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Abstract. This work sets up a cobordism theory for manifolds with corners

and gives an identification with the homotopy of a certain limit of Thom
spectra. It thereby creates a geometrical interpretation of Adams-Novikov

resolutions and lays the foundation for investigating the chromatic status of
the elements so realized. As an application Lie groups together with their left

invariant framings are calculated by regarding them as corners of manifolds

with interesting Chern numbers. The work also shows how elliptic cohomology
can provide useful invariants for manifolds of codimension 2.

1. Introduction

The study of manifolds with corners was originally developed by Cerf [Cer61]
Douady [Dou61] in the early 1960s, as a natural generalisation of the concept of
manifolds with boundary. Its root lay in the realms of differential topology, and
applications were quickly found, by Jänich [Jän68] and others, to the problem of
classifying actions of transformation groups on smooth manifolds. Once Novikov’s
version of the Adams Specral Sequence appeared in the mid 60s, it became clear
that some sort of manifolds with corners also provides a geometrical framework for
the realization of Adams resolutions, thereby extending Conner and Floyd’s work
relating the e-invariant and complex cobordism [CF66].

During the 1970s, several authors ([AS74][Woo76][Ste76][Kna78][Ray79][Oss82]
et al.) followed the geometrical approach to stable homotopy theory by investigating
the framed cobordism classes represented by various families of examples, such
as Lie groups and their natural framings. This perspective opened up exciting
prospects for a more geometrical analysis of Adams-Novikov phenomena, but these
were never properly pursued as the emerging BP machinery concentrated most
minds on the power of the algebraic approach.

This paper begins the programme of unifying these two themes. It determines
precisely what sort of manifolds with corners and cobordisms are needed to interpret
Adams-Novikov resolutions, and lays the foundation for investigating the chromatic
status of elements so realized.

Applications are given in various directions: any Lie group G of rank r emerges
as the corner of the fibre bundle G ×T (D2)r. The latter has interesting Chern
numbers which lead to an explicit representative of G in the cobar complex. The
established formulae apply to any G of arbitrary dimension and are illustrated by
some low dimensional examples.
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As another application the paper answers the question
what are the Chern numbers which determine β at the prime 3?

which was raised by H.R. Miller and I.M. Singer. Needless to say, the method of
the proof of 4.2.5 applies not only to β but to any homotopy class of the sphere.

Finally, elliptic cohomology is used to define a higher version of the e-invariant
which takes values in the group of divided congruences between modular forms. In
similarity to the Todd genus of manifolds with boundaries this ‘f -invariant’ comes
up as the elliptic genus of codimension 2 manifolds. In 4.3.2 it is shown that this
invariant detects the rich algebraic structure of the Adams-Novikov 2-line: a framed
manifold is corner of a (U, fr)3-manifold iff the f -invariant is integral.

The author would like to thank the referee for the historical background to the
subject which he incorporated into the introduction. He was not aware of [Jän68]
and the notion of an 〈n〉-manifold which turned out be the same as his earlier
defintion of a manifold with simplicially indexed corners. He also would like to
thank Matthias Kreck, Erich Ossa and Jack Morava for their encouragement and
for helpful discussions. He is especially indebted to Haynes Miller without whom
this work had not taken place.

2. Prerequisites

2.1. Manifolds with corners and 〈n〉-manifolds. A differentiable manifold with
corners ([Dou61][Cer61] et al.) is a topological ∂-manifold X together with a C∞-
structure with corners. That is, X is covered by charts

φ : Ω −→ R
n
+ = [ 0,∞ )n

which are homeomorphisms from open sets Ω onto open subsets of Rn+. Two charts
(φi,Ωi)i=1,2 are said to be compatible iff

φ2 φ
−1
1 : φ1(Ω1 ∩ Ω2) −→ φ2(Ω1 ∩ Ω2)

is a diffeomorphism. A C∞-structure with corners is a maximal atlas, meaning a
maximal system of compatible charts.

For any x ∈ Ω the number of zeros c(x) in φ(x) does not depend on the choice
of a chart (Ω, φ). A boundary hypersurface or a connected face of X is the closure
of a component of {x ∈ X|c(x) = 1}. A k-dimensional submanifold of X is a closed
subset S with the property that for each x ∈ S one can find a chart (Ω, φ) of X
with respect to which S ∩Ω becomes an open subset of Rk+ ∼= R

k
+ × {1}n−k ⊂ Rn+.

