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Abstract. We give a simple sufficient condition for Quinn’s “bordism-type

spectra” to be weakly equivalent to strictly associative ring spectra. We also

show that Poincaré bordism and symmetric L-theory are naturally weakly
equivalent to monoidal functors. Part of the proof of these statements involves

showing that Quinn’s functor from bordism-type theories to spectra lifts to the

category of symmetric spectra. We also give a new account of the foundations.

1. Introduction

Our main goal in this paper and its sequel is to give a systematic account of
multiplicative properties of Quinn’s “bordism-type spectra.” The present paper
deals with associativity and the sequel with commutativity.

We also give a new account of the foundations, and we have made our paper
mostly self-contained in the hope that it can serve as an introduction to [Ran92],
[WW89], [WW] and other work in this area.

1.1. Quinn’s bordism-type spectra. The Sullivan-Wall manifold structure se-
quence is one of the central results of surgery theory. In his thesis ([Qui70a], also
see [Qui70b] and [Nic82]) Frank Quinn showed how to interpret this as part of the
long exact homotopy sequence of a fiber sequence of spectra. In particular, for
each group G he constructed a spectrum L(G) (which is now called the quadratic
L-spectrum of G) whose homotopy groups are Wall’s groups L∗(G).

More generally, Quinn gave a machine for constructing spectra from “bordism-
type theories” (see [Qui95]). As motivation for his construction, consider the Thom
space of the universal Rk-bundle with structure group Topk; we denote this by
T (Topk).1 The usual simplicial model S•T (Topk) has as n-simplices the continuous
maps

f : ∆n → T (Topk).
Let us consider the subobject of St

• T (Topk) consisting of maps whose restrictions
to each face of ∆n are transverse to the zero section B(Topk) ⊂ T (Topk). Note
that St

• T (Topk) is closed under face maps but not under degeneracy maps; that
is, it is a semisimplicial set.2 There is a concept of homotopy in the category of
semisimplicial sets ([RS71, Section 6]), and a transversality argument using [FQ90,
Section 9.6] shows that St

• T (Topk) is a deformation retract of S•T (Topk).
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2In the literature these are often called ∆-sets, but that terminology seems infelicitous since
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Next observe that for each simplex f : ∆n → T (Topk) in St
• T (Topk), the inter-

sections of f−1(B(Topk)) with the faces of ∆n form a manifold n-ad;3 that is, a
collection of topological manifolds Xσ, indexed by the faces of ∆n, with monomor-
phisms Xτ ↪→ ∂Xσ for τ ( σ such that

∂Xσ = colim
τ(σ

Xτ ,

where the colimit is taken in the category of topological spaces (the simplest exam-
ple of a manifold n-ad is the collection of faces of ∆n itself). The n-ads obtained
in this way are of degree k (that is, dimXσ = dimσ − k).

Quinn observed that something interesting happens if one considers the semisim-
plicial set of all n-ads of degree k; we denote this semisimplicial set by Pk and its
realization by Qk. Each Pk is a Kan complex and its homotopy groups are the
topological bordism groups (shifted in dimension by k). There are suspension maps
ΣQk → Qk+1 which make the sequence Q = {Qk} an Ω spectrum. (See Section 13
below for proofs of all of these statements.) The natural map

St
• T (Topk)→ Qk

is an isomorphism on πi+k for 2i2 + 7i + 4 ≤ k (by [Hir66, Theorem 1(ab)]) and
thus Q is weakly equivalent to MTop.

An important advantage of this construction is that it depends only on the
category of topological manifolds, not on the bundle theory. Quinn gave an ax-
iomatization of the structures to which one can apply this construction, which he
called bordism-type theories [Qui95, Section 3.2]. One example of a bordism-type
theory arises from Poincaré n-ads; in this situation transversality does not hold
but one obtains a bordism spectrum from Quinn’s construction (cf. Section 7 be-
low). Other important examples are Ranicki’s quadratic and symmetric algebraic
Poincaré n-ads, which lead to a purely algebraic description of quadratic and sym-
metric L-spectra ([Ran92]; also see Sections 8 and 9 below).

1.2. Previous work on multiplicative structures. In [Ran80a] and [Ran80b],
Ranicki used product structures on the L-groups to give product formulas for the
surgery obstruction and the symmetric signature. In [Ran92, Appendix B] he ob-
served that these products come from pairings (in the sense of [Whi62]) at the
spectrum level, and he used one of these pairings to give a new construction of
the assembly map in quadratic L-theory. He also suggested that the pairings could
be obtained from a bisemisimplicial construction. This idea, which was developed
further in [WW00], is a key ingredient in our work.

1.3. Smash products in the category of spectra. Given spectra E, F and G,
a pairing in the sense of [Whi62] is a family of maps

Ei ∧ Fj → Gi+j

satisfying certain conditions. That is, a pairing relates the spaces of the spectra
rather than the spectra themselves. Starting in the early 1960’s topologists realized
that the kind of information given by pairings of spectra could be captured more
effectively by using smash products of spectra. The earliest constructions were in
the stable category (that is, the homotopy category of spectra). A smash product
that was defined at the spectrum level and not just up to homotopy was given

3In the literature these are often called (n + 2)-ads.
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in [LMSM86]; however, this satisfied associativity and commutativity only up to
higher homotopies, which was a source of considerable inconvenience. In the early
1990’s there were two independent constructions of categories of spectra in which
the smash product was associative and commutative up to coherent natural iso-
morphism. These were the categories of symmetric spectra (eventually published
as [HSS00]) and the category of S-modules [EKMM97]. In these categories it is
possible to speak of strictly associative and commutative ring spectra (these are
equivalent to the A∞ and E∞ ring spectra of [May77]).

A later paper [MMSS01] gave a version of the category of symmetric spectra
which was based on topological spaces rather than simplicial sets, and this is the
version that we will use. (Our reason for using symmetric spectra rather than S-
modules is that the former have a combinatorial flavor that makes them well-suited
to constructions using n-ads.)

1.4. Our work. Our goal is to relate Quinn’s theory of bordism-type spectra to
the theory of symmetric spectra. As far as we can tell, Quinn’s original axioms
are not strong enough to do this. We give a stronger set of axioms for a structure
that we call an ad theory and we show that our axioms are satisfied by all of the
standard examples.

Next we show that there is a functor from ad theories to symmetric spectra
which is weakly equivalent to Quinn’s spectrum construction. We also give a suf-
ficient condition (analogous to the existence of Cartesian products in the category
of topological manifolds) for the symmetric spectrum arising from an ad theory to
be a strictly associative ring spectrum. Finally, we show that Poincaré bordism is
naturally weakly equivalent to a monoidal (that is, coherently multiplicative) func-
tor from a category T (Definition 11.1) to symmetric spectra and that symmetric
L-theory is naturally weakly equivalent to a monoidal functor from the category of
rings with involution to symmetric spectra.

In the sequel we will give a sufficient condition for the symmetric spectrum arising
from an ad theory to be a strictly commutative ring spectrum. We will also show
that Poincaré bordism and symmetric L-theory are naturally weakly equivalent to
symmetric monoidal functors. Finally, we will show that the symmetric signature
from Poincaré bordism to symmetric L-theory can be realized as a monoidal natural
transformation.

1.5. Outline of the paper. As we have mentioned, an n-ad is indexed by the
faces of ∆n. For our purposes we need a more general point of view, in which an
ad is indexed by the cells of a ball complex (i.e., a regular CW complex with a
compatible PL structure). In Section 2 we collect some relevant terminology from
[BRS76, pages 4–5].

In Section 3 we give the axioms for an ad theory, together with a simple example
(the cellular cocyles on a ball complex).

In Section 4 we define the bordism sets of an ad theory and show that they are
abelian groups.

In Sections 5–10 we consider the standard examples of bordism-type theories
and show that they are ad theories. Section 5 gives some preliminary terminology.
Oriented topological bordism is treated in Section 6, geometric Poincaré bordism
in Section 7, symmetric and quadratic Poincaré bordism (following [WW89]) in
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Sections 8 and 9. Section 10 gives a gluing result which is needed for Sections 7–9
and may be of independent interest.

It is our hope that new families of ad theories will be discovered (your ad here).
In Section 11 we use an idea of Blumberg and Mandell to show that the various

kinds of Poincaré bordism are functorial—this question seems not to have been
considered in the literature.

In Sections 12–14 we consider the cohomology theory associated to an ad theory;
this is needed in later sections and is important in its own right. There is a functor
(which we denote by T ∗) that takes a ball complex K to the graded abelian group
of K-ads modulo a certain natural bordism relation. Ranicki [Ran92, Proposition
13.7] stated that (for symmetric and quadratic Poincaré bordism, and assuming
that K is a simplicial complex) T ∗ is the cohomology theory represented by the
Quinn spectrum Q (Quinn stated a similar result [Qui95, Section 4.7] but seems to
have had a different equivalence relation in mind). The proof of this fact in [Ran92]
is not correct (see Remark 14.2 below). We give a different proof (for general ad
theories, and general K). First, in Section 12 we use ideas from [BRS76] to show
that T ∗ is a cohomology theory. In Section 13 we review the construction of the
Quinn spectrum Q. Then in Section 14 we show that T ∗ is naturally isomorphic
to the cohomology theory represented by Q by giving a morphism of cohomology
theories which is an isomorphism on coefficients.

In Section 15 we review the definition of symmetric spectrum and show that the
functor Q from ad theories to spectra lifts (up to weak equivalence) to a functor M
from ad theories to symmetric spectra. In Section 16 we consider multiplicative ad
theories and show that for such a theory the symmetric spectrum M is a strictly
associative ring spectrum. In Section 17 we show that the functors M given by the
geometric and symmetric Poincaré bordism ad theories are monoidal functors.

In an appendix we review some simple facts from PL topology that are needed
in the body of the paper.

Acknowledgments. The authors benefited from a workshop on forms of homo-
topy theory held at the Fields Institute. They would like to thank Matthias Kreck
for suggesting the problem to the first author and also Carl-Friedrich Bödigheimer,
Jim Davis, Steve Ferry, Mike Mandell, Frank Quinn, Andrew Ranicki, John Rognes,
Stefan Schwede, Michael Weiss and Bruce Williams for useful hints and helpful dis-
cussions. The first author is grateful to the Max Planck Institute in Bonn for its
hospitality.

2. Ball complexes

Definition 2.1. (i) Let K be a finite collection of PL balls in some Rn, and write
|K| for the union ∪σ∈K σ. We say that K is a ball complex if the interiors of the
balls of K are disjoint and the boundary of each ball of K is a union of balls of
K (thus the interiors of the balls of K give |K| the structure of a regular CW
complex). The balls of K will also be called closed cells of K.

(ii) A subcomplex of a ball complex K is a subset of K which is a ball complex.
(iii) A morphism of ball complexes is the composite of an isomorphism with an

inclusion of a subcomplex.

Definition 2.2. A subdivision of a ball complex K is a ball complex K ′ with two
properties:
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(a) |K ′| = |K|, and
(b) each cell of K ′ is contained in a cell of K.
A subcomplex of K which is also a subcomplex of K ′ is called residual.

Notation 2.3. Let I denote the unit interval with its standard structure as a ball
complex (two 0 cells and one 1 cell).

3. Axioms

Definition 3.1. A category with involution is a category together with an endo-
functor i which satisfies i2 = 1.

Example 3.2. The set of integers Z is a poset and therefore a category. We give
it the trivial involution.

Definition 3.3. A Z-graded category is a category A with involution together with
involution-preserving functors d : A −→ Z (called the dimension function) and
∅ : Z −→ A such that d ∅ is equal to the identity functor. A k-morphism between
Z-graded categories is a functor which decreases the dimensions of objects by k and
strictly commutes with ∅ and i.

We will write ∅n for ∅(n).
Note that the existence of d implies that when d(A) > d(B) there are no mor-

phisms A→ B.

Example 3.4. Given a chain complex C, let AC be the Z-graded category whose
objects in dimension n are the elements of Cn, with a unique morphism from every
object of A to every object of higher dimension. i is multiplication by −1 and the
object ∅n is the 0 element in Cn. The boundary map is a 1-morphism.

Example 3.5. Let ASTop be the category whose objects in dimension n are the n-
dimensional oriented topological manifolds with boundary (with an empty manifold
of dimension n for every n); the morphisms which preserve dimension are the
orientation-preserving inclusions and the morphisms which increase dimension are
the inclusions with image in the boundary. The involution i reverses the orientation,
and ∅n is the empty manifold of dimension n. Again, the boundary map is a 1-
morphism.

For examples related to geometric and algebraic Poincare bordism see Definitions
7.2, 8.4 and 9.2 below.

Example 3.6. Let K be a ball complex and L a subcomplex. Define Cell(K,L)
to be the Z-graded category whose objects in dimension n are the oriented closed
n-cells (σ, o) which are not in L, together with an object ∅n (the empty cell of di-
mension n). The morphisms which preserve dimension are identity maps, and the
morphisms which increase dimension are the inclusions of cells (with no require-
ments on the orientations), together with a morphism from ∅n to each object of
higher dimension. The involution i reverses the orientation.

We will write Cell(K) instead of Cell(K, ∅).
It will be important for us to consider abstract isomorphisms between categories

of the form Cell(K1, L1), Cell(K2, L2) (not necessarily induced by maps of pairs).
The motivation for the first part of the following definition is the fact that, if f is
a chain map which lowers degrees by k, then f ◦ ∂ = (−1)k∂ ◦ f .
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Definition 3.7. Let θ : Cell(K1, L1)→ Cell(K2, L2) be a k-morphism.
(i) θ is incidence-compatible if it takes incidence numbers in Cell(K1, L1)

(see [Whi78, page 82]) to (−1)k times the corresponding incidence numbers in
Cell(K2, L2).

(ii) If A is a Z-graded category and F : Cell(K2, L2)→ A is an l-morphism then

θ∗F : Cell(K1, L1)→ A
is the composite ikl ◦ F ◦ θ.

Now we fix a Z-graded category A.

Definition 3.8. Let K be a ball complex and L a subcomplex. A pre (K,L)-ad of
degree k is a k-morphism Cell(K,L)→ A.

Let prek(K) be the set of pre K-ads of degree k and let prek(K,L) be the set of
pre (K,L)-ads of degree k.

Note that prek is a functor from ball complexes (resp., pairs of ball complexes)
to sets.

