
To the left of the sphere spectrum1

§1. Bivariant theories & correspondences

1.1 Let E → F be a morphism of nice (eg symmetric) commutative ring spectra.

Definition The (enriched) category CorrE of E-correspondences has finite CW-
spectra X, Y as objects, with morphisms

[X, Y ]E := XD ∧ Y ∧ E ∼ [X, Y ∧ E] ;

where XD = [X, S] is the Spanier-Whitehead dual. If f ∈ [X, Y ]E and g ∈
[Y, Z]E then

g ◦ f : X → Y ∧ E → Z ∧ E ∧ E → Z ∧ E .

is the composition (1∧mE) ·(g∧1E) ·f . This is a symmetric monoidal category,
with a concretification enriched over graded abelian groups defined by taking
homotopy groups of its morphism spectra. The functor which is the identity on
objects, and the obvious map

[X, Y ∧ E] → [X, Y ∧ F ]

on morphisms, preserves the monoidal structure.

[[On the trip up the Rhine K. Hess explained to me that these are Kleisi cat-
egories (as described in MacLane’s category textbook; she credits HRM with
emphasizing their interest.]]

1.2 This is close to, but not quite the same as, the classical definition, which
starts with something like compact closed oriented manifolds as objects. The
graph of a map f : X → Y defines a class

(graph of f)!(1) ∈ HdimY (X × Y, k) ∼= H∗(X)⊗H∗(Y ) ∼= [X, Y ∧H(k)]

by Poincaré duality (taking k to be a field).

This construction encodes extra data (eg orientations) in a homotopy-theoretic
framework; it also fits nicely with duality. There are many variations:

• Restrict to a subclass of morphisms (eg algebraic maps)

• Invert objects, add kernels to projections, . . .

More generally, any suitable bivariant theory suggests an associated category
of correspondences; cf early work of Goresky-McPherson based on algebraic

1Based on recent (last 2-3 years) conversations with HRM, but with roots going back to
conversations of us both with John Moore, forty years ago. Maybe some old wine in a spiffy
new plastic bottle . . .
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K-theory; more recently Connes, Consani, and Marcolli use Kasparov’s KK-
theory to study noncommutative motives. I’ve been inspired by work of Bruce
Williams (on A-theory) and Dundas-Østvær (on TC).

§2 Change of rings

2.1 Tannakian theory studies the automorphism group of the monoidal functor

X 7→ XF : CorrE → CorrF ,

(or rather of its concretification), by trying to represent the functor defined by
varying F through ring spectra flat above it. There is a natural homotopy-
theoretic candidate for such a representing object, given by the comonoid

(F , F ∧E F )

in ring spectra; where
E → F → F

(thanks to JHS) is a factorization through a cofibration (ie, some kind of
Adams/bar/cobar construction) followed by a weak equivalence. This is an
analog of the Hopf algebroids in Adams’ blue book; comultiplication, for exam-
ple, is the composition

F ∧E F → F ∧E E ∧E F → F ∧E F ∧E F

= (F ∧E F ) ∧F (F ∧E F ) .

When E = S and F = MU this is classical, but I want to focus on cases at
the opposite extreme: Waldhausen A-theory (equivalently: the K-theory of the
sphere spectrum)

A = S ∨Wh → S

(Wh is Waldhausen’s Whitehead spectrum) and the topological cyclic homology

TC = S ∨ ΣCP∞−1 → S

of S (up to a profinite completion).

2.2 The Tannakian principle that a functor takes values in a category of repre-
sentations of its own automorphism group implies very generally that there is a
lift

(F ∧E F − Comod in CorrF )

��
CorrE

55

// CorrF .

This uses the ring homomorphism

E ∧S E → F ∧E F
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to define the composition

[X, Y ∧ E] → [X, Y ∧ E ∧ E] = [X, Y ∧ E] ∧E (E ∧ E) →

→ [X, Y ∧ F ] ∧F (F ∧E F ) → [X, Y ∧ F ] ∧F (F ∧E F ) .

In interesting cases this leads to a ‘descent’ spectral sequence

RHomF∧E∧F−Comod(XF , YF ) ⇒ [X, Y ]E ,

with Hess-style coinvariants [cf also Rognes] of a suitable cofibrant replacement
for XD ∧ Y ∧ F on the left.

[[Thanks to HRM and B. Richter for pointing out that Rognes’ Hopf-Galois ob-
jects are ring spectra with E∞ coproduct. This issue needs much more attention
in my fantasies.]]

2.3 Here’s a classical example:

Homology with Fp coefficients is a monoidal homological functor from the tensor
triangulated category D(Zp − Mod) to graded vector spaces. The Bockstein
operation

β : H∗(−, Fp) → H∗+1(−, Fp)

defines a coaction of the elementary Hopf algebra E(β), so we can describe the
mod p homology as a representation of a super-groupscheme Spec(E(β)) o G̃m,
and there is an associated ‘descent’ spectral sequence

RHomE(β)−Comod(H∗(X, Fp),H∗(Y, Fp) ⇒ RHomD(Zp)(X, Y ) .

