
SINGULARITIES AND QUINN SPECTRA

NILS A. BAAS AND GERD LAURES

Abstract. We introduce singularities to Quinn spectra. It enables us to

talk about ads with prescribed singularities and to explicitly construct highly

structured representatives for prominent spectra like Morava K-theories or for
L-theory with singularities. We develop a spectral sequence for the compu-

tation of the associated bordism groups and investigate product structures in

the presence of singularities.

1. Introduction

Manifolds with cone-like singularities were introduced by D. Sullivan in [Sul67].
The concept was reformulated by Baas in [Baa73a] as manifolds with a higher or-
der (multilevel) decomposition of its boundary. Based on this definition a theory of
cobordisms with singularities was developed. Many interesting homology and co-
homology theories were constructed based on this theory. For example the Morava
K-theories, the Johnson–Wilson theories, versions of elliptic cohomology, etc.

All these theories have played an important role in homotopy theory and alge-
braic topology during the last 30–40 years. However, it is surprising how many
results could be obtained by just knowing their existence, not their construction.
An explicit construction, however, can help in investigating the multiplicative struc-
ture of the representing spectra. Also, in order to obtain further results it seems to
be important that the spectra are related to the original geometric category.

This is the goal with the present paper. With a cobordism category of manifolds
in mind the theory of “ads” of [LM] is used to construct Quinn-spectra with singu-
larities. They come with the usual exact sequences and a Bousfield-Kan spectral
sequence for the computation of their coefficients. Moreover, it turns out that these
spectra always give strict module spectra over the original Quinn spectra. In some
cases they even have an explicit A∞ structure (or sometimes, by a forthcoming pa-
per, an E∞-structure.) If the Quinn spectrum is L-theory the singularities spectrum
seems to provide the natural surgery obstructions for manifolds with singularities.

This work is organized as follows: we first recall from [LM] the main results on
ad theories and Quinn spectra. In the next section we introduce the singularities in
the context of ads and develop new ad theories this way. Then the exact sequence
for the bordism groups are constructed. It relates the ad theories among each other
in case of a sequence of singularities. The next section deals with the classical
example of manifolds ads. An assembly map shows that the corresponding Quinn
spectrum with singularities represents the homology of manifolds with singularities
of [Baa73a]. The following section is devoted to a Bousfield-Kan type spectral
sequence for ads with singularities. For complex bordism such a spectral sequence
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was developed by Morava in [Mor79]. We also briefly discuss product structures
and external products.

2. Ad theories and Quinn spectra

In this section we recall the basic notions of [LM] which lead to spectra of Quinn
type.

Recall from [LM] that a Z-graded category A is a category with involution and
Z/2-equivariant functors

d = dim : A −→ Z, ∅ : Z −→ A
with d ∅ = id. Here, Z is regarded as a poset with trivial involution. The full
subcategory ofA of n-dimensional objects is denoted byAn. A k morphism between
graded categories are functors which decreases the dimension by k and strictly
commutes with i and ∅.

Let K be a ball complex in the sense of [BRS76]. We write Cell(K) for the
category with objects in dimension n the oriented cells (σ, o) of K and the empty
cell ∅n. There are only identity morphisms in Cell(K)n and morphisms to higher
dimensional cells are given by inclusions of cells with no requirements to the orien-
tations. The category Cell(K) is a graded category with the orientation reversing
involution. Note that morphisms between ball complexes induce morphisms on the
cellular categories. Moreover, if L is a subcomplex of K we can form the quotient
category Cell(K,L) of Cell(K) by identifying the cells of L with the empty cells.

Next we recall the definition of an ad theory from [LM].

Definition 2.1. Let A be a category over Z. A k-morphism from Cell(K,L) to A
is called a pre (K,L)-ad of degree k. We write prek(K,L) for the set of these pre
ads. An ad theory is an i-invariant sub functor adk of prek from ball complexes
to sets for each k with the property adk(K,L) = prek(K,L) ∩ adk(K) and which
satisfies the following axioms:

(pointed) the pre ad which takes every oriented cell to ∅ is an ad for every K
(full) any pre K-ad which is isomorphic to a K-ad is a K-ad

(local) every pre K-ad which restricts to a σ-ad for each cell σ of K is a K-ad.
(gluing) for each subdivision K ′ of K and each K ′-ad M there is a K-ad which

agrees with M on each common subcomplex of K and K ′.
(cylinder) there is a natural transformation

J : adn(K) −→ adn(K × I)

with the property that for every K-ad M the restriction of J(M) to K×0
and to K × 1 coincides with M . It takes trivial ads to trivial ones.