Definition 3.9. An ad theory consists of
(i) a Z-graded category A, and
(ii) for each k, and each ball complex pair (K,L), a subset adk(K,L) of

prek(K,L) (called the set of (K,L)-ads of degree k)
such that the following hold.
(a) adk is a subfunctor of prek, and adk(K,L) = prek(K,L) ∩ adk(K).
(b) The element of prek(K) which takes every object of Cell(K) to ∅ is a K-ad,

called the trivial K-ad of degree k.
(c) i takes K-ads to K-ads.
(d) Any pre K-ad which is isomorphic to a K-ad is a K-ad.
(e) A pre K-ad is a K-ad if it restricts to a σ-ad for each closed cell σ of K.
(f) (Reindexing.) Suppose

θ : Cell(K1, L1)→ Cell(K2, L2)

is an incidence-compatible k-isomorphism of Z-graded categories. Then the induced
bijection

θ∗ : prel(K2, L2)→ prel+k(K1, L1)
restricts to a bijection

θ∗ : adl(K1, L1)→ adl+k(K,L).

(g) (Gluing.) For each subdivision K ′ of K and each K ′-ad F there is a K-ad
which agrees with F on each residual subcomplex.

(h) (Cylinder.) There is a natural transformation J : adk(K) → adk(K × I)
(where K × I has its canonical ball complex structure [BRS76, page 5]) such that
the restrictions of J(F ) to K × 0 and to K × 1 are both equal to F . J takes trivial
ads to trivial ads.

We call A the target category of the ad theory. A morphism (resp., equivalence)
of ad theories is a functor (resp., equivalence) of target categories which takes ads
to ads.

Remark 3.10. This definition is based in part on [Qui95, Section 3.2] and [BRS76,
Theorem I.7.2].
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Example 3.11. Let C be a chain complex and let AC be the Z-graded category
of Example 3.4. We define an ad-theory (denoted by adC) as follows. Let cl(K)
denote the cellular chain complex of K; specifically, cln(K) is generated by the
symbols 〈σ, o〉 with σ n-dimensional, subject to the relation 〈σ,−o〉 = −〈σ, o〉. A
pre K-ad F gives a map of graded abelian groups from cl(K) to C, and F is a K-ad
if this is a chain map (thus a K-ad is the same thing as a cycle on K with values
in C). We define a (K,L)-ad to be a K-ad which is zero on Cell(L) (this is forced
by part (a) of Definition 3.9). Gluing is addition and J(F ) is 0 on all the objects
of K × I which are not contained in K × 0 or K × 1.

4. The bordism groups of an ad theory

Fix an ad theory. Let ∗ denote the one-point space.

Definition 4.1. Two elements of adk(∗) are bordant if there is an I-ad which
restricts to the given ads at the ends.

This is an equivalence relation: reflexivity follows from part (h) of Definition 3.9,
symmetry from part (f), and transitivity from part (g).

Definition 4.2. Let Ωk be the set of bordism classes in ad−k(∗).

Example 4.3. Let C be a chain complex and let adC be the ad theory defined in
Example 3.11. Then a ∗-ad is a cycle of C and there is a bijection between Ωk and
HkC. We will return to this example at the end of the section.

Our main goal in this section is to show that Ωk has an abelian group structure
(cf. [Qui95, Section 3.3]). For this we need some notation.

Let M ′ be the pushout of ball complexes

I
α //

β

��

I × I
γ

��
I × I δ // M ′

where α takes t to (1, t) and β takes t to (0, t); see Figure 1.

Figure 1

Let M be the ball complex with the same total space as M ′ whose (closed) cells
are: the union of the two 2-cells of M ′, the 1-cells γ(I × 0), δ(I × 0), γ(0 × I),
δ(1× I) and γ(I × 1) ∪ δ(I × 1), and the vertices of these 1-cells; see Figure 2.
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1
¸

2
¸

4
¸

5
¸

3
¸

Figure 2

We will need explicit parametrizations of the 1-cells of M : for t ∈ I define

λ1(t) = γ(t, 0)

λ2(t) = δ(t, 0)

λ3(t) = γ(0, t)

λ4(t) = δ(1, t)

λ5(t) =

{
γ(2t, 1) if t ∈ [0, 1/2],
δ(2t− 1, 1) if t ∈ [1/2, 1]

Let us write κ for the isomorphism of categories

Cell(I, {0, 1})→ Cell(∗)
which takes I with its standard orientation to ∗ with its standard orientation. The
map

κ∗ : adk(∗)→ adk+1(I, {0, 1})
is a bijection by part (f) of Definition 3.9.

Lemma 4.4. For F,G ∈ adk(∗), there is an H ∈ adk+1(M) such that λ∗1H = κ∗F ,
λ∗2H = κ∗G, and λ∗3H and λ∗4H are trivial.

Proof. By part (e) of Definition 3.9, there is an M ′-ad which restricts to the cylinder
J(κ∗F ) on the image of γ and to the cylinder J(κ∗G) on the image of δ. The result
now follows by part (g) of Definition 3.9. �

We will write [F ] for the bordism class of a ∗-ad F .

Definition 4.5. Given F,G ∈ adk(∗), let H be an M -ad as in Lemma 4.4 and
define [F ] + [G] to be

[(κ−1)∗λ∗5H].

We need to show that this is well-defined. Let F1 and G1 be bordant to F and
G, and let H1 be an M -ad for which λ∗1H1 = κ∗F1, λ∗2H1 = κ∗G1, and λ∗3H1 and
λ∗4H1 are trivial. Figure 3, together with part (f) of Definition 3.9, gives a bordism
from [(κ−1)∗λ∗5H] to [(κ−1)∗λ∗5H1].

Remark 4.6. Our definition of addition agrees with that in [Qui95, Section 3.3]
because the Z-graded category Cell(M,λ3(I) ∪ λ4(I)) is isomorphic to Cell(∆2).

Proposition 4.7. The operation + makes Ωk an abelian group.
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1
G¤·

1
F¤·

G¤·

;

F¤·

1
H
5
¤¸

H
5
¤¸

1
H
5
¤¸

H
5
¤¸

;

;

;;

;

;;

;

;;

;

;

glue

Figure 3

Proof. Let 0 denote the bordism class of the trivial ∗-ad. The cylinder J(F ),
together with part (f) of Definition 3.9, shows both that 0 is an identity element
and that [iF ] is the inverse of [F ]. Figure 4, together with part (f) of Definition
3.9, gives the proof of associativity.

)
1

F¤·(J

4
H

3
H

3
F¤·

2
F¤·

1
F¤·

)
3

F¤·(J
1

H

2
H

2
H

5
¤¸

4
H 

5
¤¸

;

;;

; ;

;;

;

;

;

;

;

;

;

;

;

glue

Figure 4
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To see commutativity, let F , G and H be as in Lemma 4.4. Then iH is an M -ad
and Definition 4.5 gives

[iF ] + [iG] = [(κ−1)∗λ∗5(iH)].

The left-hand side of this equation is equal to −[F ] + (−[G]), and the right-hand
side is −([F ] + [G]); this implies that + is commutative. �

Remark 4.8. An equivalence of ad theories (see Definition 3.9) induces an isomor-
phism of bordism groups.

Remark 4.9. In Example 4.3, the addition in Ωk is induced by addition in C, as
one can see from the proof of Lemma 4.4 and the fact that gluing in adC is given
by addition. Thus Ωk is isomorphic to HkC as an abelian group.

5. Balanced categories and functors

For the examples in Sections 6–9, it will be convenient to have some additional
terminology.

Let A(A,B) denote the set of morphisms in A from A to B.

Definition 5.1. A balanced category is a Z-graded category A together with a
natural bijection

η : A(A,B)→ A(A, i(B))
for objects A,B with dimA < dimB, such that

(a) η ◦ i = i ◦ η : A(A,B)→ A(i(A), B), and
(b) η ◦ η is the identity.
If A and A′ are balanced categories then a balanced functor F : A → A′ is a

morphism of Z-graded categories for which

F ◦ η = η ◦ F : A(A,B)→ A′(F (A), i(F (B))).

All of the Z-graded categories in the previous section are balanced. In particular
Cell(K,L) is balanced.

Definition 5.2. Let A be a balanced category. A balanced pre (K,L)-ad with
values in A is a pre (K,L)-ad F which is a balanced functor.

6. Example: Oriented Topological Bordism

In this section we construct an ad theory with values in the category ASTop of
Example 3.5.

Let B denote the category of compact orientable topological manifolds; the mor-
phisms which preserve dimension are the orientable inclusions (that is, the inclu-
sions which preserve some choice of the orientations) and the morphisms which
increase dimension are the inclusions with image in the boundary.

Definition 6.1. For a ball complex K, let Cell[(K) denote the category whose
objects are the cells of K (including an empty cell in each dimension) and whose
morphisms are the inclusions of cells.
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A balanced pre K-ad F with values in ASTop induces a functor

F [ : Cell[(K)→ B.
Given cells σ′ ( σ of K, let i(σ′,o′),(σ,o) denote the map in Cell(K) from (σ′, o′)

to (σ, o) and let jσ′,σ denote the map in Cell[(K) from σ′ to σ.

Definition 6.2. Let K be a ball complex. A K-ad with values in ASTop is a
balanced pre K-ad F with the following properties.

(a) If (σ′, o′) and (σ, o) are oriented cells with dimσ′ = dimσ − 1 and if the
incidence number [o, o′] is equal to (−1)k (where k is the degree of F ) then the map

F (i(σ′,o′),(σ,o)) : F (σ′, o′)→ ∂F (σ, o)

is orientation preserving.
(b) For each σ, ∂F [(σ) is the colimit in Top of F [|Cell[(∂σ).

Remark 6.3. The sign in part (a) of this definition is needed in order for part (f)
of Definition 3.9 to hold.

Example 6.4. The functor Cell(∆n) → ASTop which takes each oriented simplex
of ∆n to itself (considered as an oriented topological manifold) is a ∆n-ad of degree
0.

We write adSTop(K) for the set of K-ads with values in ASTop.

Theorem 6.5. adSTop is an ad theory.

The rest of this section is devoted to the proof of Theorem 6.5. The only parts
of Definition 3.9 which are not obvious are (g) and (h).

For part (h), we define J(F ) on oriented cells of the form (σ × I, o × o′) to be
F (σ, o) × (I, o′), where (I, o′) denotes the topological manifold I with orientation
o′.

For part (g), let K be a ball complex and K ′ a subdivision of K. The proof is
by induction on the lowest dimensional cell of K which is not a cell of K ′. For the
inductive step, we may assume that |K| is a PL n-ball, that K has exactly one n
cell, and that K ′ is a subdivision of K which agrees with K on the boundary of
|K|. Let F be a K ′-ad. It suffices to show that the colimit of F [ over the cells of
K ′ is a topological manifold with boundary and that its boundary is the colimit of
F [ over the cells of the boundary of |K|.

We will prove something more general:

Proposition 6.6. Let (L,L0) be a ball complex pair such that |L| is a PL mani-
fold with boundary |L0|. Let F be an L-ad. Then colimσ∈L F

[(σ) is a topological
manifold with boundary colimσ∈L0 F

[(σ).

Proof. (The proof is essentially the same as the proof of Lemma II.1.2 in [BRS76].)
Using the notation of the Appendix, let us write D◦(σ) for D(σ) − Ḋ(σ). If σ

is not in L0 then, by Proposition A.4(i), D◦(σ) is topologically homeomorphic to
Rn−m. If σ is in L0 then, by Proposition A.4(ii) and [RS82, Theorem 3.34], there
is a homeomorphism from D◦(σ) to the half space R≥0×Rn−m−1 which takes σ̂ to
a point on the boundary.

There is another way to describe D◦(σ). Given a (possibly empty) sequence
T = (σ1, . . . , σl) with σ ( σ1 ( · · · ( σl, let us write [0, 1)T for [0, 1)l and T [i]
for the sequence obtained by deleting σi. Given u ∈ [0, 1)l let us write u[i] for the
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element of [0, 1)l−1 obtained by deleting the i-th coordinate of u. Let E(σ) be the
quotient of ∐

T

[0, 1)T

in which a point u in [0, 1)T with i-th coordinate 0 is identified with the point
u[i] in [0, 1)T [i]. Let 0 denote the equivalence class of (0, . . . , 0) ∈ [0, 1)T (which is
independent of T ). Then there is a homeomorphism D◦(σ)→ E(σ) which takes σ̂
to 0.

Now consider the space X = colimσ∈L F
[(σ). Let x ∈ X. There is a unique σ for

which x is in the interior of F [(σ). Let m be the dimension of σ, and k the degree
of F . Let U be an (m − k)-dimensional Euclidean neighborhood of x in F [(σ).
An easy inductive argument, using the collaring theorem for topological manifolds,
gives an imbedding

h : U × E(σ)→ X

such that h(x,0) = x and h(U×E(σ)) contains a neighborhood of x in X. If σ is not
a cell of L0 this shows that x has an (n− k)-dimensional Euclidean neighborhood
in X. If σ is a cell of L0 we obtain a homeomorphism from a neighborhood of x in
X to the half space of dimension n− k which takes x to a boundary point. �

Remark 6.7. The description of gluing in the proof of Theorem 6.5, together
with the proof of Lemma 4.4, shows that addition in the bordism groups of adSTop

is induced by disjoint union. Thus the bordism groups are the usual oriented
topological bordism groups.

7. Example: Geometric Poincaré ad Theories

Fix a group π and a properly discontinuous left action of π on a simply connected
space Z; then Z is a universal cover of Z/π.

Fix a homomorphism w : π → {±1}.
Ranicki [Ran80b, page 243] defines the bordism groups ΩP∗ (Z/π,w) of geometric

Poincaré complexes over (Z/π,w); our goal in this section is to define an ad theory
whose bordism groups are a slightly modified version of Ranicki’s (see the end of
this section for a precise comparison).

Let Zw denote the right π action on Z determined by w.

Definition 7.1. Given a map f : X → Z/π, define S∗(X,Zf ) to be Zw⊗Z[π]S∗(X̃),
where X̃ is the pullback of Z to X and S∗(X̃) denotes the singular chain complex
of X̃.

Definition 7.2. We define a category Aπ,Z,w as follows. An object of Aπ,Z,w is a
triple

(X, f : X → Z/π, ξ ∈ S∗(X,Zf )),
where X is homotopy equivalent to a finite CW complex. If dim ξ < dim ξ′ then a
morphism from (X, f, ξ) to (X ′, f ′, ξ′) is a map g : X → X ′ such that f ′ ◦ g = f .
If dim ξ = dim ξ′ we require in addition that g∗(ξ) = ξ′. If dim ξ > dim ξ′ there are
no morphisms.

