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Abstract
The construction of Artin-Schreier classes plays an essential role in the construc-

tion of direct summands of higher bordism spectra such as MSU and MStringC.
Making use of Chern classes and linear algebra techniques a suitable rational class
is constructed. It is shown that this class can also be represented by an associated
manifold.

In the K(1)-local world at the prime p = 2, we take the fiber sequence S → KO
ψ3−1→ KO

and look at the homotopy long exact sequence

...→ π0S
0 −→ KO0

ψ3−1−→ KO0 −→ π−1S
0 → ...

Since KO0
∼= Z2 are the 2-adic integers and ψ3 is a ring homomorphism, ψ3 − 1 is the

zero map on KO0. Thus KO0 → π−1S
0 is injective and the image of 1 is a non-trivial

element ζ ∈ π−1S
0 ∼= Z2. Now we are attaching a 0-cell along ζ and take the homotopy

pushout in the category of E∞ spectra:

S−1

∗
��

ζ
// S0 TS−1

T∗
��

ζ
// S0

��

D0 TD0 = S0 // Tζ

This E∞ spectrum Tζ will be an E∞ summand in MSU . For this

TS−1

T∗
��

ζ
// S0

��

��

TD0 = S0 //

,,

Tζ

##

MSU

we have to show that ζ ∈ π−1MSU vanishes. Considering the diagram

KO0S
0 //

��

π−1S
0

��

KO0MSU
ψ3−1

// KO0MSU // π−1MSU
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it is sufficient to find an element b ∈ KO0MSU mapping to 1, because on the one hand
the element 1 ∈ KO0S

0 maps to 1 ∈ KO0MSU going to 0 ∈ π−1MSU due to the long
exact sequence, and on the other hand the element 1 ∈ KO0S

0 maps to ζ ∈ π−1S
0, which

has to vanish in π−1MSU because the diagram commutes.

Definition 1 An Artin-Schreier class is a class b ∈ KO0MSU with ψ3b = b+ 1.

In the following part we construct such a class rationally and then give a construction of
an SU -manifold which realizes this class.

1 The image of MSU∗ →MU∗

In MSU∗ every torsion is 2-torsion which is the kernel of MSU∗ →MU∗ concentrated in
dimensions 8k + 1 and 8k + 2 for k ≥ 0; in these cases MSU8k+1

∼= MSU8k+2 is an F2

vector space whose dimension is the number of partitions of k (compare [CF66b]). Due
to a theorem by Thom, complex bordism is rationally represented by complex projective
spaces:

Theorem 1 (Thom)
MU∗ ⊗Q = Q[CPn|n ≥ 1].

The obstruction for a U -manifold to be an SU -manifold is the first Chern class c1 of the
tangent bundle. Hence a manifold M ∈MSU4 is rationally a linear combination

M = A · CP1 × CP1 +B · CP2 with c21[M ] = 0;

in the above notation we always mean their bordism classes and have omitted the brackets
for brevity. An example of an SU -manifold is the Kummer surface

K = K3 = {z ∈ CP3|z4
0 + z4

1 + z4
2 + z4

3 = 0}

which is U -bordant to K3 ∼U 18(CP1)2 − 16CP2. Indeed MSU4 = Z〈K3〉 since the
Todd-genus (Â-genus respectively) of an SU -manifold is even and Td(K3) = 2. It turns
out that we cannot construct an Artin-Schreier class out of a class in MSU4 since we need
an SU -manifold with Â = 1. Therefore we are interested in the image of MSU8 →MU8.
Rationally this is a linear combination

M = A · CP4 +B · CP1 × CP3 + C · (CP2)×2 +D · (CP1)×4 + E · (CP1)×2 × CP2;

requiring the first Chern class to vanish implies the conditions c41[M ] = c1c3[M ] =
c21c2[M ] = 0 in the Chern numbers. To express them as linear equations in the coef-
ficients we first have to calculate the total Chern classes of the complex projective spaces
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and their products:

c(TCP4) = c(1⊕ TCP4) = c(5L∗) = (1 + x)5 = 1 + 5x+ 10x2 + 10x3 + 5x4

c(T (CP1 × CP3)) = pr∗1c(TCP1) · pr∗2c(TCP3) = (1 + x1)
2(1 + x2)