(stable) let
θ : Cell(K0, L0) −→ Cell(K1, L1)

be a k-isomorphism with the property that it preserves all incidence num-
bers

[o(σ), o(σ′)] = [o(θσ), o(θσ′)]
(see [Whi78]p.82.) Then the induced map of pre ads restricts to ads:

θ∗ : adl(K1, L1) −→ adk+l(K0, L0).
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A multiplicative ad theory in a graded symmetric monoidal category A is equipped
with a natural transformation

adp(K) ∧ adq(L) −→ adp+q(K × L)

and the object e in ad0(∗) which is associative and unital in the sense of [LM].

Example 2.2. Let R be a ring with unit. Consider R as a graded category with
objects the elements of R concentrated in dimension 0, only identity morphisms
and involution given by multiplication by -1. Then there is a multiplicative ad
theory with K-ads M all pre K-ads with the property that for all cells σ ∈ K of
dimension n ∑

dim(σ′)=n−1,σ′⊂σ

[o(σ), o(σ′)]M(σ′, o(σ′)) = 0

where [o(σ), o(σ′)] is the incidence number.

Example 2.3. Let ST op be the graded category of oriented manifolds. An ad
theory over ST op can be defined as follows: a pre K-ad M is an ad if for each
σ′ ⊂ σ of one dimension lower the map M(σ′, o′) −→ M(σ, o) factors through an
orientation preserving map

M(σ′, o′) −→ [o, o′]∂M(σ, o)

and ∂M(σ, o) is the colimit of M restricted to ∂σ . See [LM] for details. For
instance, a decomposed (oriented) manifold in the sense of [Baa73b] is a ∆n-ad.

Example 2.4. Let W be the standard resolution of Z by Z[Z/2] modules. Define
the objects of A to be the quasi-symmetric complexes, that is, in dimension n we
have pairs (C;ϕ) where C is a quasi finite complex of free abelian groups and

ϕ : W → C ⊗ C
is a Z/2 equivariant map which raises the degree by n. The dimension increasing
morphisms f : (C;ϕC) → (C ′;ϕ′) are the chain maps and for equal dimension of
source and target one further assumes that

(f ⊗ f)ϕ = ϕ′.

The involution changes the sign of ϕ. The K-ads of symmetric Poincaré complexes
are those (balanced) functors which

(i) are closed, that is, for each cell σ of K the map from the cellular chain
complex

cl(σ)→ Hom(W,C ⊗ C)
which takes (τ, o) to the composite

W
ϕ(τ,o)−→ Cτ ⊗ Cτ → Cσ ⊗ Cσ

is a chain map.
(ii) are well behaved, that is, each map fτ⊂σ and

C∂σ = colimτ(σ Cτ → Cσ

are a cofibrations (split injective).
(iii) non degenerate, that is, the induced map

H∗(Hom(C,Z))→ Hdimσ−degF−∗(Cσ/C∂σ).

is an isomorphism.
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For an ad theory the bordism groups Ωn are obtained by identifying two *-ads
of dimension n if there is a I-ad which restricts to the given ones on the ends. The
main result of is

Theorem 2.5 ([LM]). The ads form the simplexes of the spaces in a quasi Ω-
spectrum Q(ad) in a natural way. Its coefficients are given by the bordism groups.
If the theory is multiplicative then the spectrum can be given the structure of a
symmetric ring spectrum.

Moreover, for all commutative ad theories the Quinn spectrum is homotopy
equivalent to a strictly commutative symmetric ring spectrum. This is proven in
an subsequent paper to [LM]. In the example of a commutative ring one obtains
singular homology with R coefficients. In the example of oriented manifolds one
obtains a spectrum which is homotopy equivalent to the Thom spectrum. In the ex-
ample of symmetric Poincaré complexes the spectrum coincides with the symmetric
L-theory spectrum.

3. Singularities

Let A be a symmetric monoidal graded category and suppose that we are given
a multiplicative ad theory over A.

Definition 3.1. Let S = (P1, P2, . . .) be a sequence of ∗-ads and set

Sn = (P1, . . . , Pn).

Let A(Sn) be the graded category whose objects are given by the following data:
(i) a pre σ-ad Mσ for each cell σ ⊂ {0, 1, . . . , n} of ∆n with

Mσ = ∅ if 0 6∈ σ
For σ = ∆n we sometimes simply write M for the top pread. Its dimension
is d− n of the object.