Aπ,Z,w is a balanced Z-graded category, where the dimension of (X, f, ξ) is dim ξ,
i takes (X, f, ξ) to (X, f,−ξ), and ∅n is the n-dimensional object with X = ∅.

Next we must say what the K-ads with values in Aπ,Z,w are. We will build this
up gradually by considering several properties that a pre K-ad can have.
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For a balanced pre K-ad F we will use the notation

F (σ, o) = (Xσ, fσ, ξσ,o);

note that Xσ and fσ do not depend on o.
Recall Definition 6.1.

Definition 7.3. (cf. [WW89, page 50]) A functor X from Cell[(K) to topological
spaces is well-behaved if the following conditions hold:

(a) For each inclusion τ ⊂ σ, the map Xτ → Xσ is a cofibration.
(b) For each cell σ of K, the map

colim
τ(σ

Xτ → Xσ

is a cofibration.

If F is a balanced pre K-ad for which X is well-behaved, let X∂σ denote
colimτ(σ Xτ , and let X̃∂σ be the pullback of Z to X∂σ.

For a left Z[π]-module M let M t denote the right Z[π]-module obtained from
the w-twisted involution on Z[π] (see [Ran80b, page 196]).

Convention 7.4. From now on we will often use the convention that a cochain
complex can be thought of as a chain complex with the opposite grading. For
example, this is needed in part (ii) of our next definition and in Lemma 7.8.

Definition 7.5. Let (σ, o) be an oriented cell of K.
(i) Let ζσ,o be the image of ξσ,o under the map

Zw ⊗Z[π] S∗(X̃σ) 1⊗AW−→ Zw ⊗Z[π] (S∗(X̃σ)⊗ S∗(X̃σ)) ∼= S∗(X̃σ)t ⊗Z[π] S∗(X̃σ),

where AW is the Alexander-Whitney map.
(ii) Define a homomorphism of graded abelian groups

HomZ[π](S∗(X̃σ),Z[π])→ S∗(X̃σ)/S∗(X̃∂σ)

(the cap product) by taking x ∈ HomZ[π](S∗(X̃σ),Z[π]) to the image of ζσ,o under
the map

S∗(X̃σ)t ⊗Z[π] S∗(X̃σ) 1⊗x−→ S∗(X̃σ)t → S∗(X̃σ)t/S∗(X̃∂σ)t

(note that S∗(X̃σ)t/S∗(X̃∂σ)t is the same graded abelian group as S∗(X̃σ)/S∗(X̃∂σ)).

In order for the cap product to be a chain map we need a further assumption.

Definition 7.6. F is closed if for each (σ, o) the chain ξσ,o is the sum of the images
in S∗(Xσ,Zfσ ) of the chains ξσ′,o′ , where (σ′, o′) runs through the oriented cells for
which the incidence number [o, o′] is (−1)degF (see Remark 6.3 for the sign).

Remark 7.7. An equivalent definition of closed uses the functor cl defined in
Example 3.11. Given a cell σ of K there is a map of graded abelian groups

cl(σ)→ S∗(Xσ,Zfσ )

which takes 〈τ, o〉 to the image of ξτ,o in S∗(Xσ,Zfσ ). F is closed if this is a chain
map for each σ.

Lemma 7.8. If F is balanced and closed and X is well-behaved then the cap product

HomZ[π](S∗(X̃σ),Z[π])→ S∗(X̃σ)/S∗(X̃∂σ)

is a chain map for each σ. �
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Definition 7.9. F is a K-ad if
(a) it is balanced and closed and X is well-behaved, and
(b) for each (σ, o) the cap product induces an isomorphism

H∗(HomZ[π](S∗(X̃σ),Z[π]))→ Hdimσ−degF−∗(X̃σ, X̃∂σ).

We write adπ,Z,w(K) for the set of K-ads with values in Aπ,Z,w.

Theorem 7.10. adπ,Z,w is an ad theory.

For the proof we need a lemma.

Lemma 7.11. For i = 1, 2, suppose given a group πi, a properly discontinuous left
action of πi on a simply connected space Zi, and a homomorphism wi : π → {±1}.
Also suppose given a ball complex Ki and a Ki-ad Fi with values in Aπi,Zi,wi . Write
Fi(σ, o) = ((Xi)σ, (fi)σ, (ξi)σ,o). Define a pre (K1 ×K2)-ad F1 × F2 with values in
Aπ1×π2,Z1×Z2,w1·w2 by

(F1 × F2)(σ × τ, o1 × o2) = ((X1)σ × (X2)τ , (f1)σ × (f2)τ , (ξ1)σ,o1 × (ξ2)τ,o2).

Then F1 × F2 is a (K1 ×K2)-ad. �

Proof of 7.10. The only parts of Definition 3.9 which are not obvious are (g) and
(h).

Part (g). Let F be a K ′-ad with

F (σ, o) = (Xσ, fσ, ξσ,o).

We need to define a K-ad E which agrees with F on each residual subcomplex of
K. As in the proof of Theorem 6.5, we may assume by induction that K is a ball
complex structure for the n disk with one n cell τ , and that K ′ is a subdivision of
K which agrees with K on the boundary. We only need to define E on the top cell
τ of K. We define E(τ, o) to be (Vτ , eτ , θτ,o), where

• Vτ = colimσ∈K′ Xσ,
• eτ : Vτ → Z/π is the obvious map, and
• θτ,o is ∑

(σ,o′)

ξσ,o′ ,

where (σ, o′) runs through the n-dimensional cells of K ′ with orientation
induced by o.

Then E is closed by Proposition A.1(ii) and the cap product is an isomorphism by
Proposition 10.4 below.

Part (h). Let e denote the trivial group and let 1 denote the homomorphism
from e to {±1}. Define an I-ad G with values in Ae,∗,1 as follows. For a cell σ of
I, the identity map id of σ is a singular chain of the space σ; define G(σ, o) to be
(σ, ∗,±id), where ∗ denotes the map to a point and the ± is + iff o is the standard
orientation of σ. Now define the cylinder by J(F ) = F ×G.

�

Remark 7.12. The description of gluing in the proof just given, together with
the proof of Lemma 4.4, shows that addition in the bordism groups of adπ,Z,w is
induced by disjoint union.
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It remains to compare the bordism groups of this ad theory with the groups
ΩP∗ (Z/π,w) defined in [Ran80b, page 243]. Our definition differs from Ranicki’s
in two ways. First of all, a ∗-ad in our sense is a triple (X, f : X → Z/π, ξ ∈
Zn(X,Zf ) but a geometric Poincaré complex over (Z/π,w) in Ranicki’s sense is a
triple (X, f : X → Z/π, [X] ∈ Hn(X,Zf ). This does not affect the bordism groups
because of the following lemma.

Lemma 7.13. Let (X, f : X → Z/π, ξ) be a ∗-ad, and let ξ′ be a cycle homologous
to ξ. Then the ∗-ads (X, f : X → Z/π, ξ) and (X, f : X → Z/π, ξ′) are bordant.

Proof. Since ξ′ is homologous to ξ there is a chain θ with

dθ = ξ′ − ξ.
Define an I-ad H by letting H take the cells 0,1 and I (with their standard orien-
tations) respectively to (X, f, ξ), (X, f, ξ′), and (X × I, h, ξ × ι + θ × κ), where h
is the composite of the projection X × I → X with f , ι is the chain given by the
identity map of I, and κ is the 0-chain represented by the point 1. �

The second difference between our definition and Ranicki’s is that in [Ran80b]
the symbol X̃ denotes a universal cover of X (that is, a cover which is universal on
each component). This presumably means that our bordism groups are different
from those in [Ran80b]. Our reason for making this change is that the definition
we give is somewhat simpler and seems to provide the natural domain for the
symmetric signature (see Section 8). One could, if desired, modify our definition
so that the bordism groups would be equal to those in [Ran80b].

8. Example: Symmetric Poincaré ad theories

Fix a ring R with involution.

Definition 8.1. Let C be the category of chain complexes of free left R modules.
An object of C is finitely generated if it is finitely generated in each degree and zero
in all but finitely many degrees. An object of C is homotopy finite if it is chain
homotopy equivalent to a finitely generated object. Let D be the full subcategory
of C whose objects are the homotopy finite ones.

Given an object C of C, let Ct be the complex of right R modules obtained from
C by applying the involution of R. Give Ct ⊗R C the Z/2 action that switches the
factors.

Let W be the standard resolution of Z by Z[Z/2]-modules.

Definition 8.2. A quasi-symmetric complex of dimension n is a pair (C,ϕ), where
C is an object of D and ϕ is a Z/2-equivariant map

W → Ct ⊗R C
of graded abelian groups which raises degrees by n.

Remark 8.3. (i) A symmetric complex in the sense of Ranicki ([Ran92, Definition
1.6(i)]) is a quasi-symmetric complex for which ϕ is a chain map.

(ii) The concept of symmetric complex can be motivated as follows. A symmetric
bilinear form on a vector space V over a field F is a Z/2 equivariant map V ⊗V → F.
This is the same thing as an element of HomZ/2(Z, V ∗⊗FV

∗). In order to generalize
this concept to chain complexes we replace V ∗ by C, F by R, and Hom by Ext; an
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element of the Ext group is represented by a symmetric complex. Thus a symmetric
complex is a homotopy version of a symmetric bilinear form.

Definition 8.4. We define a category AR as follows. The objects of AR are the
quasi-symmetric complexes. If the dimension of (C,ϕ) is less than that of (C ′, ϕ′)
then a morphism from (C,ϕ) to (C ′, ϕ′) is an R-linear chain map f : C → C ′. If the
dimensions are equal then a morphism is an R-linear chain map with the property
that

(f t ⊗ f) ◦ ϕ = ϕ′.

There are no morphisms that lower dimension.

AR is a balanced Z-graded category, where i takes (C,ϕ) to (C,−ϕ) and ∅n is
the n-dimensional object for which C is zero in all degrees.

Definition 8.5. Let (π, Z,w) be a triple as in Section 7. Let R = Z[π] with the
w-twisted involution. Define a balanced functor

Sig : Aπ,Z,w → AR,
called the symmetric signature, by

Sig(X, f, ξ) = (S∗(X̃), ϕX̃,ξ),

where X̃ is the pullback of Z to X and ϕX̃,ξ is the composite

W ∼= W ⊗ Z 1⊗ξ−→W ⊗ (Zw ⊗R S∗(X̃)) ∼= Zw ⊗R (W ⊗ S∗(X̃))

→ Zw ⊗R (S∗(X̃)⊗ S∗(X̃)) ∼= S∗(X̃)t ⊗R S∗(X̃);

the unlabeled arrow is induced by the extended Alexander-Whitney map (see
[MS03, Definition 2.10(a) and Remark 2.11(a)] for an explicit formula).

Next we must say what the K-ads with values in AR are. We will build up to
this gradually, culminating in Definition 8.11.

For a balanced pre K-ad F we will use the notation

F (σ, o) = (Cσ, ϕσ,o).

Definition 8.6. A map of chain complexes over R is a cofibration if it is split
injective in each dimension.

Definition 8.7. A functor C from Cell[(K) to chain complexes over R is called
well-behaved if the following conditions hold:

(a) C takes each morphism to a cofibration.
(b) For each cell σ of K, the map

colim
τ(σ

Cτ −→ Cσ

is a cofibration.

For a well-behaved functor C we write C∂σ for colimτ(σ Cτ .
For our next definition, recall Example 3.11.

Definition 8.8. F is closed if, for each σ, the map

cl(σ)→ Hom(W,Ctσ ⊗R Cσ)

which takes 〈τ, o〉 to the composite

W
ϕτ,o−−−→ Ctτ ⊗ Cτ → Ctσ ⊗R Cσ
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is a chain map.

In particular, if F is balanced and closed and C is well-behaved then for each σ
the composite

W → Ctσ ⊗R Cσ → (Cσ/C∂σ)t ⊗R Cσ
is a chain map.

Definition 8.9. Let F be a balanced and closed pre K-ad for which C is well-
behaved and let (σ, o) be an oriented cell of K. Choose a chain map Z→W which
is right inverse to the augmentation and define a chain map

Υσ : HomR(Cσ, R)→ Cσ/C∂σ

to be the composite

Z⊗HomR(Cσ, R)→W ⊗HomR(Cσ, R)→
(
(Cσ/C∂σ)t ⊗R Cσ

)
⊗HomR(Cσ, R)

→ (Cσ/C∂σ)t ⊗R R ∼= (Cσ/C∂σ)t

(note that (Cσ/C∂σ)t is the same chain complex as Cσ/C∂σ).

Remark 8.10. The chain homotopy class of Υσ is independent of the choice of
the map Z→W .

Definition 8.11. F is a K-ad if
(a) it is balanced and closed and C is well-behaved, and
(b) for each σ the map Υσ induces an isomorphism

H∗(HomR(Cσ, R))→ Hdimσ−degF−∗(Cσ/C∂σ).

We write adR(K) for the set of K ads with values in AR.

Remark 8.12. When K is a simplicial complex, a K-ad is almost the same thing
as a symmetric complex ([Ran92, Definition 3.4]) in Λ∗(K) ([Ran92, Definition 4.1
and Proposition 5.1]). The only difference is that in [Ran92] the splitting maps
Cσ → C∂σ of the underlying graded R-modules are part of the structure.

Theorem 8.13. (i) adR is an ad theory.
(ii) Sig induces a morphism of ad theories from adπ,Z,w to adZ[π]w (where Z[π]w

denotes Z[π] with the w-twisted involution).

For the proof we need a product operation on ads. Recall the chain map

∆ : W →W ⊗W
from [Ran80a, page 175].

Lemma 8.14. For i = 1, 2, suppose given a ring with involution Ri, a ball complex
Ki and a Ki-ad Fi with values in ARi . Write Fi(σ, o) = ((Ci)σ, (ϕi)σ,o). Define a
pre (K1 ×K2)-ad F1 ⊗ F2 with values in AR1⊗R2 by

(F1 ⊗ F2)((σ, o), (τ, o′)) = ((C1)σ ⊗ (C2)τ , ϕ(σ,o),(τ,o′)),

where ϕ(σ,o),(τ,o′) is the composite

W
∆−−→W ⊗W

(ϕ1)σ,o⊗(ϕ2)τ,o′−−−−−−−−−−−→
(
(C1)tσ ⊗R1 (C1)σ

)
⊗
(
(C2)tτ ⊗R2 (C2)τ

)
∼=
(
(C1)σ ⊗ (C2)τ

)t ⊗R1⊗R2

(
(C1)σ ⊗ (C2)τ

)
.