4

= (1 + 2x1)(1 + 4x2 + 6x2
2 + 4x3

2)

= 1 + (2x1 + 4x2) + (8x1x2 + 6x2
2) + (12x1x

2
2 + 4x3

2) + 8x1x
3
2

c(T (CP2 × CP2)) = pr∗1c(TCP2) · pr∗2c(TCP2) = (1 + x1)
3(1 + x2)

3

= (1 + 3x1 + 3x2
1)(1 + 3x2 + 3x2

2)

= 1 + (3x1 + 3x2) + (3x2
1 + 9x1x2 + 3x2

2) + (9x2
1x2 + 9x1x

2
2) + 9x2

1x
2
2

c(T (CP1)×4) = (1 + x1)
2(1 + x2)

2(1 + x2
3)(1 + x4)

2

= (1 + 2x1)(1 + 2x2)(1 + 2x3)(1 + 2x4)

= 1 + 2(x1 + x2 + x3 + x4)

+4(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)

+8(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4) + 16x1x2x3x4

c(T ((CP1)2 × CP2)) = (1 + x1)
2(1 + x2)

2(1 + x3)
3 = (1 + 2x1)(1 + 2x2)(1 + 3x3 + 3x2

3)

= 1 + (2x1 + 2x2 + 3x3) + (4x1x2 + 6x1x3 + 6x2x3 + 3x2
3)

+(6x1x
2
3 + 6x2x

2
3 + 12x1x2x3) + 12x1x2x

2
3

Now we calculate the Chern numbers c41(TM)[M ], c1c3(TM)[M ] and c21c2(TM)[M ] by
evaluating them on the complex projective spaces:

c41(TCP4)[CP4] = (5x)4[CP4] = 625

c41[CP1 × CP3] = (2x1 + 4x2)
4[CP1 × CP3] = 512x1x

3
2[CP1 × CP3] = 512

c41[CP2 × CP2] = 34(x1 + x2)
4[CP2 × CP2] = 486x2

1x
2
2[CP2 × CP2] = 486

c41[(CP1)×4] = 24(x1 + x2 + x3 + x4)
4[(CP1)×4]

= 24 · 4! · x1x2x3x4[(CP1)×4] = 384

c41[(CP1)×2 × CP2)] = (2x1 + 2x2 + 3x3)
4[(CP1)×2 × CP2)]

= 432x1x2x
2
3[(CP1)×2 × CP2)] = 432

gives the equation

c41[M ] = 0 = 625A+ 512B + 486C + 384D + 432E,

evaluation of c1c3(TM)[M ]

c1c3(TCP4)[CP4] = 5x · 10x3[CP4] = 50

c1c3[CP1 × CP3] = (2x1 + 4x2)(12x1x
2
2 + 4x3

2)[CP1 × CP3] = 56x1x
3
2[CP1 × CP3] = 56

c1c3[CP2 × CP2] = (3x1 + 3x2)(x
3
1 + 9x2

1x2 + 9x1x
2
2 + x3

2)[CP2 × CP2]

= 54x2
1x

2
2[CP2 × CP2] = 54

c1c3[(CP1)×4] = 16(x1 + x2 + x3 + x4)(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)[(CP1)×4]

= 64x1x2x3x4[(CP1)×4] = 64

c1c3[(CP1)×2 × CP2)] = (2x1 + 2x2 + 3x3)(6x1x
2
3 + 6x2x

2
3 + 12x1x2x3)[(CP1)×2 × CP2)]

= 60x1x2x
2
3[(CP1)×2 × CP2)] = 60
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gives the equation

c1c3[M ] = 0 = 50A+ 56B + 54C + 64D + 60E,

and evaluation of c21c2(TM)[M ]

c21c2(TCP4)[CP4] = (5x)2 · 10x2[CP4] = 250x4[CP4] = 250

c21c2[CP1 × CP3] = (2x1 + 4x2)
2(x2

1 + 8x1x2 + 6x2
2)[CP1 × CP3]

= 224x1x
3
2[CP1 × CP3] = 224

c21c2[CP2 × CP2] = (3x1 + 3x2)
2(3x2

1 + 9x1x2 + 3x2
2)[CP2 × CP2]

= 216x2
1x

2
2[CP2 × CP2] = 216

c21c2[(CP1)×4] = 16(x1 + x2 + x3 + x4)
2 ×

(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)[(CP1)×4]

= 192x1x2x3x4[(CP1)×4] = 192

c21c2[(CP1)×2 × CP2)] = (2x1 + 2x2 + 3x3)
2 ×

(4x1x2 + 6x1x3 + 6x2x3 + 3x2
3)[(CP1)×2 × CP2)]

= 204x1x2x
2
3[(CP1)×2 × CP2)] = 204

gives the equation

c21c2[M ] = 0 = 250A+ 224B + 216C + 192D + 204E.

