thomas, D.E., Adams, J.K., Schmit, H.: A Model and Methodology for Hardware-
Software Codesign. IEEE Design & Test of Computers, 10(3), 6–15 (1993)

5. Chiodo, M., Giusto, P., Jurecska, A., Hsieh, H.C., Vincentelli, A.S., Lavagno, L.:
Hardware-Software Codesign of Embedded Systems. IEEE Micro, 14(4). 26–36
(1994)

6. Gajski, D.D., Vahid, F.: Specification and Design of Embedded Hardware-Software
Systems, IEEE Design & Test of Computers, 12(1), 53–67 (1995)

7. Gong, J., Gajski, D.D., Narayan, S.: Software Estimation using a Generic-Processor
Model. In: Proceedings of the 1995 European Conference on Design and Test,
pp. 498. IEEE Computer Society, Washington, DC (1995)

8. Vahid, F., Gajski, D.D.: Specification Partitioning for System Design. In: Proceed-
ings of the 29th ACM/IEEE Design Automation Conference, pp 219–224. IEEE
Computer Society Press, Los Alamitos (1992)

9. Cai, L., Gajski, D.D.: Transaction Level Modeling: An Overview.
http://www.cecs.uci.edu/conference proceedings/isss 2003/cai transaction.pdf

10. Donlin, A.: Transaction Level Modeling: Flows and Use Models. In: Hard-
ware/Software Codesign and System Synthesis, 2004,. CODES + ISSS 2004, pp. 75–
80. ACM, New York (2004)

11. Wild, T., Herkersdorf, A., Ohlendorf, R.: Performance Evaluation for System-on-
Chip Architectures using Trace-based Transaction Level Simulation. In: Proceedings
of the Conference on Design, Automation and Test in Europe, pp. 248–253. Euro-
pean Design and Automation Association Leuven, Belgium (2006)

12. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.:Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems.
http://ptolemy.eecs.berkeley.edu/publications/papers/94/JEurSim/JEurSim.pdf

13. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, F.M.: The Click Modular
Router. ACM Trans. on Computer Systems, 18(3), 263–297 (2000)

14. Palesi, M.: Multi-Objective Design Space Exploration using Genetic Algorithms.
In: Proceedings of the Tenth International Symposium on Hardware/Software Code-
sign, CODES ’02. ACM, New York (2002)

15. The VaST Systems Technology Corporation. http://www.vastsystems.com
16. RealView Platform Baseboard for the ARM11 MPCore.

http://www.arm.com/products/DevTools/PB11MPCore.html

262 S.Traboulsi, F.Bruns, A.Showk, D.Szczesny, S.Hessel, E.Gonzalez, A. Bilgic

17. Silven, O., Jyrkkä, K.: Observations On Power-Efficiency Trends in Mobile Com-
munication Devices. EURASIP Journal on Embedded Systems (2007)

18. Hessel, S., Bruns, F., Bilgic, A., Lackorzynski, A., Härtig, H., Hausner, J.: Ac-
celeration of the L4/Fiasco Microkernel Using Scratchpad Memory, International
Workshop on Virtualization in Mobile Computing, MobiVirt 2008. ACM, New
York (2008)

19. Evolved Universal Terrestrial Radio Access (E-UTRA), 3GPP Specifications: Rel8,
Dec. 2008. http://www.3gpp.org

20. Szczesny, D., Showk, A., Hessel, S., Hildebrand, U., Frascolla, V., Bilgic, A.: Per-
formance Analysis of LTE Protocol Processing on an ARM based Mobile Platform,
accepted for 11th International Symposium on System-on-Chip (SoC 2009), Tam-
pere, Finland, Oct. 2009

21. IBM R© Rational R© SDL SuiteTM,
http://www.ibm.com/software/awdtools/sdlsuite/

22. The Fiasco Microkernel, http://os.inf.tu-dresden.de/fiasco