There is a similar story for more general local rings A → k, going back to Tate
in the 50’s, with Hopf algebra

Tor∗A(k, k) = k ⊗L
A k

generalizing E(β) = Tor∗Zp
(Fp, Fp). In the equi-characteristic case, when A =

k ⊕ I, this Tor can be calculated as the homology of a bar construction; for a
square-zero extension it’s the cotensor algebra on I, suitably graded. A similar
but dual calculation identifies Ext∗A(k, k) as a tensor algebra on the dual of I.

§3 What good is this?

To explain what all this might be used for requires some digressions, which
unfortunately run in opposite directions:

3.1 The first comes the arithmetic theory of motives. Geometric motives
start with projective (complete) varieties over a nice field k, with morphisms
defined by correspondences coming from algebraic cycles; the Hom objects are
suitable quotients of

gr∗Kalg(X × Y )⊗Q .
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One constructs from this a semisimple Q-linear abelian tensor category of
pure motives, equivalent to the category of representations of some motivic
group-scheme.

There is a generalization to a category of mixed motives, built from quasi-
projective varieties (roughly, X−Y for X, Y complete). This is a nice category,
but no longer semisimple: it has nontrivial extensions. For example, in this
category projective space

Pn = 1⊕ L⊕ . . .⊕ L⊗n

decomposes into a sum of CW-cell analogs.

In the early 80’s Deligne proposed the study of an abelian category of arithmetic
or mixed Tate motives, associated to a very restricted class of geometric objects
over Z: iterated extensions of the L⊗n ∼ Z(n) as above. The existence of a
conjectured spectral sequence

Ext∗mtm(Z(0), Z(n)) ⇒ Kalg
2n−∗(Z)⊗Q

was proved recently by Deligne and Goncharov.

[[These notes very sloppily confuse triangulated categories of motives with their
(sometimes hypothetical) abelian hearts. Deligne’s work sees the cohomology
theories of arithmetic geometry (l-adic, p-adic, Archimedean . . . ) as analogs of
the Euler factors of zeta-functions; Voevodsky, on the other hand, enlarges the
field of play over a field by model and derived category techniques.]]

This seems strikingly like the Adams spectral sequence

Ext∗Ψ′s(K(S0),K(Sn)) ⇒ Im J∗

for K-theory: the target groups of the Deligne-Goncharov sseq are generated
(via Borel regulators) by the zeta values ζ(1 + 2k), while J2k−1 is roughly the
cyclic group

〈ζ(1− 2k)〉 ⊂ Q/Z .

It is tempting [JM, Newton §4.7] to interpret the Deligne-Goncharov theorem
as a change-of-rings spectral sequence for

Kalg(Z)⊗Q → Ktop(C)⊗Q .

3.2 The other direction of interest comes from differential topology (cf. Igusa’s
book, or the 06 Talbot workshop): the homotopy groups

π2i−1(Diff(D2n+1 rel ∂))⊗Q ∼= Kalg
2i+1(Z)⊗Q

of the group of diffeomorphisms of a high odd-dimensiona disk (fixing the bound-
ary) are isomorphic (via higher Reidemeister torsion invariants also related to
odd zeta-values) to the algebraic K-theory of the integers; more precisely,

BDiffc(Rodd) ∼ ΩWh .
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One wonders what the algebraic K-theory of Z could have to do with differential
topology; Waldhausen’s answer

K(Z)⊗Q ∼ K(S)⊗Q

is that rationally it’s the same as the K-theory of the sphere spectrum.

Turning this around, one can ask if the category of mixed Tate motives might be
detecting not the K-theory of the integers, but the K-theory of S. This suggests
regarding (some version of) the category of A-correspondences as a category of
base motives, characterized by a ring-change spectral sequence

RHom∗
S∧AS−Comod

(S0, Sn) ⇒ A∗(Sn)

associated to the Waldhausen-Bökstedt trace morphism A → S. What’s at
issue seems not to be the existence of such a spectral sequence, but its relation,
if any, to its purported arithmetic analog: that is, the existence of a functor
assigning something like an underlying space to a mixed Tate motive.

[[This hypothetical correspondence would seem to associate to a stable disk
bundle over the 2i-sphere, something like the Thom complex of a vector bundle
over the S2i+3-sphere. Perhaps someone with more geometric smarts than me
will be able to explain the anomalous factor of three . . . ]]

3.3 Arguably the strongest algebraic evidence for such a connection comes from
these categories’ motivic groups. This becomes clearer if we work not with A but
with the closely related topological cyclic homology of S. [There is a cofibration

j ∨ Σ−2kO → Wh → ΣCP∞−1

at regular odd primes [Rognes].]

I can’t say I know what to do about the negative-dimensional cell in the latter
spectrum, but it seems plausible that something like

S ∧TC S ∼ cotensor algebra on ΣCP∞−1

(and, correspondingly)

HomTC(S, S) ∼ tensor algebra on ΣCP∞−1

might be the case. The objects on the right are closely related to work of Baker
and Richter, who show that the homology of the ring-spectrum S[ΩΣCP∞+ ] is
the universal enveloping algebra of a graded free Lie algebra, dual to the algebra
of quasi-symmetric functions.

Over Q, this is about twice the size of the Hopf algebra of the pro-unipotent
group Deligne associates to the category of mixed Tate motives; it’s closer to the
algebra appearing in the Connes-Kreimer-Marcolli theory of renormalization.
The A-theoretic version has a Lie algebra closer to Deligne’s, whose generators
are expected to correspond somehow to the odd zeta-values.
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