Hence we consider the system of linear equations

c41[M ]= 0= 625A + 512B + 486C + 384D + 432E
c1c3[M ]= 0= 50A + 56B + 54C + 64D + 60E
c21c2[M ]= 0= 250A + 224B + 216C + 192D + 204E

which is integrally equivalent to the following system of homogeneous linear equations:

0= 25A + 8B
0= + 4B + 16D + 9E
0= - 27C + 48D + 15E

The space of solutions is 2-dimensional. We know one solution K3×K3, i.e. the square
of the Kummer surface, having the parameter representation

(A,B,C,D,E) = (0, 0, 256, 324,−576)

or
K2 = K3×K3 ∼U 256CP2 × CP2 + 324(CP1)×4 − 576(CP1)×2 × CP2.

Another independent solution is given in parameter representation as (A,B,C,D,E) =
(8,−25,−12,−23, 52) or as

N := 8CP4 − 25CP1 × CP3 − 12CP2 × CP2 − 23(CP1)×4 + 52(CP1)×2 × CP2.

Hence we can rationally describe bordism classes of SU -manifolds under the injection
MSU8 →MU8 via

M = k · (K3)2 + l ·N
with k, l ∈ Q. In the next section we take the values (k, l) = (1

4
, 12) and study its K-

theory class under the map MU∗ → K∗MU using Miscenkos formula which gives us an
Artin-Schreier class.
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2 Formal group laws and Miscenkos formula

Formal group laws

In the following part we briefly recall the notions of the theory of formal group laws
which we use to construct the morphism MU∗ → K∗MU . We restrict to commutative,
one-dimensional formal group laws.

Definition 2 Let R be a commutative ring with unit. A formal group law over R is a
power series F (x, y) ∈ R[[x, y]] satisfying

1. F (x, 0) = x = F (0, x)

2. F (x, y) = F (y, x)

3. F (x, F (y, z)) = F (F (x, y), z).

These axioms correspond to the existence of a neutral element, commutativity and as-
sociativity in the group case. Obviously we can write F (x, y) = x + y +

∑
i,j≥1 aijx

iyj

with aij = aji, and in terms of the power series it is clear that there exists an inverse,
i.e. a formal power series ι(x) ∈ R[[x]] such that F (x, ι(x)) = 0. Formal group laws are
naturally related to complex oriented theories in the following way: The Euler class of a
tensor product of line bundles defines a formal group law

ĜE(x, y) = e(L1 ⊗ L2) ∈ E∗(CP∞ × CP∞) ∼= π∗E[[x, y]]

with x = e(L1) and y = e(L2).

Example 1 The additive formal group law Ga(x, y) = x + y arises as an orientation of
singular cohomology. The multiplicative formal group law Gm(x, y) = x+y−xy comes up
as an orientation of complex K-theory. In the following we will encounter the universal
formal group law Fu via complex cobordism (MU-theory ).

Definition 3 Let F and G be formal group laws. A homomorphism f : F → G is a
power series f(x) ∈ R[[x]] with constant term 0 such that f(F (x, y)) = G(f(x), f(y)). It
is an isomorphism if it is invertible, i.e. if f ′(0) (the coefficient of x) is a unit in R, and
a strict isomorphism if f ′(0) = 1. A strict isomorphism from F to the additive formal
group law Ga is called a logarithm for F , denoted logF (x). Its inverse power series is
called exponential, denoted expF (x).

Example 2 Over a Q-algebra every formal group law is isomorphic to the additive formal
group law. Especially the logarithm of the universal formal group law is given by

logMU(x) =
∑
n≥0

[CPn]
n+ 1

xn+1.