(ii) an isomorphism of preads for each i 6∈ σ

fσ,i : ∂iM(σ,i)

∼=−→Mσ ⊗ Pi.
Here, ∂i denotes the restriction to the face σ and (σ, i) means σ ∪ {i}.

We demand for each object that ∂0Mσ = ∅ and for all i, j > 0 the
diagram

∂j∂iM(σ,i,j)
//

=

��

∂jM(σ,j) ⊗ Pi // Mσ ⊗ Pj ⊗ Pi

1⊗γ
��

∂i∂jM(σ,i,j)
// ∂iM(σ,i) ⊗ Pj // Mσ ⊗ Pi ⊗ Pj

commutes.
Morphisms are morphisms of preads which commute with the isomorphisms fσ,i.

Example 3.2. For n = 0 an object is determined by the value of the top cell of
∆0 if ∅ is initial in A. Hence we have

A() = A.
For n = 1 an object is a ∆1-pread M and an object N of A such that M has faces
∅ and N × P1.



SINGULARITIES AND QUINN SPECTRA 5

Lemma 3.3. For a ball complex L consider B = preA(L) as a graded category.
Then there is a natural equivalence of the form

preA(K × L) ∼= preB(K).

Proof. We have a natural equivalences of categories over Z
Cell(K) ∧Z/2 Cell(L) ∼= Cell(K × L).

Here, the left hand side has objects pairs of oriented cells under the obvious iden-
tification for multiplication with ∅ and for product orientations. The claim follows
from the adjunction between products and functor sets. �

Proposition 3.4. Let ad/Sn(K) be the set of pre K-ads in A(Sn) which give
(K × σ)-ads in A under the adjunction of 3.3 for each cell σ of ∆n. Then ad/Sn
defines an ad theory.

Proof. The set ad/Sn clearly is pointed and full. Suppose that we are given a pre
K-ad in A(Sn) which restricts to an adjoint of a τ × σ-ad for every τ ∈ K then its
adjoint restricts to a K × σ-ad by locality and hence is an ad.

Next, we check the gluing property. A subdivision K ′ of K defines the subdivi-
sion K ′×σ of K×σ. Hence a K ′×σ-ad can be glued to a K×σ-ad and the claim
follows.

The cylinder J in A takes a K × σ-ad to a K × σ × I-ad and hence defines a
cylinder for ad/Sn.

Finally, we have to show the stability axiom. Every k-morphism

θ : Cell(K0, L0) −→ Cell(K1, L1)

induces a k-morphism

θ × id : Cell(K0 × σ, L0 × σ) −→ Cell(K1 × σ, L1 × σ).

Hence for a (K0, L0)-ad/Sn M the ads induced by (θ× id)∗ of its adjoints assemble
to θ∗M . �

Example 3.5. For n = 0 an object of ad/S0(∗) is a ∆0-ad which in case of
manifolds corresponds to a manifold without boundary. For n = 1 and S1 = (∗) we
have a manifold with an arbitrary boundary. The picture shows a manifold with a
Z/3 singularity, that is, an element of ad/(Z/3)(∗).

0
1
2

0
1
2

Figure 1
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Next we investigate how the ad theories ad/Sn are related for different n. First
observe that we have a map

µPn+1 : ad/Sn −→ ad/Sn
of degree dim(Pn+1) which multiplies the ads by Pn+1. Furthermore, there is a
map of degree -1

π : ad/Sn −→ ad/Sn+1

which comes from considering an object of A(Sn) as an object of A(Sn+1) with
πMσ = ∅ if n+ 1 6∈ σ. This certainly defines a pre K-ad π(M) over Sn+1 for each
K-ad M over Sn.

Lemma 3.6. π(M) is an ad.

Proof. We only check the top cell σ = ∆n. The other cells are similar. The adjoint
of M gives a K ×∆n-ad. The 1-morphism of graded categories

Cell(∆n+1) −→ Cell(∆n+1, {n+ 1} ∪ ∂n+1∆n+1) ∼= Cell(∆n)

can be multiplied with Cell(K) and hence gives the desired ad with the stability
axiom. �

Finally, we have a map

δ : ad/Sn+1 −→ ad/Sn.

It takes a K-ad M over Sn+1 to the K-ad over Sn given by the formula

δ(M)(σ, o) = M(σ, o)|{0,1,...,n}.