For some purposes this concept of a manifold with corners is too general. One
typically needs the information how the faces are globally pieced together. This
leads to the notion of an 〈n〉-manifold which we recall from [Jän68]: a manifold
with corners X is a manifold with faces if each x ∈ X belongs to c(x) different
connected faces. For such a manifold X any disjoint union of connected faces (for
short: a face) is a manifold with faces itself. An 〈n〉-manifold is a manifold with
faces X together with an ordered n-tuple (∂0X, ∂1X, . . . , ∂n−1X) of faces of X
which satisfy the following conditions:

(1) ∂0X ∪ . . . ∪ ∂n−1X = ∂X
(2) ∂iX ∩ ∂jX is a face of ∂iX and of ∂jX for all i 6= j.

We will refer to the number n as the codimension of X1.

1We allow ourselves to denote by X the manifold with faces as well as the total 〈n〉-manifold,

since this is unlikely to bring any confusion.
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There is a more categorical way to describe the data of an 〈n〉-manifold which
will be useful later. Let k = {0, 1, . . . , k − 1} be an ordinal number. Its partial
ordering ‘≤’ defines the category k which is generated by the arrows

0→ 1→ . . .→ k − 1.

Let 2n be the product of n copies of 2. Then an 〈n〉-manifold X gives rise to an
n-dimensional cubical diagram of topological spaces (for short: an 〈n〉-diagram)
by which we mean a functor from 2n to the category T op: for an object a =
(a0, . . . , an−1) ∈ 2n let a′ = (1, 1, . . . , 1)− a and set

X(a)
def
=

⋂
i∈{i| a≤e′i}

∂iX for a 6= 0′ and X(0′)
def
= X.

Here, (ei; i = 0, . . . , n−1) denotes the standard basis of Rn. For a morphism b < a
define X(b < a) as the obvious inclusion. Note that for all a ∈ 2n each X(a) itself
carries the structure of a 〈k〉-manifold with k =

∑
i ai since

∂X(a) =
⋃
b<a

X(b).

In this language the product of an 〈n〉-manifold X with an 〈m〉-manifold Y is
defined as the 〈n+m〉-manifold

X × Y : 2n+m ∼= 2n × 2m X×Y−→ T op× T op ×−→ T op.(2.1.1)

Example 2.1.1. Since a 〈0〉-manifold is a manifold without boundary and a 〈1〉-
manifold is a manifold with boundary we can create many examples for 〈n〉-
manifolds by using the product. For instance, the model space Rn+ becomes an
〈n〉-manifold this way. Also, any 〈n〉-manifold X can be regarded as an 〈n+ 1〉-
manifold when it is multiplied with the 〈1〉-manifold [1] = (∅ −→ ∗) which only
consists of one point.

Example 2.1.2. Let E → B be a smooth principle bundle with structure group G.
If X is a 〈n〉-manifold on which G acts smoothly then so is E ×G X. For instance,
let G be a compact Lie group of rank r and T be a maximal torus. Then T acts on
the product (D2)r of r-discs D2 by complex multiplication. Hence, the associated
fiber bundle G×T (D2)r is an 〈r〉-manifold. We will come back to this example in
3.2.3.

Example 2.1.3. In [Jän68] it was shown that the removal of a tubular neighbour-
hood of any submanifold creates a manifold of one codimension higher.

Any manifold with corners X which is embedded as submanifold in Rn+×Rm for
some m can be given the structure of an 〈n〉-manifold by

∂kX
def
= X ∩ ∂kRn+ × Rm for k = 0, . . . , n− 1.

Conversely, we are going to show that any 〈n〉-manifold can be embedded in a nice
way.

Definition 2.1.4. A neat embedding ι of an 〈n〉-manifold X is a natural trans-
formation X −→ R

n
+ × Rm for some m which satisfies

(1) ι(a) is an inclusion of a submanifold for all a ∈ 2n

(2) the intersections X(a)∩(Rn+(b)×Rm) = X(b) are perpendicular for all b < a.
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Example 2.1.5. The subset of the unit sphere of vectors with only nonnegative
coordinates is a neat embeddeding of a triangle as a 〈3〉-manifold in R3

+. The
reader may find it ammusing to picture a neat embedding of a square in R2

+×R as
a 〈2〉-manifold.

The concept of a collar generalizes to 〈n〉-manifolds as follows:

Lemma 2.1.6. Any 〈n〉-manifold X admits an 〈n〉-diagram C of embeddings

C(a < b) : Rn+(a′)×X(a) ↪→ R
n
+(b′)×X(b)

with the property that C(a < b) restricted to Rn+(b′) × X(a) is the inclusion map
id×X(a < b).