Proposition 2 If x1, x2 are two complex orientations for E∗(−), then their associated
formal group laws F1 and F2 are isomorphic.
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In the context of formal group laws let FMU denote the universal formal group law

FMU(x, y) = x+ y +
∑
i,j≥1

aijx
iyj

with the coefficients aij ∈ L in the Lazard ring with degree |aij| = 2− 2(i+ j). Let

FK(x, y) = x+ y + vxy

denote the multiplicative formal group law corresponding to the K-theory spectrum with
v the inverse Bott element with |v| = −2. Now we are going to construct a morphism

f : MU∗ → K∗MU

such that the induced formal group law

f ∗FMU(x, y) := x+ y +
∑
i,j≥1

f(aij)x
iyj

is the formal group law FK twisted by the invertible power series

g(x) =
∑
i≥0

bix
i+1

(with b0 = 1) defined by

gFK(x, y) := g(FK(g−1(x), g−1(y))) = g(g−1(x) + g−1(y) + vg−1(x)g−1(y))

with g−1(g(x)) = x the inverse function.

Boardman homomorphism

The element aij ∈ π2(i+j−1) can be represented by a weakly almost complex manifold. To
ask for the (normal) characteristic numbers of this manifold is (essentially) equivalent to
asking for the image of aij under the Hurewicz homomorphism

π∗MU → H∗MU.

We introduce the Boardman homomorphism, which is (slightly) more general than the
Hurewicz homomorphism. Let E be a (commutative) ring spectrum, then for any (space
or spectrum) Y we consider the map

Y ∼= S0 ∧ Y i∧1→ E ∧ Y.

Composing a map X → Y with this map induces a homomorphism

B : [X, Y ]∗ → [X,E ∧ Y ]∗

called the Boardman homomorphism. The Hurewicz homomorphism is recovered by set-
ting X = S0 and E = H (the Eilenberg-MacLane spectrum representing singular homol-
ogy).
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Since E∧Y is at least a module spectrum over the ring spectrum E, we may obtain infor-
mation about [X,E ∧ Y ]r = (E ∧ Y )−r(X) from E∗(X), for example there is a universal
coefficient theorem

[X, Y ]∗
B //

α ))RRRRRRRRRR
[X,E ∧ Y ]∗

puujjjjjjjjjj

Homπ∗E(E∗X,E∗Y )

where α(f) = f∗ : E∗X → E∗Y is the induced map in E-homology and p is defined by
(p(h))(k) = 〈h, k〉 ∈ E∗Y using the Kronecker pairing

(E ∧ Y )∗(X)⊗ E∗X → E∗Y

with
h⊗ k 7→ 〈h, k〉 : S → E ∧X 1∧h→ E ∧ E ∧ Y µ∧1→ E ∧ Y.

Miscenkos formula

We recall that power series of the form g(x) = x+ b1x
2 + b2x

3 + ... are strict isomorphisms

g : F
∼=−→ gF = g(F (g−1x, g−1y))

and want to give the explicit coefficients of the inverse power series g−1(x) =
∑

i≥0 cix
i+1.

We calculate the first coefficients taking everything modulo x6 and using the identity

x ≡ g−1(g(x)) = g(x) + c1g(x)
2 + c2g(x)

3 + c3g(x)
4 + c4g(x)

5 + ... ( mod x6)

≡ x+ b1x
2 + b2x

3 + b3x
4 + b4x

5

+c1(x
2 + 2b1x

3 + (2b2 + b21)x
4 + (2b3 + 2b1b2)x

5)

+c2(x
3 + 3b1x

4 + (3b2 + 3b21)x
5 + c3(x

4 + 4b1x
5) + c4x

5

Comparing coefficients gives the system of equations

0 = c1 + b1

0 = c2 + 2b1c1 + b2

0 = c3 + 3b1c2 + c1(2b2 + b21) + b3

0 = c4 + 4b1c3 + c2(3b2 + 3b21) + c1(2b3 + 2b1b2) + b4

resulting in

c1 = −b1
c2 = 2b21 − b2

c3 = −5b31 + 5b1b2 − b3

c4 = 14b41 − 21b21b2 + 6b1b3 + 3b22 − b4.