Theorem 3.7. Let ΩSn∗ be the bordism group of the ad theory ad/Sn. Then the
sequence

. . .
δ∗−→ ΩSn∗

µPn+1∗−→ ΩSn∗
π∗−→ ΩSn+1

∗
δ∗−→ . . .

is exact.

Proof. The proof is essentially the same as in [Baa73b]3.2. �

Example 3.8. Consider the sequence S = (∅, ∅, . . .). Using the suspension axiom
it is not hard to see that ad/Sn consists of n + 1 copies of the original Quinn
spectrum. Hence the above exact sequence consists of short split exact sequences.

Example 3.9. Let R be a ring and suppose x ∈ R is a non zero divisor. Consider
the ad theory of example 2.2. Then the maps of spectra induced by µx, π and δ
corresponds to the Bockstein exact sequence in singular homology.

It is interesting to ask which multiplicative structures are inherited from an ad
theory to its Sn-ad theory ad/Sn. Clearly, we have a product

ad(K)× ad(L)/Sn −→ ad(K × L)/Sn
and hence we have

Corollary 3.10. The Quinn spectrum of the ad theory with singularities is a strict
module spectrum over the original Quinn spectrum.

We will investigate further product structures in the last section.
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4. Example: Manifolds with singularities and assemblies

In this section we look at the ad theory of compact manifolds. For simplicity we
restrict our attention to the unoriented topological case. It will then be clear how
to do other cases of bordism theories.

We fix a sequence S of closed manifolds and write Q[X] for the Quinn spectrum
of ad[X]/Sn. Here, X is a topological space and ad[X] is defined as in example
2.3 for singular manifolds in X. In the following, we call a simplicial set without
degeneracies a ‘semi simplicial set’ (another name in the literature is ‘∆-set’.)

Proposition 4.1. Suppose F is a functor from semi simplicial sets to spectra with
the property that

X 7→ π∗(F [X])
is a homotopy invariant. Then there is an ‘assembly’ map

F [∗] ∧X+ −→ F [X]

which is the identity for X a point and which is natural up to homotopy.

Proof. This result is well known. For the reader’s convenience we sketch the argu-
ment: for a semi simplicial set X we have the natural homotopy equivalence

hocolim
∆n→X

F [|∆n|] −→ hocolim
∆n→X

F [∗] ∼= colim
∆n→X

F [∗] ∧∆n
+
∼= F [∗] ∧X+

whose homotopy inverse can be composed with the map

hocolim
σ:∆n→X

F [|∆n|] −→ colim
σ:∆n→X

F [|∆n|] (F [|σ|])−→ F [|X|].

�

Theorem 4.2. The spectrum Q = Q[∗] represents the homology theory of manifolds
with singularities of [Baa73b].

Proof. We first show that the bordism groups of ad[X]/Sn are naturally equivalent
to the bordism groups of manifolds with singularities Sn in X. For that, recall
that a *-ad in ad(X)/Sn consists of ads Mσ with Mσ = ∅ if 0 6∈ σ and a system of
compatible isomorphisms

∂iM(σ,i)
∼= Mσ × Pi.

Hence, it defines a closed Sn-manifold and a closed Sn-manifold gives a ∗-ad. A null
bordism is a family of I ×σ-ads with one end empty and the other is the bounding
object. Let us illustrate the situation for n = 1: the null bordism takes the form

M 0

N

B

0

Figure 2
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with M0 × P1
∼= N0 × P1. For example in the case of Z/3-manifold considered

earlier a null bordism can be pictured as follows:

N

M

B

Figure 3

This shows that the bordism groups coincide. In particular, Q is a homotopy
invariant functor and hence the assembly map is well defined by the preceding
proposition.

Finally, we have to show that the assembly map is a homotopy equivalence.
Using the fact that bordism of singular Sn-manifolds defines a homology theory we
know that the functor

(X,Y ) 7→ π∗(Q[X], Q[Y ])
together with the boundary operator defines a homology theory as well. Thus the
assembly map defines a natural transformation between homology theories and is
an isomorphism for a point. Thus the claim follows from the comparison theorem
of homology theories. �

5. A Bousfield-Kan spectral sequence

The exact sequences of the ad/Sn-bordism groups for different n are part of a
spectral sequence of Bousfield-Kan type. In the case of classical complex bordism
it first has been developed in [Mor79].