Then F1 ⊗ F2 is a (K1 ×K2)-ad. �
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Proof of 8.13. Part (ii) is clear from the definitions.
For part (i), we only need to verify parts (g) and (h) of Definition 3.9.
The proof of part (g) is similar to the corresponding proof in Section 7. Let F

be a K ′-ad with
F (σ, o) = (Cσ, ϕσ,o).

We need to define a K-ad E which agrees with F on each residual subcomplex of
K. We may assume that K is a ball complex structure for the n disk with one n
cell τ , and that K ′ is a subdivision of K which agrees with K on the boundary. We
only need to define E on the top cell τ of K. We define E(τ, o) to be (Dτ , κτ,o),
where

• Dτ = colimσ∈K′ Cσ, and
• κτ,o is the sum of the composites

W
ϕσ,o′−−−−→ Ctσ ⊗R Cσ → Dt

τ ⊗R Dτ ,

where (σ, o′) runs through the n-dimensional cells of K ′ with orientations
induced by o.

Then E is closed by Proposition A.1(ii) and the cap product is an isomorphism by
Proposition 10.4 below.

For part (h), we define the cylinder by J(F ) = F ⊗G, where G is an I-ad with
values in AZ defined as follows. Let 0, 1, I denote the three cells of I, with their
standard orientations. Define G(0) to be (Z, ε) where ε is the augmentation, and
similarly for G(1). Define G(I) to be (C∗(∆1), ϕ), where C∗ denotes simplicial
chains and ϕ is the composite

W ∼= W ⊗ Z 1⊗ι→ W ⊗ C1(∆1)→ C∗(∆1)⊗ C∗(∆1);

here ι is the element of C1(∆1) represented by the identity map and unlabeled
arrow is the extended Alexander-Whitney map. �

9. Example: Quadratic Poincaré ad theories

We use the notation of the previous section.

Definition 9.1. A quasi-quadratic complex of dimension n is a pair (C,ψ) where
C is an object of D and ψ is an element of (W ⊗Z/2 (Ct ⊗R C))n.

Definition 9.2. We define a category AR as follows. The objects of AR are the
quasi-quadratic complexes. If the dimension of (C,ψ) is less than that of (C ′, ψ′)
then a morphism from (C,ψ) to (C ′, ψ′) is an R-linear chain map f : C → C ′.
If the dimensions are equal then a morphism is an R-linear chain map with the
property that

(1⊗ (f t ⊗ f))ψ = ψ′.

There are no morphisms that lower dimension.

AR is a balanced Z-graded category, where i takes (C,ψ) to (C,−ψ) and ∅n is
the n-dimensional object for which C is zero in all degrees.

A balanced pre K-ad F has the form

F (σ, o) = (Cσ, ψσ,o).
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Definition 9.3. F is closed if, for each σ, the map

cl(σ)→W ⊗Z/2 (Ctσ ⊗R Cσ)

which takes 〈τ, o〉 to the image of ψτ,o is a chain map.

Next we define a nonpositively graded complex of Z/2-modules

V0 → V−1 → · · ·
by letting

V−n = HomZ/2(Wn,Z[Z/2]).
There is an isomorphism

W ⊗Z/2 (Ct ⊗R C) ∼= HomZ/2(V,Ct ⊗R C).

The composite
N : W → Z→ V

induces a homomorphism

N∗ : W ⊗Z/2 (Ct ⊗R C)→ HomZ/2(W,Ct ⊗R C)

called the norm map. We write N for the functor

AR → AR

which takes (C,ψ) to (C,N∗(ψ)).

Definition 9.4. F ∈ preR(K) is a K-ad if
(a) it is balanced and closed and C is well-behaved, and
(b) N ◦ F is a K-ad.

Theorem 9.5. adR is an ad theory.

For the proof we need a product operation. Ranicki ([Ran80a, pages 174–175])
defines a chain map

∆ : V →W ⊗ V.

Lemma 9.6. For i = 1, 2, suppose given a ring with involution Ri and a ball
complex Ki. Let F1 ∈ adR1(K1) and write F1(σ, o) = ((C1)σ, ϕσ,o). Let F2 ∈
adR2(K2) and write F2(σ, o) = ((C2)σ, ψσ,o). Define a pre (K1 ×K2)-ad F1 ⊗ F2

with values in AR1⊗R2 by

(F1 ⊗ F2)((σ, o), (τ, o′)) = ((C1)σ ⊗ (C2)τ , ω(σ,o),(τ,o′)),

where ω(σ,o),(τ,o′) is the element of

W ⊗Z/2 (((C1)σ ⊗ (C2)τ )t ⊗R1⊗R2 ((C1)σ ⊗ (C2)τ ))

corresponding to the composite

V
∆−−→W ⊗ V

ϕσ,o⊗ψτ,o′−−−−−−−→
(
(C1)tσ ⊗R1 (C1)σ

)
⊗
(
(C2)tτ ⊗R2 (C2)τ

)
∼=
(
(C1)σ ⊗ (C2)τ

)t ⊗R1⊗R2

(
(C1)σ ⊗ (C2)τ

)
.

Then F1 ⊗ F2 is a (K1 ×K2)-ad.



20 GERD LAURES AND JAMES E. MCCLURE

Proof of Lemma 9.6. First observe that the set of homotopy classes of chain maps
from W to a chain complex A is the same as H0(A). It follows that the diagram

W
N //

∆

��

V

∆

��
W ⊗W

1⊗N // W ⊗ V
homotopy commutes. The result follows from this and Lemma 8.14. �

Proof of Theorem 9.5. We only need to verify parts (g) and (h) of Definition 3.9.
Part (g) is proved in the same way as for Theorem 8.13.
For part (h), we define the cylinder by J(F ) = G ⊗ F , where G is the I-ad

defined in the proof of Theorem 8.13. �

10. Gluing

Our goal in this section is to prove a result (Proposition 10.4) which completes
the proofs of Theorems 7.10, 8.13, and 9.5. First we need some terminology.

Let R be a ring with involution.
Recall Definition 8.1. LetA be the Z-graded category whose objects of dimension

n are pairs (C, ζ), where C is an object of D and ζ is an n-dimensional element of
Ct⊗RC. If the dimension of (C, ζ) is less than that of (C ′, ζ ′) then a morphism from
(C, ζ) to (C ′, ζ ′) is an R-linear chain map f : C → C ′. There are no morphisms
which preserve or lower the dimension. The involution i takes (C, ζ) to (C,−ζ) and
∅n is the n-dimensional object for which C is 0 in all degrees.

A balanced pre K-ad F with values in A is closed if for each σ the elements ζτ,o
determine a chain map cl(σ) → Cσ. F is a K-ad if it is balanced and closed, C is
well-behaved, and the cap product

H∗(HomR(Cσ, R))→ Hdimσ−degF−∗(Cσ/C∂σ)

(as defined in Definition 7.5(ii)) is an isomorphism for every σ.

Definition 10.1. A Poincaré pair is a morphism (C, ζ) → (D,ω) in A with the
property that the pre I-ad G defined by G(1) = (C, ζ), G(I) = (D,ω) and G(0) = ∅
is an ad.

Definition 10.2. Let K be a ball complex and C : Cell[(K) → D a well-behaved
functor. Define CK ∈ D to be colimσ∈K Cσ.

Now let (L,L0) be a ball complex pair such that |L| is an orientable homology
manifold with boundary |L0|, and fix an orientation for |L|. (For the proofs of
Theorems 7.10, 8.13, and 9.5 we only need the special case where |L| is a PL ball).

Definition 10.3. Let C : Cell[(L)→ D be a well behaved functor and let

ν : cl→ C

be a natural transformation. Denote the value of ν on 〈σ, o〉 by νσ,o. Define νL ∈ CL
(resp., νL0 ∈ CL0) to be ∑

(σ,o)

νσ,o,

where (σ, o) runs through the top-dimensional cells of L (resp., L0) oriented com-
patibly with |L|.
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Proposition 10.4. Let F be an L-ad and write F (σ, o) = (Cσ, ζσ,o). Then

(CL0 , ζL0)→ (CL, ζL)

is a Poincaré pair.

Remark 10.5. The corresponding statements for the ad theories adπ,Z,w, adR and
adR are consequences of this.

The rest of this section is devoted to the proof of Proposition 10.4. What we
need to show is that the cap product

H∗(HomR(CL, R))→ Hdim |L|−degF−∗(CL/CL0)

is an isomorphism.
The first step in the proof is to give an alternate description ofHdim |L|−∗(CL/CL0).
Let

B : Cell[(L)→ D
be a well-behaved functor and consider the chain complex

Nat(cl, B)

of natural transformations of graded abelian groups; the differential is given by

∂(ν) = ∂ ◦ ν − (−1)|ν|ν ◦ ∂.
Define

Φ : Nat(cl, B)→ BL/BL0

by
Φ(ν) = νL.

Then Φ is a chain map by Proposition A.1(ii); note that Φ increases degrees by
dim |L|.

Lemma 10.6. (cf. [WW89, Digression 3.11]) Φ induces an isomorphism

H∗(Nat(cl, B))→ H∗+dim |L|(BL/BL0)

for every well-behaved B : Cell[(L)→ D.

The proof is deferred to the end of this section.
Continuing with the proof of Proposition 10.4, we observe that

(10.1) HomR(CL, R) = NatR(C,R),

where NatR denotes the chain complex of natural transformations of graded R-
modules and R denotes the constant functor with value R. There is a cap product

Υ : NatR(C,R)→ Nat(cl, C)

which takes ν to the composite

cl
ζ−→ Ct ⊗R C

1⊗ν−−−→ Ct ⊗R R = Ct

(note that Ct and C are the same as functors to graded abelian groups). The
diagram

H−∗(NatR(C,R))
H∗Υ //

=

��

H−∗− degF (Nat(cl, C))

∼= Lemma 10.6

��
H∗(HomR(CL, R)) // Hdim |L|−degF−∗(CL/CL0)
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commutes, so to prove Proposition 10.4 it suffices to show that Υ is a homology
isomorphism.

Next observe that

NatR(C,R) = lim
σ∈L

NatR(C|Cell[(σ), R)

and that
Nat(cl, C) = lim

σ∈L
Nat(cl, C|Cell[(σ)).

Moreover, the natural maps

lim
σ∈L

NatR(C|Cell[(σ), R)→ holim
σ∈L

NatR(C|Cell[(σ), R)

and
lim
σ∈L

Nat(cl, C|Cell[(σ))→ holim
σ∈L

Nat(cl, C|Cell[(σ))

are homology isomorphisms by [Hir03, Theorem 19.9.1(2)] (using the fact that C
and cl are well-behaved). Thus there are spectral sequences

limpHq(NatR(C|Cell[(σ), R))⇒ Hq−p(NatR(C,R))

and
limpHq(Nat(cl, C|Cell[(σ)))⇒ Hq−p(Nat(cl, C))

(see [BK72, Section XI.7] for the construction; note that in the category of chain
complexes H∗ plays the role of π∗). By [BK72, Proposition XI.6.2] we have limp = 0
for p > dim |L|, so these spectral sequences converge strongly.

The cap products

Υ|σ : NatR(C|Cell[(σ), R)→ Nat(cl, C|Cell[(σ))

give a map of inverse systems and hence a map of spectral sequences. By equation
(10.1) and Lemma 10.6 the maps

H∗(Υ|σ) : H∗(NatR(C|Cell[(σ), R))→ H∗−degF (Nat(cl, C|Cell[(σ)))

agree up to isomorphism with the cap products

H∗(HomR(Cσ, R))→ Hdimσ−∗(Cσ/C∂σ)

which are isomorphisms because F is an ad. Thus the Υ|σ give an isomorphism at
E2. Since lim Υ|σ is Υ we see that H∗(Υ) is an isomorphism, which completes the
proof of Proposition 10.4.

Proof of Lemma 10.6. The proof is similar to the proof of [WW89, Digression 3.11].
First of all, the proof of [WW89, Lemma 3.4] adapts to our situation to show

that B is weakly equivalent to a well-behaved functor which is finitely generated
(that is, one which takes each σ to a finitely generated complex). The source and
target of Φ both preserve weak equivalences (see the argument at the top of page
71 in [WW89]) and so we may assume that B is finitely generated.

Because B is well-behaved, the source and target of Φ both have the property
that they take short exact sequences of well-behaved functors to short exact se-
quences. We give B a decreasing filtration by letting the i-th filtration B[i] take
σ to the sum of the images of Bσ′ → Bσ with σ′ ⊂ σ and dimσ′ ≥ i. Then the
sequence

0→ B[i+ 1]→ B[i]→ B[i]/B[i+ 1]→ 0
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is a short exact sequence of well-behaved functors, so it suffices (by induction on
i) to show that the lemma is true for the quotients B[i]/B[i + 1] when 0 ≤ i ≤ n.
Now each quotient B[i]/B[i+ 1] is a direct sum

⊕dim ρ=iB[ρ]

where B[ρ]σ is the image of Bρ → Bσ if ρ ⊂ σ and 0 otherwise. Next we give B[ρ]
an increasing filtration by letting the j-th filtration B[ρ, j] be the functor which
takes σ to the part of B[ρ]σ in dimensions ≤ j. The sequence

0→ B[ρ, j]→ B[ρ, j + 1]→ B[ρ, j + 1]/B[ρ, j]→ 0

is a short exact sequence of well-behaved functors for each j. Since B is finitely
generated, it suffices to show that the lemma is true for the quotients B[ρ, j +
1]/B[ρ, j].