Applying the residue theorem of complex analysis proves the following (as done in [Ada74,
p. 65 Prop. (7.5)] ):
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Proposition 3 Denoting the degree 2n-part of an inhomogeneous polynomial with a lower
index n we have

cn =
1

n+ 1
(
∑
i≥0

bi)
−(n+1)
n and bn =

1

n+ 1
(
∑
i≥0

ci)
−(n+1)
n .

Next we explicitly calculate gFK(x, y) = g(g−1x+ g−1y + vg−1xg−1y) :

gFK(x, y) = x+ y + (v + 2b1)xy + (b1v − 2b21 + 3b2)(x
2y + xy2)

+(2vb2 − 2vb21 + 4b3 − 8b1b2 + 4b31)(x
3y + xy3)

+(v2b1 − 3vb21 + 2b31 − 6b1b2 + 6vb2 + 6b3)x
2y2

+(5vb31 − 8vb1b2 + 25b21b2 + 3vb3 − 10b41 − 14b1b3 − 6b22 + 5b4)

×(x4y + xy4)

+(4vb31 − 18vb1b2 − 4b41 + 8b21b2 − 2v2b21 + 3v2b2 − 3b22
−16b1b3 + 12vb3 + 10b4)× (x3y2 + x2y3)

+ higher order terms.

This implies:

a11 7→ v + 2b1

a21 7→ vb1 − 2b21 + 3b2

a31 7→ 2vb2 − 2vb21 + 4b3 − 8b1b2 + 4b31
a22 7→ v2b1 − 3vb21 + 2b31 − 6b1b2 + 6vb2 + 6b3

a41 7→ 5vb31 − 8vb1b2 + 25b21b2 + 3vb3 − 10b41 − 14b1b3 − 6b22 + 5b4

a32 7→ 4vb31 − 18vb1b2 − 4b41 + 8b21b2 − 2v2b21 + 3v2b2 − 3b22 − 16b1b3 + 12vb3 + 10b4

Recall that the complex manifold CPn defines an element [CPn] ∈ π2nMU . The Hurewicz
homomorphism

π∗MU → H∗MU

tells us that the image of [CPn] in H2nMU is (n+ 1)cn since the formula (
∑

i≥0 bi)
−(n+1)
n

gives the normal Chern numbers of CPn. The most important formula for us will be

[CPn] = (n+ 1)cn = (
∑
i≥0

a1i)
−1
n

leading to

[CP1] = −a11

[CP2] = −a12 + a2
11

[CP3] = −a13 − a3
11 + 2a11a12

[CP4] = −a14 + a4
11 + a2

12 + 2a11a13

Substituting these formulas we get

[N ] = −112vb31 + 340vb1b2 + 256b21b2 − 60vb3 − 184b41 + 40b1b3

+12b22 − 40b4 + 48v2b2 + 58v2b21 + 22v3b1
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and

1

4
[K32] = v4 + 24v3b1 + 120v2b21 + 48v2b2 − 288vb31 + 448vb1b2

+144b41 − 576b21 + 576b22.

Defining

M :=
1

4
K32 + 12N

we get

[M ] = v4 + 16 · (18v3b1 + 51v2b21 + 39v2b2 − 102vb31 + 283vb1b2

−45vb3 − 129b41 + 30b1b3 + 156b21b2 + 45b22 − 30b4).

3 Construction of an SU-manifold with Â = 1

To split off the spectrum Tζ from MSU one essentially uses the existence of an Artin-
Schreier class b ∈ KO0MSU satisfying ψ3b = b+ 1. Via Miscenkos formula we have seen
that such a class can be constructed with the logarithm construction if there is a Bott
manifold whose associated K-theory class is congruent to v4 modulo 16. Essentially we
have to find a Bott manifold in SU bordism, i.e. an SU -manifold M with Â([M ]) = 1
giving a periodicity element in MSU∗.

Main idea

The Hopf bundle σ : S7 → S4 with fiber S3 ∼= SU(2) on the one hand admits an
SU structure and on the other hand generates Im(J)7

∼= Ωfr
7
∼= πst7

∼= Z/240. Since
Td(D(σ)) = 1/240 and since 240[σ] = 0 in Ωfr

7 implies the existence of a framed manifold
R8 with ∂R8 = −240σ, we define

B := 240D(σ) ∪240σ R
8

which serves as the desired Bott manifold, i.e. Td(B) = Â(B) = 1.

