Aims of Research

Combinatorial and high-throughput approaches
- Development and application of electrode arrays, micro-hotplates and cantilever arrays in materials science

• Microengineering 
- Development and application of micro-hotplates and electrode arrays in materials science 
- Development of Microactuators based on shape-memory thin films  

Conventional, high temperature and ferromagnetic shape-memory-alloys (SMA)
- Ternary and quarternary shape-memory-alloys with marginal hysteresis
- Influence of alloying elements of ternary and quarternary Ni-Ti-X-Y alloys
- Development of novel ferromagnetic shape-memory-alloys based on the Fe-Pd system
- Thin film to bulk scaling effects
- Nanoscale SMA
- Oxide SMA
- High temperature SMA

Next-generation energy materials, especially hydrogen research
- Solar-water splitting (metal oxynitrides)
- Combinatorial thin film libraries of novel hydrogen storage materials (complex metal hydrides)
- Fuel cell materials (catalysts, diffusion barriers)
- Lithium-ion battery materials (mechanical effects during lithiation)

Multifunctional nanocomposites
- Development of novel nanocomposite materials, incorporating sensor and protective coating mechanisms

Nanostructures and nanomaterials
- Nanoscale thin films
- Fabrication of nanoscale thin film objects using top-down and bottum-up approaches

Integrity of small scale systems/High temperature materials
- MEMS-based systems for in situ observation of the integrity of small scale systems
- Development of multifunctional, microstructured oxide and nitride materials for application in harsh environments (e.g. high temperature, stress or corrosive environments)

 

 


Weiss

The idea of combinatorial materials science is to develop and use advanced materials fabrication methods which produce a large number of different materials on a substrate in one experiment under identical conditions.
After the combinatorial deposition process the material libraries are screened for desired physical properties by adequate high-throughput characterization tools. Most effectively the screening is performed by parallel (e.g. optical) or fast sequential methods.
By using the combinatorial materials science approach, an accelerated development of new materials can be expected.

 

 

 

 

Tabelle der am Lehrstuhl verfügbaren chemischen Elemente für die Synthese von Materialbibliotheken

 

Die markierten Elemente werden am Lehrstuhl Werkstoffe der Mikrotechnik verwendet. In den meisten Fällen werden elementare Targets für die Synthese von kombinatorischen Dünnschicht-Material-Bibliotheken durch Sputtern eingesetzt. Die gasförmigen Elemente Ar, N, O werden als Sputtergase, bzw. Reaktivgase verwendet. In besonderen Fällen verwenden wir auch Legierungstargets.

 

 

 

 

 

1
H
3
Li
11
Na
19
K
37
Rb
55
Cs
87
Fr
4
Be
12
Mg
20
Ca
38
Sr
56
Ba
88
Ra
21
Sc
39
Y
 
 
 
 
22
Ti
40
Zr
72
Hf
104
Rf
23
V
41
Nb
73
Ta
105
Db
24
Cr
42
Mo
74
W
106
Sg
25
Mn
43
Tc
75
Re
107
Bh
26
Fe
44
Ru
76
Os
108
Hs
27
Co
45
Rh
77
Ir
109
Mt
28
Ni
46
Pd
78
Pt
110
Ds
29
Cu
47
Ag
79
Au
111
Rg
30
Zn
48
Cd
80
Hg
112
Cn
5
B
13
Al
31
Ga
49
In
81
Ti
113
Uut
6
C
14
Si
32
Ge
50
Sn
82
Rb
114
Fl
7
N
15
P
33
As
51
Sb
83
Bi
115
Uup
8
O
16
S
34
Se
52
Te
84
Po
116
Lv
9
F
17
Cl
35
Br
53
I
85
At
117
Uus
2
He
10
Ne
18
Ar
36
Kr
54
Xe
86
Rn
118
Uuo
57
La
89
Ac
58
Ce
90
Th
59
Pr
91
Pa
60
Nd
92
U
61
Pm
93
Np
62
Sm
94
Pu
63
Eu
95
Am
64
Gd
96
Cm
65
Tb
97
Bk
66
Dy
98
Cf
67
Ho
99
Es
68
Er
100
Fm
69
Tm
101
Md
70
Yb
102
No
71
Lu
103
Lr

 

 

 

 

 

nach oben