Fix ρ and j. To lighten the notation let us denote B[ρ, j + 1]/B[ρ, j] by A.
The functor A takes ρ to a chain complex which consists of an abelian group (call

it A) in dimension j and 0 in all other dimensions. It takes every cell containing ρ
to this same chain complex. Let M be the subcomplex of L consisting of all cells
which contain ρ and their faces. Let N be the subcomplex of M consisting of all
cells which do not contain ρ. Then the chain complex Nat(cl, A) is isomorphic to the
cellular cochain complex Cj−∗(M,N ; A). Next we use results from the Appendix.
Proposition A.2 gives a ball complex structure on the pair (|st(ρ̂)|, |lk(ρ̂)|). There
is a bijection between the cells of the cells of M which are not in N and the cells
of |st(ρ̂)| which are not in |lk(ρ̂)|); this bijection preserves incidence numbers and
therefore induces an isomorphism

C∗(M,N ; A) ∼= C∗(|st(ρ̂)|, |lk(ρ̂)|; A).

Now
H∗(|st(ρ̂)|, |lk(ρ̂)|; A) = H∗(|L|, |L| − ρ̂; A).

Thus H∗(|st(ρ̂)|, |lk(ρ̂)|; A) is 0 if ∗ 6= dim |L| or if ρ is in L0. In the remaining case,
we note that |st(ρ̂)| is a homology manifold with boundary |lk(ρ̂)|, and thus (by
Proposition A.1(i)) the map

H∗(|st(ρ̂)|, |lk(ρ̂)|; A)→ A

which takes a cocycle to its value on the sum of the top-dimensional cells of |st(ρ̂)|
is an isomorphism.

To sum up, we have shown that if ∗ 6= j − dim |L| or if ρ is in L0 then
H∗(Nat(cl, A)) is 0, and that the map

Hj−dim |L|(Nat(cl, A))→ A

which takes ν to νL is an isomorphism.
Now if ρ is not in L0 then AL0 is 0, so H∗(AL/AL0) is A when ∗ = j and 0

otherwise. This proves the lemma in this case.
If ρ is in L0 then AL = AL0 , so the domain and target of the map in the lemma

are both 0. �
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11. Functoriality

We begin by considering symmetric Poincaré ad theories.
Let p : R → S be a homomorphism of rings with involution. We can define

a morphism of Z-graded categories p∗ : AR → AS by taking (C,W,ϕ) to (S ⊗R
C,W,ψ), where ψ is the composite

W → Ct ⊗R C → (S ⊗R C)t ⊗S (S ⊗R C).

This induces a morphism of ad theories p∗ : adR → adS . However, adR is not a
functor of R: if q : S → T is another homomorphism of rings with involution, then
(qp)∗ 6= q∗p∗, for the simple reason that T ⊗S (S ⊗R C) is not equal to T ⊗R C but
only isomorphic to it.

The same problem arises in algebraic K-theory, and Blumberg and Mandell have
given a solution in that setting (see the proof of Theorem 8.1 in [BM]). We use
their idea in this section.

First, for definiteness, let us define the free R-module generated by a set A to be
the set of functions from A to R which are nonzero for only finitely many elements
of A. We denote this by R〈A〉.

Next we define a category FR by letting its objects be sets and letting the
morphisms from A to B be the R-module morphisms from R〈A〉 to R〈B〉. It is
easy to check that FR is equivalent to the category of free R-modules.
FR is a functor of R: given f : R→ S we define f∗ : FR → FS as follows. f∗ is

the identity on objects. A morphism in FR is given by a (possibly infinite) matrix
with values in R; the corresponding morphism in FS is obtained by applying f to
the entries of this matrix.

If we replace the category of free R-modules by FR in Section 8 then AR and
adR become functors of R. The bordism groups are unchanged by Remark 4.8.

Let R be the category of rings with involution. We write adsym (resp., adquad)
for the functor from R to the category of ad-theories that takes R to adR (resp.,
adR).

Quadratic Poincaré ad theories can be dealt with in a similar way.
Next we consider geometric Poincaré ad theories. In order for Sig to be com-

patible with the definition of adR just given we need to redefine Aπ,Z,w. Given a
map f : X → Z/π, let us write f∗Z for the pullback of Z to X (this was denoted
X̃ in Section 7). By a lifting function for f we mean a function Φ that assigns to
each map from a simplex to X a lift to f∗Z. We redefine Aπ,Z,w to be the category
whose objects are quadruples

(X, f : X → Z/π, ξ ∈ S∗(X,Zf ),Φ),

where Φ is a lifting function for f ; the morphisms are defined exactly as in Definition
7.2 (i.e. Φ plays no role in the definition of morphism). The bordism groups Ωπ,Z,w∗
are unchanged by Remark 4.8.

Now we redefine Sig. Let (X, f, ξ,Φ) be an object of Aπ,Z,w. For each p ≥ 0, let
Cp be the set of maps ∆p → X. The lifting Φ gives an inclusion Cp → Sp(f∗Z) for
each p and this in turn gives an isomorphism

Z[π]〈Cp〉 ∼= Sp(f∗Z).

We define a morphism
∂p : Cp → Cp−1
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in FZ[π] to be the composite

Z[π]〈Cp〉 ∼= Sp(f∗Z)
∂p−−→ Sp−1(f∗Z) ∼= Z[π]〈Cp−1〉.

These definitions give a chain complex C in FZ[π]. We define Sig(X, f, ξ,Φ) to be
the triple (C,W,ψ), where W is the standard resolution and ψ is determined by
the map ϕ in Definition 8.5.

Next we consider functoriality of adπ,Z,w.

Definition 11.1. Let T be the category whose objects are the triples (π, Z,w);
the morphisms from (π, Z,w) to (π′, Z ′, w′) are pairs (h, g), where h : π → π′ is a
homomorphism with w = w′ ◦ h and g is a π-equivariant map Z → Z ′.

A morphism in T induces a functor Aπ,Z,w → Aπ′,Z′,w′ by taking (X, f, ξ,Φ) to
(X, ḡf, η,Ψ), where ḡ is the map Z/π → Z ′/π′ induced by g, η corresponds to ξ
under the isomorphism

S∗(X,Zf ) ∼= S∗(X,Zḡf )
(see Definition 7.1), and Ψ is determined by Φ together with the canonical map
f∗Z → f∗ḡ∗Z ′.

With these definitions adπ,Z,w is a functor of (π, Z,w). We write adgeom for the
functor from T to the category of ad-theories that takes (π, Z,w) to adπ,Z,w.

Finally, let ρ : T → R be the functor which takes (π, Z,w) to Z[π] with the w-
twisted involution. Then Sig is a natural transformation from adgeom to adsym ◦ ρ.

12. The cohomology theory associated to an ad theory

Fix an ad theory.
For a ball complex K with a subcomplex L, we will say that two elements F,G

of adk(K,L) are bordant if there is a (K×I, L×I)-ad which restricts to F on K×0
and G on K × 1.

Definition 12.1. Let T k(K,L) be the set of bordism classes in adk(K,L).

Remark 12.2. (i) T k(∗) is the same as Ω−k.
(ii) For the ad theory in Example 3.11, T k(K,L) is Hk(K,L;C).

Our goal in this section is to show that T ∗ is a cohomology theory.
We will define addition in T k(K,L) using the method of Section 4. First we

need a generalization of the functor κ.

Definition 12.3. Let

κ : Cell(I ×K, ({0, 1} ×K) ∪ (I × L))→ Cell(K,L)

be the isomorphism of categories which takes I×(σ, o) (where I is given its standard
orientation) to (σ, o).

Remark 12.4. κ is incidence-compatible (Definition 3.7(i)) so it induces a bijection

κ∗ : adk(K,L)→ adk+1(I ×K, ({0, 1} ×K) ∪ (I × L))

by part (f) of Definition 3.9.

Now let M and M ′ be the ball complexes defined in Section 4. Lemma 4.4
generalizes to show that, given F,G ∈ adk(K,L), there is an H ∈ adk+1(M ×
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K,M ×L) such that (λ1× id)∗H = κ∗F , (λ2× id)∗H = κ∗G, and (λ3× id)∗H and
(λ4 × id)∗H are trivial. Then we define [F ] + [G] to be

[(κ−1)∗(λ5 × id)∗H].

The proof that this is well-defined and that T k(K,L) is an abelian group is the
same as in Section 4.

Next we show that T k is a homotopy functor.
Using the notation of [BRS76, page 5], let Bi be the category whose objects

are pairs of ball complexes and whose morphisms are composites of inclusions of
subcomplexes and isomorphisms. Let Bh be the category with the same objects
whose morphisms are homotopy classes of continuous maps of pairs.

Proposition 12.5. For each k, the functor T k : Bi→ Ab factors uniquely through
Bh.

The functor Bh→ Ab given by the lemma will also be denoted by T k.
For the proof of Proposition 12.5 we need a preliminary fact.

Definition 12.6. (cf. [BRS76, page 5]) An inclusion of pairs (K1, L1)→ (K,L) is
an elementary expansion if

(a) L1 = L ∩K1,
(b) K has exactly two cells (say σ and σ′) that are not in K1, with dimσ′ =

dimσ − 1 and σ′ ⊂ ∂σ, and
(c) σ and σ′ are either both in L or both not in L.

Lemma 12.7. If (K1, L1)→ (K,L) is an elementary expansion then the restriction

adk(K,L)→ adk(K1, L1)

is onto.

The proof is deferred to the end of this section.

Proof of Proposition 12.5. The functor adk satisfies axioms E and G on page 15 of
[BRS76]; axiom E is Lemma 12.7 and axiom G is part (e) of Definition 3.9. Now
Proposition I.6.1 and Theorem I.5.1 of [BRS76] show that

T k : Bi→ Set

factors uniquely to give a functor T k : Bh→ Set. Specifically (with the notation of
Definition 2.1) if f : (|K ′|, |L′|)→ (|K|, |L|) is a map of pairs then T k(f) is defined
to be T k(g)−1T k(h), where g and h are certain morphisms in Bi. But then T k(f)
is a homomorphism, so we obtain a functor T k : Bh→ Ab. �

Next we observe that excision is an immediate consequence of part (f) of Defi-
nition 3.9.

The first step in constructing the connecting homomorphism is to construct a
suitable suspension isomorphism.

Lemma 12.8. κ∗ induces an isomorphism

T kL→ T k+1(I × L, {0, 1} × L).

Proof. κ∗ is a bijection by Remark 12.4. To see that it is a homomorphism, let
F,G ∈ adk(L) and let H ∈ adk+1(M×K,M×L) be as in the definition of addition.
Let

θ : Cell(M × I ×K, (M × {0, 1} ×K) ∪ (M × I × L))→ Cell(M ×K,M × L)
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be the evident isomorphism. Then θ∗(H) is an (M × I ×K)-ad with the property
that (λ1× id)∗θ∗(H) = κ∗κ∗F , (λ2× id)∗θ∗(H) = κ∗κ∗G, and (λ3× id)∗θ∗(H) and
(λ4 × id)∗θ∗(H) are trivial. Thus [κ∗F ] + [κ∗G] is [(κ−1)∗(λ5 × id)∗θ∗(H)], which
simplifies to [(λ5 × id)∗H], and this is κ∗[F +G]. �

Remark 12.9. The statement of the lemma might look strange in view of the fact
that, for a space X, (I × X)/({0, 1} × X) is homotopic to ΣX ∨ S1 rather than
ΣX. But if E is a cohomology theory then Ek(X) ∼= Ẽk(X ∨ S0), so the lemma
agrees with the expected behavior of the suspension map for unreduced cohomology
theories.

Now observe that excision gives an isomorphism

T k(I × L, {0, 1} × L)
∼=−→ T k((1×K) ∪ (I × L), (1×K) ∪ (0× L))

(where (1×K)∪ (I×L) is thought of as a subcomplex of I×K) and that the map

(|(1×K) ∪ (I × L)|, |(1×K) ∪ (0× L)|)→ (|I ×K|, |(1×K) ∪ (0× L)|)
is a homotopy equivalence of pairs. It follows that the restriction map

T k(I ×K, (1×K) ∪ (0× L))→ T k(I × L, {0, 1} × L)

is an isomorphism.

Definition 12.10. The connecting homomorphism

T k(L)→ T k+1(K,L)

is the negative of the composite

T k(L) κ∗−−→ T k+1(I×L, {0, 1}×L)
∼=← T k+1(I×K, (1×K)∪ (0×L))→ T k+1(K,L)

where the last map is induced by the inclusion

(0×K, 0× L)→ (I ×K, (1×K) ∪ (0× L)).

For an explanation of the sign see the proof of Proposition 14.4(ii).

Theorem 12.11. T ∗ is a cohomology theory.

Proof. It only remains to verify that the sequence

T k−1K → T k−1L→ T k(K,L)→ T kK → T kL

is exact for every pair (K,L).
Exactness at T k(K). We prove more generally that the sequence

T k(K,L)→ T k(K,M)→ T k(L,M)

is exact for every triple M ⊂ L ⊂ K.
Clearly the composite T k(K,L) → T k(K,M) → T k(L,M) is trivial. On the

other hand, if [F ] ∈ T k(K,M) maps to 0 in T k(L,M), then there is a bordism
H ∈ adk(L× I,M × I) from F |L to ∅. We obtain an ad

H ′ ∈ adk((K × 1) ∪ (L× I),M × I)

by letting H ′ be F on K × 1 and H on L× I. The inclusion

(K × 1) ∪ (L× I)→ K × I
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is a composite of elementary expansions, so by Lemma 12.7 there is an H ′′ ∈
adk(K × I,M × I) which restricts to H ′. But now H ′′|K×0 is in adk(K,L) and is
bordant to F , so [F ] is in the image of T k(K,L).