Proof. For each i = 0, . . . , n− 1 we may find a smooth vector field Vi defined on a
neighbourhood of ∂iX = X(e′i) in such a way that Vi restricted to X(a) points into
X(b) for all a ≤ e′i and a < b. Hence we obtain the required embedding C(a < b)
by integrating the vector fields {Vi}i∈I with I = {i | ei ≤ b− a}.

Proposition 2.1.7. Any compact 〈n〉-manifold admits a neat embedding in
R
n
+ × Rm for some m.

Proof. Choose a collar as in 2.1.6 and an embedding of X(0) in some Rm. This
gives an embedding of the neighbourhood Rn+ × X(0) in Rn+ × Rm. Now suppose
b ∈ 2n is given and an embedding

ι : O(ε)
def
=
⋃
a<b

[ 0, ε )n(a′)×X(a) ↪→ R
n
+ × Rm

′

is already constructed for some 0 < ε < 1. Let i be any differentiable injection of
X(b) into some Rm

′′
. Such a map can easily be provided by extending charts from

open subsets to all over X(b) with the help of a partition of unity and multiplying
them. Then the map

ι′ : [ 0, ε )n(b′)×X(b) ↪→ R
n
+ × Rm

′
× Rm

′′
; (t, x) 7→ (t+ b, 0, i(x)).

looks already good for interior points x of X(b). Hence, if ρ1, ρ2 is a partition of
unity subordinate to the covering

O(ε) ∪ ([0, ε)n(b′)×X(b)−O(ε/2)) = [0, ε)n(b′)×X(b).

then the map ρ1ι + ρ2 ι
′ is an embedding of [0, ε)n(b′) × X(b) into Rn+ × Rm

′+m′′

and restricts to the old one on
⋃
a<b[0, ε/2)(a′) ×X(a). This procedure furnishes

the desired embedding of X.

2.2. Cobordisms of 〈n〉-manifolds. Cobordism theories of 〈n〉-manifolds have
already proved useful in the classification of group actions on closed manifolds
[Jän68]. To interpret Adams-Novikov resolutions we need to introduce cobordism
relations which take the various structures on the normal bundles of each face
into account. For that purpose consider a neat embedding of a k-dimensional
〈n〉-manifold in some Rn+ × Rm. Its normal bundle ν turns X into an 〈n〉-diagram
in the category T opBOr of spaces over BOr with r = n+m−k. More precisely, for
each a ∈ 2n there is a map ν(a) : X(a) −→ BOr which sends a point x ∈ X(a) to
the subspace of the (

∑
ai+m)-dimensional vector space Tx(Rn+(a)×Rm) consisting

of all vectors which are perpendicular to the tangent space TxX(a). These maps
are compatible with the inclusions of faces. In order to describe orientations and
other structures on ν let A1, A2, . . . be a sequence of 〈n〉-diagrams of fibrations over
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BO1, BO2, . . . respectively. Suppose further that there are natural transformations
A1 → A2 → . . . of 〈n〉-diagrams (for short: 〈n〉-maps) which lift the usual inclusions
BO1 ↪→ BO2 ↪→ . . . . Under these circumstances we define

Definition 2.2.1. An Ar-structure on ν is an 〈n〉-map ν̄r : X −→ Ar in T opBOr .
Two Ar-structures ν̄r, ν̄r ′ are considered as equivalent if they are homotopic through
〈n〉-maps.

In detail such a homotopy of 〈n〉-maps looks as follows: for each a ∈ 2n there is
a homotopy h(a) : X(a) × I −→ Ar(a) from ν̄r(a) to ν̄′r(a) which commutes with
the maps to BOr and for all mophisms a < b the equality

Ar(a < b)h(a) = h(b)(X(a < b)× idI)

holds. An Ar-structure on ν defines an Ar+1-structure via the inclusion Rr ↪→ R
r+1.

Definition 2.2.2. An A-structure on X is an equivalence class of Ar-structures
on the normal bundle, two of such being identified if they agree for some r0 and
hence for all r ≥ r0.

Lemma 2.2.3. Two neat embeddings ι1 and ι2 of an 〈n〉-manifold X into Rn+×Rm
are isotopic through neat embeddings in Rn+ × R2m+n. Hence there are canonical
correspondences of A-structures for different embeddings.

Proof. An explicit isotopy h from ι1 to ι2 is given by the formula

ht
def
= ((1− t)ι1 + tι2, e

−1/(t−t2)ι1) ∈ Rn+ × Rm × Rm+n

for all t ∈ (0, 1) and h0 = ι1, h1 = ι2.