Let S = (P1, P2, . . . , ) be a sequence of *-ads and let n be fixed. Let A〈Sn〉 be
the graded category with objects

(i) a ∆n-pread M with

Mσ = ∅ if 0 6∈ σ
(ii) isomorphisms for each i 6∈ σ

fσ,i : M(σ,i)

∼=−→Mσ ⊗ Pi
which are compatible with the face maps. Moreover, ∂0M = ∅ and for all
i, j > 0 the diagram of 3.1(ii) commutes.
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For a subset T of {1, . . . , n} let ST be the subsequence of S indexed by T and
let δiST be the sequence obtained from ST with ith entry omitted. Consider the
cubical diagram of graded categories with vertices A〈ST 〉 and face functors

∂k : A〈ST 〉 −→ A
〈
δkST

〉
given by

∂k(Mσ) = M(σ,k).

There is a cubical diagram of ad theories ad 〈S〉 with this underlying graded cate-
gory: the K-ads are those preads which are K-ads in A, that is, for each cell σ of
∆n the Mσ are K-ads in A.

Lemma 5.1. (i) For each vertex T there is an isomorphism

ad 〈ST 〉 ∼= ad.

(ii) The map

∂i∗ : π∗Q(ad 〈ST 〉) −→ π∗Q(ad
〈
δiST

〉
)

induced by the face map is given under the above isomorphism by multipli-
cation by Pi map on the bordism group Ω∗.

Proof. The proof is clear. �

Lemma 5.2. Let Q(ad 〈S〉)+ be the n+ 1-dimensional diagram indexed by subsets
of {0, 1, . . . , n} without ∅ given by

Q(ad 〈S〉)+(T ) = Q(ad 〈ST 〉)
if 0 6∈ T and by * else. Then we have

hocolimQ(ad 〈S〉)+ ' Q(ad/S).

Proof. The proof is an induction on the number of singularities. In the case of
only one singularity the left hand side is the cokernel of the map of Quinn spectra
induced by ∂1. This map is given by the multiplication by P1. On the other
hand the map which considers an ad over A〈∅〉 = A as an object of A(S1) can be
composed with the multiplication by P1 map. The cokernel of the induced map
of spectra has the same homotopy type as Q(ad/S) by the exact sequence of the
previous section. Hence we get a map between the cokernels which induces an
isomorphism on bordism groups. �

The homotopy colimit identification of the spectra with singularities furnishes a
spectral sequence of Bousfield-Kan type [BK72] with E2-term the homology of the
chain complex

. . . //
⊕

#T=k π∗Q(ad 〈T 〉) ∂ //
⊕

#T=k−1 π∗Q(ad 〈T 〉) // . . . .

with ∂ =
∑

(−1)k∂k. This gives

Theorem 5.3. There is a spectral sequence converging to the bordism groups of
ad/Sn with E2-term the homology of the Koszul complex K(P1, . . . , Pn), that is,
the tensor product over Ω∗ of the complexes

0 // Ω∗
·Pk //// Ω∗ //// 0 .
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6. Product structures

This section picks up the the investigation of product structures. We start
with a multiplicative ad theory and finite sequences P = (P1, P2, . . . , , Pn) and
Q = (Q1, Q2, . . . , Qm). Write (P,Q) for the sequence

(P1, P2, . . . , , Pn, Q1, Q2, . . . , Qm).

Proposition 6.1. There is an external product

× : ad/P (K)× ad/Q(L) −→ ad/(P,Q)(K × L)

which is natural and associative.

Proof. Suppose M is a K ad mod P and N is an L ad mod Q. For a subset ρ of

{0, 1, . . . , n+m}
set

ρ0 = ρ ∩ {0, 1, . . . n}
and

ρ1 = ((ρ ∩ {n+ 1, n+ 2, . . . , n+m})− n) ∪ (ρ ∩ {0}).
Then the external product is given by

(M ×N)ρ = Mρ0 ×Nρ1 .
The claimed properties are readily verified. �

Internal product structures are much harder to construct. In [Mor79] an internal
product on the level of homotopy groups was obtained with the help of a retraction
map which reduces the singularity of type (P, P ) to P under suitable hypothesis.
In order to rigidify the products we will proceed differently. Instead of looking for a
retraction map we construct a new ad theory which comes with an internal product
and is homotopy equivalent to the old one in good cases.