Exactness at T k(K,L). The composite

T k(I ×K, (1×K) ∪ (0× L))→ T k(K,L)→ T k(K)

takes F to F |0×K , but this is bordant to F |1×K which is 0. It follows that the
composite

T k−1L→ T k(K,L)→ T k(K)
is trivial. On the other hand, if F ∈ adk(K,L) becomes 0 in T k(K) then there is
an H ∈ adk(I ×K, (1×K)∪ (0×L)) with H|0×K = F . Thus F is in the image of

T k(I ×K, (1×K) ∪ (0× L))→ T k(K,L)

and hence in the image of the connecting homomorphism.
Exactness at T k−1L. The composite

T k−1K → T k−1L→ T k(K,L)

is equal to the composite

T k−1K
κ∗−−→ T k(I ×K, {0, 1} ×K)→ T k(I ×K, (1×K) ∪ (0× L))→ T k(K,L)

and the composite of the last two maps is clearly trivial. On the other hand, suppose
that x ∈ T k−1(L) maps trivially to T k(K,L). By definition of the connecting
homomorphism, there is a y ∈ T k(I ×K, (1×K)∪ (0×L)) such that y restricts to
κ∗x in T k(I×L, {0, 1}×L) and to 0 in T k(0×K, 0×L). Since the restriction map

T k({0, 1} ×K, (1×K) ∪ (0× L))→ T k(0×K, 0× L)

is an isomorphism by excision, we see that y restricts trivially to T k({0, 1}×K, (1×
K) ∪ (0× L)). Now the exact sequence of the triple

(1×K) ∪ (0× L) ⊂ {0, 1} ×K ⊂ I ×K
implies that there is a z ∈ T k(I×K, {0, 1}×K) that restricts to y. Then z restricts
to κ∗x in T k(I × L, {0, 1} × L) and therefore (κ∗)−1z ∈ T k(K) restricts to x. �

Proof of 12.7. Let F ∈ adk(K1, L1). Let σ′ and σ be as in the definition of elemen-
tary expansion. If σ′ and σ are in L then we can extend F to Cell(K,L) by letting
it take σ′ and σ to ∅. So assume that σ′ and σ are not in L. Let A be the sub-ball-
complex of K which is the union of the cells of ∂σ other than σ′. It suffices to show
that the restriction of F to Cell(A) extends to Cell(σ). By Theorem 3.34 of [RS82],
the pair (σ, σ′) is PL isomorphic to the pair (Dn, Sn−1

− ) (where n is the dimension
of σ, Dn is a standard n-ball and Sn−1

− is the lower hemisphere of its boundary).
Under this isomorphism A corresponds to a subdivision of the upper hemisphere
Sn−1

+ . Moreover, the pair (Dn, Sn−1
+ ) is PL isomorphic to (Sn−1

+ × I, Sn−1
+ × 0).

Thus the pair (A × I,A × 0) is PL isomorphic to a subdivision of the pair (σ,A).
Part (h) of Definition 3.9 extends F to Cell(A× I), and now part (g) of Definition
3.9 gives a corresponding extension of F to Cell(σ). �
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13. The spectrum associated to an ad theory

Definition 13.1. Let ∆inj denote the category whose objects are the sets {0, . . . , n}
and whose morphisms are the monotonically increasing injections. By a semisim-
plicial set we mean a contravariant functor from ∆inj to Set.

Thus a semisimplicial set is a simplicial set without degeneracies. In the literature
these are often called ∆-sets, but this seems awkward because ∆ is the category
that governs simplicial sets.

The geometric realization of a semisimplicial set is defined by

|A| =
(∐

∆n ×An
)
/∼,

where ∼ identifies (diu, x) with (u, dix).

Definition 13.2. Let ∗ denote the semisimplicial set with a single element (also
denoted ∗) in each degree. A basepoint for a semisimplicial set is a semisimplicial
map from ∗.

Remark 13.3. Geometric realization of semisimplicial sets is a left adjoint (for
example by [RS71, Proposition 2.1]), but it does not preserve quotients because it
does not take the terminal object ∗ to a point.

Now fix an ad theory. First we construct the spaces of the spectrum.

Definition 13.4. (i) For k ≥ 0, let Pk be the semisimplicial set with n-simplices

(Pk)n = adk(∆n)

and the obvious face maps. Give Pk the basepoint determined by the elements ∅.
(ii) Let Qk be |Pk|.

Next we define the structure maps of the spectrum. For this we will use the
semisimplicial analog of the Kan suspension.

Definition 13.5. Given a based semisimplicial set A, define ΣA to be the based
semisimplicial set for which the only 0-simplex is ∗ and the (based) set of n simplices
is An−1. The face operators di : (ΣA)n → (ΣA)n−1 agree with those of A for i < n
and dn takes all simplices to ∗.

Remark 13.6. The motivation for this construction is that the cone on a simplex
is a simplex of one dimension higher.

Lemma 13.7. There is a natural homeomorphism Σ|A| ∼= |ΣA|.

Proof. If t ∈ [0, 1] and u ∈ ∆n−1 let us write 〈t, u〉 for the point ((1 − t)u, t) of
∆n. The homeomorphism takes [t, [u, x]] (where [ ] denotes equivalence class) to
[〈t, u〉, x]. �

Next observe that for each n there is an isomorphism of Z-graded categories

θ : Cell(∆n+1, ∂n+1∆n+1 ∪ {n+ 1})→ Cell(∆n)

which lowers degrees by 1, defined as follows: a simplex σ of ∆n+1 which is not in
∂n+1∆n+1 ∪ {n + 1} contains the vertex n + 1. Let θ take σ (with its canonical
orientation) to the simplex of ∆n spanned by the vertices of σ other than n + 1
(with (−1)dimσ−1 times its canonical orientation). θ is incidence-compatible (this
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is the reason for the sign in its definition) so by part (f) of Definition 3.9 it induces
a bijection

θ∗ : adk(∆n)→ adk+1(∆n+1, ∂n+1∆n+1 ∪ {n+ 1}).
The composites

adk(∆n) θ∗−−→ adk+1(∆n+1, ∂n+1∆n+1 ∪ {n+ 1})→ adk+1(∆n+1)

give a semisimplicial map
ΣPk → Pk+1.

Definition 13.8. Let Q be the spectrum consisting of the spaces Qk with the
structure maps

ΣQk = Σ|Pk| ∼= |ΣPk| → |Pk+1| = Qk+1.

In the rest of this section we show:

Proposition 13.9. Q is an Ω spectrum.

First we observe that the semisimplicial Kan suspension Σ has a right adjoint:

Definition 13.10. For a based semisimplicial set A define a semisimplicial set ΩA
by letting the n-simplices of ΩA be the (n + 1)-simplices x of A which satisfy the
conditions

dn+1x = ∗ and (d0)n+1x = ∗.
The face maps are induced by those of A.

It’s easy to check that the adjoint of the map ΣPk → Pk+1 is an isomorphism

Pk ∼= ΩPk+1;

it therefore suffices to relate the semisimplicial Ω to the usual one.
Recall ([RS71, page 329]) that a semisimplicial set A is a Kan complex if every

map Λn,i → A (where Λn,i is defined on page 323 of [RS71]) extends to a map
∆n → A. Proposition 13.9 follows from the next two facts.

Lemma 13.11. If A is a Kan complex then the adjoint of the composite

Σ|ΩA| ∼= |ΣΩA| → |A|
is a weak equivalence.

Lemma 13.12. For each k, Pk is a Kan complex.

Proof of Lemma 13.11. Let Sn denote the based semisimplicial set with one non-
trivial simplex in degree n. For a based Kan complex B, Remark 6.5 of [RS71]
gives a bijection

πn(|B|) ∼= [Sn, B]
where [ , ] denotes based homotopy classes of based semisimplicial maps (the ho-
motopy relation is defined at the beginning of [RS71, Section 6]). It is easy to check
that ΩA is a Kan complex if A is. It therefore suffices to show that the adjunction
induces a map

[Sn,ΩA]→ [ΣSn, A]
and that this map is a bijection.

For this, we first observe that for a based semisimplicial set B the set of based
semisimplicial maps Sn → B can be identified with the set (which will be denoted
by ρn(B)) of n-simplices of B with all faces at the basepoint. Moreover, if B is Kan
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then (by lines −10 to −7 of page 333 of [RS71]) the set [Sn, B] is the quotient of
ρn(B) by the relation which identifies y and y′ if there is a z with d0z = y, d1z = y′,
and diz = ∗ for i > 1. The desired bijection is immediate from this and the fact
that ΣSn is Sn+1. �

For the proof of Lemma 13.12 we need to introduce a useful class of semisimplicial
sets.

Definition 13.13. A semisimplicial set is strict if two simplices are equal whenever
they have the same set of vertices.

Note that a strict semisimplicial set is the same thing as an ordered simplicial
complex.

The geometric realization of a strict semisimplicial set A has a canonical ball
complex structure (which will also be denoted by A) and the cells have canonical
orientations.

Remark 13.14. We will make important use of the following observation ([Ran92,
page 140]): for a pair (A,B) of strict semisimplicial sets, there is a canonical bijec-
tion between the set of semisimplicial maps (A,B)→ (Pk, ∗) and adk(A,B).

Proof of Lemma 13.12. By Remark 13.14, it suffices to show that every element of
adk(Λn,i) extends to an element of adk(∆n), and this is true by Lemma 12.7. �

14. Q represents T ∗

In this section we prove:

Theorem 14.1. The cohomology theory represented by Q is naturally isomorphic
to T ∗.

Remark 14.2. Theorem 14.1 includes as a special case the statement that the
semisimplicial sets Ln(Λ∗(K)) and Hn(K; L•(Λ)) in Proposition 13.7 of [Ran92]
are weakly equivalent; the statement given in [Ran92] that they are actually iso-
morphic is not correct (because the sets in the 8th and 9th line of the proof are not
isomorphic).

Let S denote the category of pairs of finite strict semisimplicial sets (see Defi-
nition 13.13) and semisimplicial maps. Let H be the homotopy category of finite
CW pairs and let R : S → H be geometric realization. A map (f, g) in S is a
weak equivalence if (Rf,Rg) is a weak equivalence in H. Let w−1S be the category
obtained from S by inverting the weak equivalences.

Lemma 14.3. R induces an equivalence of categories

w−1S → H
Proof. Let S ′ be the category of pairs of finite semisimplicial sets and semisimplicial
maps, with weak equivalences defined by geometric realization, and let w−1S ′ be
the category obtained by inverting the weak equivalences. Geometric realization
induces an equivalence

w−1S ′ → H
by [BRS76, Theorem I.4.3 and Remark I.4.4]. Moreover, the map w−1S → w−1S ′
is an equivalence because every object of S ′ is weakly equivalent to an object of S
(see [BRS76, Proof of Theorem I.4.1]; note that the second derived subdivision of
a semisimplicial set is a strict semisimplicial set). �
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Theorem 14.1 follows from the lemma and

Proposition 14.4. There is a natural transformation

Ξ : Q∗(|A|, |B|)→ T ∗(A,B)

of functors on S with the following properties:
(i) Ξ is a bijection when A = ∗ and B is empty.
(ii) The diagram

Qk(|B|) Ξ //

��

T k(B)

��
Qk+1(|A|, |B|) Ξ // T k+1(A,B)

commutes, where the vertical arrows are the connecting homomorphisms.
(iii) Ξ is a homomorphism.

The remainder of the section is devoted to the proof of Proposition 14.4. We
begin with the construction of Ξ.

Recall that T ∗(A,B) is adk(A,B) modulo the equivalence relation ∼ defined by
F ∼ G if and only if there is an H ∈ adk(A× I,B × I) which restricts to F and G
on A× 0 and A× 1. (We remind the reader that we are using the same symbol for
a strict semisimplicial set and the ball complex it determines; thus a symbol such
as A× I denotes a product of ball complexes).

There is a similar description of Q∗(|A|, |B|). By Proposition 13.12 and [RS71,
Remark 6.5], Qk(|A|, |B|) is the set [(A,B), (Pk, ∗)] of homotopy classes of semisim-
plicial maps. The homotopy relation for semisimplicial maps is defined at the be-
ginning of Section 6 of [RS71]; it uses the “geometric product” ⊗ defined in [RS71,
Section 3]. Using Remark 13.14 above, we see that Qk(|A|, |B|) is adk(A,B) mod-
ulo the equivalence relation ∼′ defined by: F ∼′ G if and only if there is an
H ∈ adk(A⊗ I,B ⊗ I) which restricts to F on A⊗ 0 and to G on A⊗ 1.

We can now define Ξ: given an element x ∈ Qk(|A|, |B|), choose an element F
of adk(A,B) which represents it and let Ξ(x) be the class of F . To see that this is
well-defined, note that A⊗ I is a subdivision of A× I, so by the gluing property of
ad theories we see that F ∼′ G implies F ∼ G.

Remark 14.5. The definition of Ξ was suggested by the argument on page 140 of
[Ran92].

The definition of ⊗ shows that Ξ is the identity map when A = ∗ and B is empty.
Next we check that Ξ is natural. It is obviously natural for inclusions of pairs. If

(f, g) : (A,B)→ (A′, B′) is any semisimplicial map, let Mf and Mg be the mapping
cylinders as defined on page 327 of [RS71]; these are strict semisimplicial sets and
have the property that there is an inclusion

(i, j) : (A,B)→ (Mf ,Mg),

an inclusion
(i′, j′) : (A′, B′)→ (Mf ,Mg)

which is a weak equivalence, and a homotopy |(i′, j′)| ◦ |(f, g)| ' |(i, j)|. Then
|(f, g)|∗ : Q∗(|A′|, |B′|)→ Q∗(|A|, |B|) is equal to (|(i′, j′)|∗)−1|(i, j)|∗, and similarly
for (f, g)∗ : T ∗(A′, B′)→ T ∗(A,B). Hence (f, g)∗ ◦ Ξ = Ξ ◦ |(f, g)|∗.
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For the proof of part (ii) of Proposition 14.4 we need the Kan cone construction
(because the Kan suspension of a strict semisimplicial set is not strict in general).

Definition 14.6. Let A be a semisimplicial set. Define a semisimplicial set CA as
follows. The 0-simplices of CA are the 0-simplices of A together with a 0-simplex
c. For n ≥ 1 the n simplices of CA are An

∐
An−1. If the inclusions of An and

An−1 in (CA)n are denoted by f and g then the face maps di : (CA)n → (CA)n−1

are defined by
dif(x) = f(dix)

for all i and

dig(x) =


c if n = 1 and i = 0
g(dix) if n > 1 and i < n

f(x) if i = n.

We leave it to the reader to check that |CA| ∼= C|A|, where C|A| denotes I ∧
(|A|+) (we choose the basepoint of I to be 1). Note that there is an inclusion
A→ CA and that the quotient CA/(A ∪ c) is Σ(A+) (where A+ denotes A with a
disjoint basepoint).

If A is strict then CA is also.

Proof of Proposition 14.4(ii). The unreduced suspension isomorphism

Qk(|B|)→ Qk+1(C|B|, |B| ∪ |c|)
is defined as follows: given f : |B| → Qk the composite

C|B| Cf−−→ CQk → ΣQk → Qk+1

takes |B| ∪ |c| to the basepoint, and therefore represents an element of
Qk+1(C|B|, |B| ∪ |c|).