Sp(1)-principal bundles over S4

With the identifications Sp(1) ∼= SU(2) ∼= S3 and Sp(2)/Sp(1) ∼= S7 and

Sp(2)

Sp(1)× Sp(1)
∼= HP1 ∼= S4

we take the canonical Sp(1)-principal bundle over S4

Sp(1) ∼= S3 // S7

��

S4
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i.e. the bundle whose associated line bundle

E := S7 ×Sp(1) H1 → S4

satisfies 〈c2(E), [S4]〉 = 1. We know that every G-principal bundle is given as the pullback
of the universal G-principal bundle via the classifying map

f ∗EG //

��

EG

��

B
f

// BG.

In other words the functor G-Pb(−) is representable by BG and

[B,BG] ∼= G-Pb(B) via f 7→ f ∗EG.

In the case of Sp(1)-principal bundles over S4 we get

[S4, BSp(1)] = [ΣS3, BSp(1)] ∼= [S3,ΩBSp(1)] = [S3, Sp(1)] = [S3, S3] ∼= Z.

The canonical Sp(1)-principal bundle over S4 is associated to 1 ∈ Z. We see that the disk
bundle Q := D(E) with π : Q → S4 has as boundary ∂Q = ∂D(E) = S(E) the original
principal bundle.

Splitting of the tangent bundle TQ

In general for a smooth vector bundle ξ : E → M the total space E is again a smooth
manifold. Now we are interested in the structure of the tangential bundle TE. There are
two induced bundles, namely the induced tangential bundle and that of the total space:

ξ∗TM //

��

E

ξ
��

ξ∗E //

��

E

ξ
��

TM // M and E
ξ

// M

These already give an isomorphism

TE ∼= ξ∗TM ⊕ ξ∗E.

Such a splitting of a tangent bundle is geometrically called a connection. With the
notation of above restricting the tangent bundle of the vector bundle to the disk bundle
we get the splitting

TQ ∼= π∗E ⊕ π∗TS4;

note that the second summand is stably trivial.
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The Hopf bundle is an SU manifold

The Hopf bundle σ : S7 → S4 with fiber S3 ∼= SU(2) is not only an SU(2)-bundle but
also an SU manifold. A manifold M has an SU structure if its stable tangent bundle TM
is a complex vector bundle with a trivialization of its determinant bundle det(TM) ∼= 1C.

D(σ) //

��

λtaut

��

// λtaut

��

S4 // BSU // BU.

From the splitting above we see the SU structure, since the 8-dimensional bundle splits
into two 4-dimensional bundles and TS4 is stably trivial and E is chosen to have vanish-
ing c1.

Evaluation of the Todd genus

We recall Td = ec1/2Â and see that for SU manifolds the Todd-genus and the Â-genus
coincide. From [Hi56] the degree 8-term of the Todd genus is given in Chern classes by:

T4 =
1

720
(−c4 + c3c1 + 3c22 + 4c2c

2
1 − c41).

For the evaluation the Chern classes c1 and c4 do not contribute, due to the SU structure
and since Q is a homotopy 4-sphere, respectively. Next we emphasize that while for closed
stably almost complex manifolds the Todd genus maps to the integers; the situation for
(U, fr) manifolds is different. A (U, fr) manifold Mn is a differentiable manifold M with a
given complex structure on its stable tangent bundle TM and a given compatible framing
of TM restricted to the boundary ∂M . Their Chern numbers depend only on the bordism
classes in ΩU,fr

n and hence we have a Todd genus

Td : ΩU,fr
2n → Q.

Moreover there is a commutative diagram

0 // ΩU
2n

//

Td
��

ΩU,fr
2n

Td
��

// Ωfr
2n−1

//

eC
��

0

0 // Z // Q // Q/Z // 0

where eC is the Adams e-invariant. This is worked out in [CF66a]. As done on page 95
of [CF66a] we can now evaluate the Todd genus

〈Td(TQ), [Q, ∂Q]〉 = 〈 1

720
3c22(E), [Q, ∂Q]〉 =

1

240
〈c22(E), [Q, ∂Q]〉

=
1

240
〈c2(E), [S4]〉 =

1

240
.
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Remark on the relation to K-theory

In modern formulation the Todd genus is associated to the multiplicative formal group
law and therefore to K-theory. Let P (x) be a power series with 1 as constant coefficient.
Its logarithm g is given by

g−1(x) =
x

P (x)
.