In this course we have to assume that the category A is a bipermutative category
(see [May77], that is, it comes with an additive and a multiplicative permutative
structure with strict two-sided units ∅ and * and good distributive properties. In
addition, we assume the strict left and right distributivity and that i strictly com-
mutes with addition and multiplication. It is clear that these assumptions are too
restrictive for most applications. It seems that the right way to proceed is the
construction of an E∞ operad which operates on the given spectra. This will be
done somewhere else.

Definition 6.2. Let τ ∈ Σn be a permutation and P = (P1, P2, . . . , Pn) be a
sequence. Let τP be the sequence (Pτ1 , . . . , Pτn) and let

τ∗ : A(P ) −→ A(τP )

be the map which sends an object to the object obtained by applying τ to the
indexes and the orientations of the cells (the index 0 being fixed.)

Lemma 6.3. The functor τ∗ induces an isomorphism of ad theories

τ∗ : ad/P −→ ad/(τP ).

Proof. The proof is a consequence of the stability axiom. �
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Consider the self map

1 + inτn,n : ad/(P, P ) −→ ad/(P, P )

where τn,n is the permutation which twists the two blocks of length n. An ad in the
image of this map has the property that for each oriented cell of the ball complex
we have a ∆2n-ad whose kth face for k ≤ n coincides with the k + n th face after
permuting the two summands and applying in. Moreover, the object on the top
cell is twice the original object.

Definition 6.4. Let P be an arbitrary sequence. An K-ad of ad/(P, P ) is said to
be close to a K-ad/P if for each oriented cell of K the value M satisfies:

∂kM = in∂k+nM for all 0 ≤ k ≤ n
and the same holds for the maps induced by the inclusions into the top cell. In
other words, M is fixed under the action of inτn,n. We write cl(ad/P ) for all ads
in ad/(P, P ) which are isomorphic to ones which are close to ad/P . We say that
ad/P is well behaved if each cl(ad/P ) is an ad theory.

Definition 6.5. Let π : ad/P −→ ad/(P, P ) be the inclusion map considered
earlier. It comes from the map A(P ) −→ A(P, P ) which fills ∅ in the faces which
do not contain the last n indices. Set

ρP = (1 + inτn,n)π

and let ad//P be the colimit of the sequence

ad/P
ρP // cl(ad/P )

ρ(P,P ) // cl(ad/(P, P ))
ρ((P,P ),(P,P )) // . . .

Theorem 6.6. Let ad/P be well behaved. Then we have
(i) ad//P is a multiplicative ad theory.

(ii) the canonical map from ad to ad//P respects the multiplication.
(iii) the canonical map from the spectrum Q(ad/P ) to Q(ad//P ) is a homotopy

equivalence if 2 is inverted, P is regular and the cylinder of P admits an
involution reversing isomorphism.

Proof. The product of two ads M,N of the colimit, say in cl(ad/(P, . . . , P )) is
given by their symmetrized exterior product (1 + inτn,n)(M ×N). This definition
is independent of n by the hypothesis on A. Clearly, the product is compatible
with the map from ad.

The last assertion is more involved. It relies on arguments which are similar to
the ones given in [Mor79] for complex bordism. For simplicity we look at the case
of only one singularity P of dimension m. We have short exact sequences

0 // Ω∗−m
P // Ω∗ // ΩP∗ // 0

0 // ΩP∗ // Ω(P,P )
∗

// ΩP∗−m−1
// 0.

In particular, Ω(P,P )
∗ is a free ΩP∗ ∼= Ω/P -module on the generator 1 and a generator

δ of dimension m+1. (We used here the fact that the obstruction for the vanishing
of the multiplication by P map in a theory with singularities which contain P can
be described by the bordism class of the mapping torus of P , see [JW75] for the
classical case).
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A convenient choice of δ is provided by the the suspension of P , that is the
cylinder of δ on the top cell and with P as first and second face. It maps to the
unit of ΩP∗ . Since the cylinder of P admits an involution reversing isomorphism we
see that iτ1,1δ is isomorphic to iδ. Hence, 1 + iτ1,1 annihilates δ in the bordism
group.

Hence, the map
Q(ad/P ) −→ Q(cl(ad/P ))

is a weak equivalence. An inverse on the level of homotopy groups is given by

π∗Q(cl(ad/P )) −→ π∗Q(ad/(P, P )) −→ π∗Q(ad/P ),

the last map being induced by (1 + iτ1,1)/2.
The same method apples to the other maps of the colimit. Note that the ob-

structions for the vanishing of the multiplication by P map vanish and hence we
get short exact sequences and can proceed as before. The general case for arbitrary
many singularities is analogues. �
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