There is an isomorphism of categories

µ : Cell(CB,B ∪ c)→ Cell(I ×B, {0, 1} ×B)

defined as follows: a simplex σ of CB which is not in B∪c corresponds to a simplex
σ′ of B; let µ take σ (with its canonical orientation) to I×σ′ (with (−1)dimσ′ times
its canonical orientation).

There is a similar isomorphism

ν : Cell(CA,B ∪ c)→ Cell(I ×A, (1×A) ∪ (0×B)).

Both µ and ν are incidence-compatible (Definition 3.7(i)) so part (f) of Definition
3.9 applies.
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It is easy to check that the diagram

Qk(|B|) Ξ //

∼=
��

T k(B)

κ∗

��
Qk+1(|CB|, |B ∪ c|) Ξ // T k+1(CB,B ∪ c)

µ∗ // T k+1(I ×B, {0, 1} ×B)

Qk+1(|CA|, |B ∪ c|)

∼=

OO

��

Ξ // T k+1(CA,B ∪ c)

∼=

OO

ν∗ // T k+1(I ×A, (1×A) ∪ (0×B))

∼=

OO

��
Qk+1(|A|, |B|) Ξ // T k+1(A,B)

commutes. The vertical composite on the right is by definition the negative of the
connecting homomorphism, so it suffices to show the same for the vertical composite
on the left.

The connecting homomorphism

Qk(|B|)→ Qk+1(|A|, |B|)
is defined to be the composite

Qk(|B|)
∼=→ Qk+1(C|B|, |B| ∪ |c|) ∼= Q̃k+1(C|B|/(|B| ∪ |c|))

→ Q̃k+1(|A| ∪ C|B|)
∼=← Q̃k+1(|A|/|B|)

where the third and fourth maps are induced by the evident quotient maps.
It now suffices to note that the diagram

C|B|/(|B| ∪ c)
i

((RRRRRRRRRRRR

|A| ∪ C|B|

OO

��

C|A|/(|B| ∪ c)

|A|/|B|

j
66mmmmmmmmmmmm

homotopy commutes, where i takes t ∧ b to the class of (1− t) ∧ b and j takes the
class of a to the class of 0∧a. (The homotopy is given by h(a, s) = s∧a for a ∈ |A|
and h(t ∧ b) = s(1 − t) ∧ b.) The negative sign mentioned above comes from the
1− t in the definition of i. �

It remains to prove part (iii) of Proposition 14.4.
First recall that for any cohomology theory E the addition in Ek(|A|, |B|) is the

composite

Ek(|A|, |B|)× Ek(|A|, |B|) = Ẽk(|A|/|B|)× Ẽk(|A|/|B|)
∼= Ẽk+1(Σ(|A|/|B|))× Ẽk+1(Σ(|A|/|B|))

∼=← Ẽk+1(Σ(|A|/|B|) ∨ Σ(|A|/|B|))
p∗→ Ẽk+1(Σ(|A|/|B|)) ∼= Ẽk(|A|/|B|) = Ek(|A|, |B|)

where p is the pinch map.
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It therefore suffices to observe that, by part (ii) and naturality, the diagram

Q̃k(|A|/|B|) Ξ //

∼=
��

T̃ k(|A|/|B|)

∼=
��

Q̃k+1(Σ(|A|/|B|)) Ξ // T̃ k+1(Σ(|A|/|B|))

commutes, where the vertical arrows are the suspension isomorphisms of the re-
duced cohomology theories Q̃∗ and T̃ ∗.

15. The symmetric spectrum associated to an ad theory

Symmetric spectra were originally defined simplicially ([HSS00, Definition
1.2.1]). The topological definition is the obvious analog ([MMSS01, Example 4.2]):

Definition 15.1. A symmetric spectrum X consists of
(i) a sequence X0, X1, . . . of pointed topological spaces,
(ii) a pointed map s : S1 ∧Xk → Xk+1 for each k ≥ 0, and
(iii) a based left Σk-action on Xk,
such that the composition

Sp ∧Xk
Sp−1∧s−−−−−→ Sp−1 ∧Xk−1 → · · · → Xk+p

is Σp × Σk-equivariant for each p ≥ 1 and k ≥ 0.

Our first goal in this section is to define a symmetric spectrum associated to an
ad theory. In order to have a suitable Σk action we will construct the k-th space
of the spectrum as the geometric realization of a k-fold multisemisimplicial set; the
Σk action will come from permutation of the semisimplicial directions.

By a k-fold multisemisimplicial set we mean a functor from ∆k
inj to sets (see

Definition 13.1). Given a multiindex n = (n1, . . . , nk), let ∆n denote the product

∆n1 × · · · ×∆nk .

The geometric realization of a k-fold multisemisimplicial set A is

|A| =
(∐

∆n ×An

)
/∼,

where ∼ denotes the evident equivalence relation.
Now fix an ad theory.

Definition 15.2. For each k ≥ 1, define a k-fold multisemisimplicial set Rk by

(Rk)n = adk(∆n).

Let Mk be the geometric realization of Rk. For k = 0, let R0 be the set of ∗-ads of
degree 0 and let M0 be R0 with the discrete topology.

Our next definition gives the left action of Σk on Mk. An element of Mk has the
form [u, F ], where u = (u1, . . . , uk) ∈ ∆n, F ∈ adk(∆n), and [ ] denotes equivalence
class. Given η ∈ Σk let ε(η) denote 0 if η is even and 1 if η is odd.

Definition 15.3. Define

η([u, F ]) = [(uη−1(1), . . . , uη−1(k)), iε(η) ◦ F ◦ η#].

Here i is the involution in the target category of the ad theory and η# is the map

Cell(∆nη−1(1) × · · · ×∆nη−1(k))→ Cell(∆n1 × · · · ×∆nk)
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which takes
(ση−1(1) × · · · × ση−1(k), oη−1(1) × · · · × oη−1(k))

to
(σ1 × · · · × σk, o1 × · · · × ok).

It remains to define the suspension maps.

Definition 15.4. (i) For each ball complex K let

λ : Cell(∆1 ×K, ∂∆1 ×K)→ Cell(K)

be the incidence-compatible isomorphism of categories which takes ∆1 × (σ, o)
(where ∆1 is given its standard orientation) to (σ, o).

(ii) Given t ∈ [0, 1] let t̄ denote the point (1− t, t) of ∆1.
(iii) Given k ≥ 1 let

s : S1 ∧Mk →Mk+1

be the map which takes [t, [u, F ]] to [(t̄, u), λ∗(F )].

Proposition 15.5. The sequence M0,M1, . . ., with the Σk-actions given by Defi-
nition 15.3 and the suspension maps given by Definition 15.4(iii), is a symmetric
spectrum. �

We will denote this symmetric spectrum by M.

Example 15.6. Let us write Mπ,Z,w (resp., MR) for the symmetric spectrum
associated to adπ,Z,w (resp., adR). The morphism of ad theories

Sig : adπ,Z,w → adZ[π]w

(see Theorem 8.13) induces a map

Mπ,Z,w →MZ[π]w .

In the remainder of this section we show that M is weakly equivalent (in an
appropriate sense) to the spectrum Q defined in Section 13.

For k ≥ 1, let Q′k be the realization of the semisimplicial set with n-simplexes

(Rk)(0,...,0,n)

Then Q′k is homeomorphic to Qk, and there is an obvious map Q′k → Mk, so we
get a map

Qk →Mk

for k ≥ 1.

Proposition 15.7. The map Qk →Mk is a weak equivalence.

Proposition 15.8. The diagram

ΣQk //

��

ΣMk

��
Qk+1

// Mk+1

commutes up to homotopy.

Before proving these we deduce some consequences. As in [MMSS01], let the
forgetful functor from symmetric spectra to ordinary spectra (which are called
prespectra in [MMSS01]) be denoted by U. It is shown in [MMSS01] that the right
derived functor RU is an equivalence of homotopy categories.
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Corollary 15.9. (i) M is a positive Ω spectrum (that is, the map Mk → ΩMk+1

is a weak equivalence for k ≥ 1).
(ii) RU takes M to Q.
(iii) The homotopy groups of M are the bordism groups of the ad theory.

Proof. Part (i) is immediate from the proposition.
For part (ii), first recall that (RU)M is defined to be U of a fibrant replacement

of M. But by [Sch08, Example 4.2] M is semistable, which means that the map
from M to its fibrant replacement is a π∗-isomorphism. It follows that (RU)M is
(up to weak equivalence) UM, and it therefore suffices to show that Q is weakly
equivalent to UM. Define a spectrum X as follows: X0 is ∗, X1 is Q1, and and for
k ≥ 2 Xk is the iterated mapping cylinder of the sequence of maps

Σk−1Q1
Σk−2s−−−−→ Σk−2Q2

Σk−3s−−−−→ · · ·ΣQk−1
s−→ Qk

The maps ΣXk → Xk+1 are defined to be the obvious inclusion maps. Then there
are evident weak equivalences X → Q and (using Propositions 15.7 and 15.8)
X→M, which proves part (ii).

Part (iii) is immediate from part (ii). �

For the proof of Proposition 15.7 we will use an idea adumbrated on page 695
of [WW00].

First we interpolate between Qk and Mk. For 1 ≤ m ≤ k let Rmk be the m-fold
multisemisimplicial set defined by

(Rmk )n = (Rk)0,...,0,n.

We have |R1
k| = Qk and |Rkk| = Mk, so it suffices to show that the inclusion

|Rm−1
k | → |Rmk | is a weak equivalence for each m ≥ 2. We will prove this for each

k by induction on m, so we assume

(*) |Rm
′−1

k | → |Rm
′

k | is a weak equivalence if m′ < m.

Next we observe that the realization |Rmk | can be obtained by first realizing in the
last m − 1 semisimplicial directions and then realizing in the remaining direction.
Namely, for each p ≥ 0 let Rmk [p] be the (m− 1)-fold semisimplicial set with

(Rmk [p])n = (Rk)0,...,0,p,n.

As p varies we obtain a semisimplicial space |Rmk [•]| whose realization is |Rmk |. Now
Rm−1
k is Rmk [0], and the inclusion |Rm−1

k | → |Rmk | is the inclusion of the space of
0-simplices |Rmk [0]| in |Rmk |. It therefore suffices to show that the latter map is a
weak equivalence, and this is part (v) of:

Lemma 15.10. (i) In the semisimplicial space |Rmk [•]|, all face maps are homotopy
equivalences.

(ii) For each p, all of the face maps from |Rmk [p]| to |Rmk [p− 1]| are homotopic.
(iii) The map |Rmk [0]| → |Rmk | is a homology isomorphism.
(iv) The map |Rmk [0]| → |Rmk | is (up to weak equivalence) an H-map between

grouplike H-spaces.
(v) The map |Rmk [0]| → |Rmk | is a weak equivalence.

For the proof of the lemma we need an auxiliary construction. Let ad denote the
ad theory we have fixed and let A be its target category. Given a ball complex L we
can define a new Z-graded category A[L] by letting the set of objects in dimension
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n be pre−n(L). Now we define an ad theory ad[L] with values in A[L] by letting
ad[L]j(K) consist of the pre-K-ads which correspond to (K × L)-ads under the
bijection

pre[L]j(K) ∼= prej(K × L).
Let us write Q[L] and R[L]mk for the spectrum and the multisemisimplicial sets

constructed from the theory ad[L].

Proof of Lemma 15.10. Part (i). First note that Rmk [p] is the same thing as
R[∆p]m−1

k . By the inductive hypothesis (*) we know that |R[∆p]m−1
k | is weakly

equivalent to Q[∆p]k. The homotopy groups of Q[∆p]k are (up to a shift in dimen-
sion) the bordism groups of the ad theory ad[∆p], and inspection of the definitions
shows that these are the groups T−∗(∆p). This implies that all face maps in Rmk [•]
are weak equivalences, and hence homotopy equivalences since all spaces are CW
complexes.

Part (ii) follows from part (i) and the semisimplicial identities.
Part (iii) follows from part (ii) and the homology spectral sequence of a semisim-

plicial space (cf. [May72, Theorem 11.4]), but note that our situation is simpler
because there are no degeneracy maps).

Part (iv): Let Q[∆•]k denote the semisimplicial space which is Q[∆p]k in degree
p. By the inductive hypothesis (*), it suffices to show that the map

Qk = Q[∆0]k → |Q[∆•]k|
is (up to weak equivalence) an H-map between grouplike H-spaces, and this is
a consequence of the following commutative diagram (where Q̂k+1 denotes the
basepoint component of Qk+1; note that ΩQ̂k+1 is the same thing as ΩQk+1):

Qk

'
��

// |Q[∆•]k|

' α

��
ΩQ̂k+1

//

&&MMMMMMMMMM
|ΩQ̂[∆•]k+1|

' β

��
Ω|Q̂[∆•]k+1|

Here α is a weak equivalence by [May74, Theorem A.4(ii)], and β is a weak
equivalence by [May72, Theorem 12.3] (this is where we need to use basepoint-
components).

Part (v) now follows from parts (iii) and (iv) and [Whi78, Corollary IV.3.6 and
Corollary IV.7.9]. �

We now turn to the proof of Proposition 15.8. For simplicity we will do the
case k = 2; the general case is exactly the same but the notation is a little more
complicated.

First let us give an explicit description of the maps in the diagram.
Given an element F ∈ ad2(∆n), let us write F ′ for the corresponding element of

ad2(∆0×∆n). Then the map Q2 →M2 takes [u, F ] to [(1, u), F ′] (where 1 denotes
the unique element of ∆0).

Hence the clockwise composite in the diagram of 15.8 takes an element [t, [u, F ]]
of ΣQ2 to [(t̄, 1, u), λ∗(F ′)] (see Definition 15.4).
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To describe the counterclockwise composite we need some notation. Recall that
the homeomorphism in Lemma 13.7 takes [t, [u, x]] to [〈t, u〉, x], where 〈t, u〉 =
((1− t)u, t). Also, recall the isomorphism

θ : Cell(∆n+1, ∂n+1∆n+1 ∪ {n+ 1})→ Cell(∆n)

defined after Lemma 13.7.
The map ΣQ2 → Q3 takes [t, [u, F ]] to [〈t, u〉, θ∗F ], and thus the counterclockwise

composite in the diagram of 15.8 takes [t, [u, F ]] to [(1, 1, 〈t, u〉, ((θ∗F )′)′].
Now we need a lemma:

Lemma 15.11. For every n ≥ 0 there is an incidence-compatible isomorphism

µn : Cell(∆1 ×∆0 ×∆n+1, ({1} ×∆0 ×∆n+1) ∪ (∆1 ×∆0 × {n+ 1})
∪ ({0} ×∆0 × ∂n+1∆n+1))→ Cell(∆n × I)

(which lowers degrees by 1) such that
(a) µn takes the cell ∆1 ×∆0 ×∆n+1 (with its standard orientation) to the cell

∆n × I (with its standard orientation).
(b) µn restricts to a morphism

Cell({0} ×∆0 ×∆n+1, {0} ×∆0 × (∂n+1∆n+1 ∪ {n+ 1}))→ Cell(∆n × {0})
which agrees with θ.