Complex oriented cohomology theories always come with a formal group law F (x, y) which
can be expressed as

F (x, y) = g−1(g(x) + g(y)).

For the Todd genus we have P (x) = x
1−e−x implying y = g−1(x) = 1− e−x. This gives us

g(x) = − ln(1− x) and thus

F (x, y) = 1− exp[−(− ln(1− x)− ln(1− y))]

= 1− exp(ln(1− x) + ln(1− y))

= 1− (1− x)(1− y) = x+ y − xy,

which is the multiplicative formal group law coming from complex K-theory.

Definition of the Bott manifold

Since ∂Q = S7 is framed and [∂Q] ∈ Ωfr
7
∼= πs7

∼= Z/240 we have 240[∂Q] = 0, i.e. there
exists a framed manifold R8 with ∂R8 = −240∂Q. We define a Bott-manifold by

B := 240Q ∪240∂Q R
8

and see that indeed Â(B) = Td(B) = 240Td(Q) + 0 = 1.

4 Construction of an Artin-Schreier class

Having a Bott manifold with associated K-theory class congruent to v4 modulo 16 we can
use the power series of the logarithm

log(1 + x) =
∞∑
n=0

(−1)n
xn+1

n+ 1

to define

b = − log([M ])

log(34)
.

Proposition 4 The class b is an Artin-Schreier class.

Proof:

ψ3b = − log([M ]/34)

log(34)
= − log([M ])

log(34)
+

log(34)

log(34)
= b+ 1.

Here the stable Adams operation ψk : K → K is defined levelwise by Ψk

kn : K2n → K2n

with Ψk being the unstable Adams operation. Inverting powers of k ∈ Z×2 is not a problem
since everything is 2-completed. �
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5 Construction of an E∞ map Tζ →MSU

The fiber sequence X → KO ∧ X ψ3−1−→ KO ∧ X induces the unit map π0KO → π−1S
0

mapping 1 7→ ζ. Now we define Tζ to be the homotopy pushout in the category of
K(1)-local E∞ ring spectra:

TS−1 T∗ //

ζ
��

T∗ = S0

��

S0 // Tζ

with TX the free E∞ spectrum generated by the pointed space X. As the Hurewicz image
of ζ ∈ π−1MSU is zero we get a map Tζ →MSU :

TS−1 T∗ //

ζ
��

T∗ = S0

��

��

S0 //

--

Tζ

&&

MSU

6 Split map - direct summand argument

To get Tζ as a direct summand, one has to construct a split p such that the composition

Tζ
i→MSU

p→ Tζ

is the identity. This can be done using the Spin splitting of Laures [Lau03]

Tζ

i
�� ��

Tζ ∧
∧∞
i=1 TS

0

p
GG

MSpin'oo

and showing that the extended triangle commutes

MSU

g

��

Tζ

h
66mmmmmmmmmmmm

i
�� ��

Tζ ∧
∧∞
i=1 TS

0

p
GG

MSpin'oo
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6.1 Comparison of the Artin-Schreier classes

The SU Artin-Schreier class constructed above is naturally also a Spin Artin-Schreier
class. Refering to [Lau02] we have

Lemma 5 Let b and b′ be two Artin-Schreier elements of π0KO∧MSpin. Then there is
an E∞ self homotopy equivalence κ of MSpin which carries b to b′.

Proof: The short exact sequence

0 → π0MSpin→ π0KO ∧MSpin
ψ3−1→ π0KO ∧MSpin→ 0

with (ψ3−1)b = (ψ3−1)b′ = 1 tells us that b and b′ can only differ by a class a ∈ π0MSpin.
Let κ be the E∞ map of

MSpin ∼= Tζ ∧
∧

TS0

which is the identity on each TS0 and restricts to

ι+ aδ : Cζ →MSpin

on Tζ . Then its inverse is defined in the same way with a replaced by −a.�

With the notations T SUζ and T Spinζ for the E∞ spectra we get from the different Artin-
Schreier classes, we have the following diagram with E∞ maps:

T SUζ //

'
��

MSU

��

cc

T Spinζ

ι
�� ��

Tζ ∧
∧∞
i=1 TS

0

(id,∗,∗,...)
II

MSpin'oo
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