(c) µn restricts to a morphism

Cell(∆1 ×∆0 × ∂n+1∆n+1, ∂∆1 ×∆0 × ∂n+1∆n+1)→ Cell(∆n × {1})
which agrees with λ.

(d) for 0 ≤ i ≤ n, µn restricts to a morphism

Cell(∆1 ×∆0 × ∂i∆n+1, ({1} ×∆0 × ∂i∆n+1) ∪ (∆1 ×∆0 × {n+ 1})
∪ ({0} ×∆0 × ∂i∂n+1∆n+1)))→ Cell(∂i∆n × I)

which agrees with i ◦ µn−1.

The proof is an easy induction.
Now we can write down the homotopy

H : (ΣQ2)× I →M3

needed for the case k = 2 of 15.8:

H([t, [u, F ]], s) =

{
[(t̄, 1, 〈2ts, u〉), µ∗n(J(F ))] if 0 ≤ s ≤ 1/2,
[(2− 2s)t, 1, 〈t, u〉), µ∗n(J(F ))] if 1/2 ≤ s ≤ 1,

where J is the cylinder (see Definition 3.9(h)). It’s easy to check that this is well-
defined and that it is equal to the clockwise composite in the diagram of 15.8 when
s = 0 and to the counterclockwise composite when s = 1.

16. Multiplicative ad theories

Definition 16.1. Let A be a Z-graded category. A strict monoidal structure on A
is a strict monoidal structure (�, ε) (see [ML98, Section VII.1]) on the underlying
category such that

(a) the monoidal product � adds dimensions and the dimension of the unit
element ε is 0,
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(b) i(x � y) = (ix) � y = x � (iy) for all objects x and y, and similarly for
morphisms,

(c) x � ∅n = ∅n � x = ∅n+dim x for all n and all objects x, and if f : x → y
is any morphism then f � ∅n and ∅n � f are each equal to the canonical map
∅n+dim x → ∅n+dim y.

An example is the category AC of Example 3.11 when C is a DGA. Another
example is the category ASTop, if we redefine the phrase “topological manifold” to
mean a topological manifold which is a subset of a Euclidean space.

Assumption 16.2. From now on we will assume that Cartesian products in Section
7 and tensor products in Section 8 are strictly associative (that is, we assume
that the monoidal categories Set and Ab have been replaced in those sections by
equivalent strict monoidal categories; see [Kas95, Section XI.5]).

With this assumption, the category Ae,∗,1 defined in Section 7 (where e denotes
the trivial group) and, when R is commutative, the category AR defined in Section
8 are strict monoidal Z-graded categories.

Remark 16.3. If A is a Z-graded category with a strict monoidal structure, there
is a natural map

� : prek(K)× prel(L)→ prek+l(K × L)
defined by

(F �G)(σ × τ, o1 × o2) = il dim(σ)F (σ, o1) �G(τ, o2);

this is well-defined, because

F (σ,−o1) �G(τ,−o2) = iF (σ, o1) � iG(τ, o2) = F (σ, o1) �G(τ, o2).

Definition 16.4. A multiplicative ad theory is an ad theory together with a strict
monoidal structure on the target category A, such that

(a) the pre ∗-ad with value ε is an ad, and
(b) the map in Remark 16.3 restricts to a map

� : adk(K)× adl(L)→ adk+l(K × L).

Examples are adC when C is a DGA, adSTop, ade,∗,1, and adR when R is com-
mutative; we will put the last two examples in a more general context in the next
section.

Theorem 16.5. The symmetric spectrum M determined by a multiplicative ad
theory is a symmetric ring spectrum.

Remark 16.6. Note that a symmetric ring spectrum satisfies strict associativity,
not just associativity up to homotopy.

For the proof of Theorem 16.5 we need a lemma. Recall Definitions 15.3 and
15.4.

Lemma 16.7. Let n = (n1, . . . , nk) and let m ≥ 0. Let F ∈ adk(∆n) and let E be
the ∗-ad with value ε. Then

(i) ((λ∗)mE) � F = (λ∗)mF , and
(ii) F�((λ∗)mE) = ikm◦(((λ∗)mE)�F )◦η#, where η ∈ Σk+m is the permutation

that moves the first k elements to the end.
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Proof. Let (σ, o) be the 1-cell of ∆1 with its standard orientation and let (τ, o′) be
an oriented cell of ∆n of dimension l. For part (i), we have

(((λ∗)mE) � F )((σ, o)×m × (τ, o′)) = ikm(((λ∗)mE)((σ, o)×m) � F (τ, o′))

= ikm(ε� F (τ, o′))

= ikmF (τ, o′)

and (using Definition 3.7(ii))

((λ∗)mF )((σ, o)×m × (τ, o′)) = (ikm ◦ F ◦ λm)((σ, o)×m × (τ, o′))

= ikmF (τ, o′).

For part (ii) we have

(F � ((λ∗)mE))((τ, o′)× (σ, o)×m) = ilm(F (τ, o′) � ((λ∗)mE)((σ, o)×m))

= ilm(F (τ, o′) � ε)

= ilmF (τ, o′)

and

(ikm ◦ (((λ∗)mE) � F ) ◦ η#)((τ, o′)× (σ, o)×m)

= ikm+lm((((λ∗)mE) � F )((σ, o)×m × (τ, o′)))

= ilm(((λ∗)mE)((σ, o)×m) � F (τ, o′))

= ilm(ε� F (τ, o′))

= ilmF (τ, o′).

�

Proof of Theorem 16.5. Recall ([HSS00, Definition 2.2.3]) that the smash product
M ∧M is defined to be the coequalizer of

M⊗ S⊗M
1⊗s //
r⊗1

// M⊗M.

Here ⊗ is the tensor product of the underlying symmetric sequences ([HSS00,
Definition 2.1.3]), S is the symmetric sphere spectrum ([HSS00, Example 1.2.4]),
s : S ⊗M → M is induced by the symmetric spectrum structure of M ([HSS00,
proof of Proposition 2.2.1]), and r is the composite

M⊗ S t→ S⊗M s→M,

where t is the twist isomorphism ([HSS00, page 160]).
The � operation of Definition 16.4(ii) gives an associative multiplication

m : M⊗M→M

and we need to show that this induces a map M ∧M→M. Let

ι : S→M
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be the map of symmetric spectra that takes the nontrivial element of S0 to the ∗-ad
with value ε. Lemma 16.7 shows that the diagrams

(16.1) S⊗M
ι⊗1 //

s
##GGGGGGGG M⊗M

m
zzvvv

vvv
vvv

M

and

(16.2) M⊗ S
1⊗ι //

t

��

M⊗M
m

$$III
III

III

M

S⊗M
ι⊗1 // M⊗M

m

::vvvvvvvvv

commute. These in turn imply that the diagram

M⊗ S⊗M
1⊗s //

t⊗1

��

M⊗M
m

$$III
III

III

M

S⊗M⊗M
s⊗1 // M⊗M

m

::vvvvvvvvv

commutes, and hence m induces an associative multiplication

M ∧M→M.

Moreover, diagrams (16.1) and (16.2) imply that the unit diagrams

S ∧M
ι∧1 //

∼= ##GGGGGGGG M ∧M

m
zzvvv

vvv
vvv

M

and
M ∧ S

1∧ι //

∼= ##GGGGGGGG M ∧M

m
zzvvv

vvv
vvv

M
commute. Thus M is a symmetric ring spectrum. �

17. Geometric and symmetric Poincaré bordism are monoidal
functors

With the notation of Example 15.6, there are product maps

Mπ,Z,w ∧Mπ′,Z′,w′ →Mπ×π′,Z×Z′,w×w′

and
MR ∧MS →MR⊗S
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induced by the operations × and ⊗ of Lemmas 7.11 and 8.14. There is also a unit
map

S→Me,∗,1

defined as follows. The one-point space gives a ∗-ad of degree 0, and this induces a
map of spaces from S0 to the 0-th space of Me,∗,1; the unique extension of this to
a map of symmetric spectra is the desired unit map. Similarly there is a unit map

S→MZ

determined by the ∗-ad (Z,Z, ϕ), where ϕ is the identity map.
Assumption 16.2 implies that the categories T and R introduced in Section 11

are strict monoidal categories.

Definition 17.1. Let Mgeom be the functor from T to the category of symmetric
spectra which takes (π, Z,w) to Mπ,Z,w. Let Msym be the functor from R to the
category of symmetric spectra which takes R to MR.

Theorem 17.2. Mgeom and Msym are monoidal functors. That is, the following
diagrams involving Msym strictly commute, and similarly for Mgeom.

(MR ∧MS) ∧MT
∼= //

⊗
��

MR ∧ (MS ∧MT )

⊗
��

MR⊗S ∧MT

⊗ ((RRRRRRRRRRRR MR ∧MS⊗T

⊗vvllllllllllll

MR⊗S⊗T

S ∧MR
∼= //

��

MR

MZ ∧MR
⊗ // MZ⊗R

=

OO MR ∧ S
∼= //

��

MR

MR ∧MZ ⊗ // MR⊗Z

=

OO

The proof is similar to that of Theorem 16.5.

Remark 17.3. One can define a “module functor” over a monoidal functor in the
evident way. Then the functor Mquad from R to the category of symmetric spectra
which takes R to MR is a module functor over Msym.

Remark 17.4. The map

Sig : Mπ,Z,w →MZ[π]w

in Example 15.6 is not a monoidal natural transformation, because the functor
which takes a space to its singular chain complex does not take Cartesian products
to tensor products. We will return to this point in the sequel.
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Appendix A. Ball complex structures on PL manifolds and homology
manifolds

We begin with an elementary fact.

Proposition A.1. Let X be a compact oriented homology manifold of dimension
n with a regular CW complex structure such that ∂X is a subcomplex.

(i) Let S be the set of n-dimensional cells, with their induced orientations. Then
the cellular chain

∑
σ∈S σ represents the fundamental class [X] ∈ Hn(X, ∂X).

(ii) Let T be the set of (n − 1)-dimensional cells of ∂X, with their induced ori-
entations. Then

∂

(∑
σ∈S

σ

)
=
∑
τ∈T

τ

Proof. Part (i) follows from the fact that if σ ∈ S and x is in the interior of σ then
the image of [X] in Hn(X,X − {x}) is represented by σ. Applying part (i) to ∂X
gives part (ii). �

Next we recall from [McC75] that the concept of barycentric subdivision gener-
alizes from simplicial complexes to ball complexes.

Let K be a ball complex. For each cell σ of K, choose a point σ̂ in the interior
of σ and a PL isomorphism from σ to the cone C(∂σ) which takes σ̂ to the cone
point. With this data, K is a “structured cone complex” ([McC75, page 274]). By
[McC75, Proposition 2.1], K has a subdivision K̂ which is a simplicial complex with
vertices σ̂. A set of vertices in K̂ spans a simplex in K̂ if and only if it has the form

{σ̂1, . . . , σ̂k}
with σ1 ⊂ · · · ⊂ σk.

Recall that if S is a simplicial complex and v is a vertex of S then the closed star
st(v) is the subcomplex consisting of all simplices which contain v together with all
of their faces. The link lk(v) is the subcomplex of st(v) consisting of simplices that
do not contain v. The realization |st(v)| is the cone C(|lk(v)|).

Proposition A.2. Let K be a ball complex and let σ be a cell of K.
(i) For each cell τ with τ ) σ the subspace |lk(σ̂)| ∩ τ is a PL ball, and these

subspaces, together with the cells of K contained in ∂σ, are a ball complex structure
on |lk(σ̂)|.

(ii) For each cell τ with τ ⊃ σ the subspace |st(σ̂)| ∩ τ is a PL ball, and these
subspaces, together with the cells of |lk(σ̂)|, are a ball complex structure on |st(σ̂)|.

Proof. Let τ ) σ. |τ | inherits a ball complex structure from K, and |lk(σ̂)| ∩ τ
(resp., |st(σ̂)| ∩ τ) is the realization of the link (resp., star) of σ̂ with respect to
this structure. It is a PL ball because |τ | is a PL manifold and σ̂ is a point of its
boundary. �

Next we recall from [McC75] that the concept of dual cell generalizes from sim-
plicial complexes to ball complexes. For each cell σ of K, let D(σ) (resp., Ḋ(σ))
be the subcomplex of K̂ consisting of simplices {σ̂1, . . . , σ̂k} with σ ⊂ σi (resp.,
σ ( σi) for all i.

Two simplices s, s′ of a simplicial complex S are joinable if their vertex sets are
disjoint and the union of their vertices spans a simplex of S; this simplex is called
the join, denoted s ∗ s′. Two subcomplexes A and B of S are joinable if each pair
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s ∈ A, s′ ∈ B is joinable, and the join A ∗ B is the subcomplex consisting of the
simplices s ∗ s′ and all of their faces.

Lemma A.3. If K is a ball complex and σ is a cell of K then

lk(σ̂, K̂) = ∂σ ∗ Ḋ(σ).

The proof is immediate from the definitions.

Proposition A.4. Let (L,L0) be a ball complex pair such that |L| is a PL manifold
of dimension n with boundary |L0|. Let σ be a cell of L of dimension m.

(i) If σ is not a cell of L0 then |D(σ)| is a PL (n−m)-ball with boundary |Ḋ(σ)|
and with σ̂ in its interior.

(ii) If σ is a cell of L0 then |Ḋ(σ)| is a PL (n−m− 1)-ball and |D(σ)| is a PL
(n−m)-ball with |Ḋ(σ)| and σ̂ on its boundary.

Proof. For part (i), |lk(σ̂)| is a PL (n − 1)-sphere. Lemma A.3 and Theorem 1 of
[Mor70] imply that |Ḋ(σ)| is a PL (n −m − 1)-sphere, and hence |D(σ)| is a PL
(n−m) ball.

Part (ii) is similar. �
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