Let MA
∗ be the graded set of compact 〈n〉-manifolds neatly embedded in some

R
n
+×Rm together with an A-structure on their normal bundle. For any 〈n〉-diagram

D in a category C let ∂n−1D be the 〈n− 1〉-diagram

2n−1 ∼= 2n−1 × 1 id×0−→ 2n−1 × 2 ∼= 2n D−→ C

for n ≥ 1 and ∂−1C be the initial functor ∅ −→ C. Let InD be the 〈n+ 1〉-diagram

2n+1 ∼= 2n × 2 id×0−→ 2n × 1 ∼= 2n D−→ C.

For an 〈n〉-manifold X with an A-structure the operator ∂n−1 returns the back face
∂n−1X together with an ∂n−1A-structure. Note that any such X is the ∂n-boundary
of the 〈n+ 1〉-diagram InX but the latter is not an 〈n+ 1〉-manifold unless X is
empty.

Definition 2.2.4. Two objects X,Y of MA
∗ are said to be cobordant if there are

W,Z ∈MInA
∗ and a diffeomorphism of 〈n〉-manifolds with A-structures

M + ∂nX ∼= N + ∂nY.

Here, + denotes the disjoint union of manifolds.

Example 2.2.5. In the case of codimension n = 0 this reduces to the familiar
cobordism relation. For n = 1 an object of MA

∗ is a manifold X(1) together with
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an A(1)-structure which reduces to a given A(0)-structure on its boundary X(0).
A null cobordism of X is a 〈2〉-manifold W with structure

W =


W (0, 1) // W (1, 1)

W (0, 0)

OO

// W (1, 0)

OO

 −→


A(0) // A(1)

A(0)

=

OO

// A(1)

=

OO

 = IA

where the bottom row ∂1W coincides with X. That is, the boundary of W (1, 1)
decomposes intoX(1) = W (1, 0) and a partW (0, 1) which admits an A(0)-structure
as indicated in figure 1.

This cobordism relation for manifolds with boundaries does coincide with the
one given in [CF66][Sto68]p.9ff: when smoothing the corners of W away we obtain
a smooth manifold whose boundary is the join of two manifolds along their com-
mon boundary with appropriate structure of the normal bundle. A nullbordism of
the null bordism W , in turn, can be pictured as the region below W with A(1)-
structures on each of the three faces and compatible A(0)-structure on the back
face.

3. The cobordism groups

3.1. The Pontryagin-Thom construction. As in the case of codimension n = 0
one verifies that cobordance is an equivalence relation. Again similarly to the
standard case one shows that the equivalence classes constitute a commutative
monoid ΩA∗ with unit ∅.

Proposition 3.1.1. ΩA∗ is an abelian group.

Proof. Let ρ : I ↪→ R
1
+ × R1 be a neat embedding of the interval I = [0, 1] as

〈1〉-manifold. Then a neat embedding ι of X extends to the product

X × I
ι×ρ
↪→ R

n
+ × Rm × R1

+ × R1 ∼= R
n+1
+ × Rm+1

The last isomorphism twists the middle coordinates. The boundary ∂n(X×I) splits
into two copies X1, X2 of X. Equip X1 with the A-structure of X. It suffices to
extend the A-structure from X1 to an InA-structure on X × I since then X2 with
its induced A-structure is the inverse of X. Each face X(a) of X(b) admits a collar
by 2.1.6. Thus X(a < b) is a cofibration [Str68] and so is the inclusion of any union



ON COBORDISM OF MANIFOLDS WITH CORNERS 7

of faces [Lil73]. Since each Ar+1(a) −→ BOr+1 is a fibration we may lift the normal
map as indicated in the diagram

∂X(a)× I ∪X(a)× 0 //

��

Ar+1(a)

��
X(a)× I

6llllll
// BOr+1

one face after another starting with the part of lowest dimension.

We will identify the abelian group ΩA∗ with the homotopy of a spectrum. For
that we need a technical lemma which generalizes the desuspension theorem in
stable homotopy.

For a category C let ΣC be the suspension category which consists of the following
data: the objects of ΣC are the objects of C plus two more which we denote by
∗ and ∗′; the morphisms of ΣC are the morphisms of C, the identities of ∗,∗′ and
exactly one morphism ∗ → a,∗′ → a for any object a of C. If C contains an initial
object ∗ let C̃ be the full subcategory of C consisting of all objects except of the
initial. Under this condition C becomes a full subcategory of ΣC̃ by sending ∗ to ∗.

A functor X from C to a category D with initial object ∗D extends to X∗ : ΣC̃ →
D by the definition X∗(∗′) = ∗D. Dually, let ΣopC be the category (Σ(Cop))op and
X∗ : ΣopC̃op

op
→ D be the extension X(∗′) = ∗D if ∗D is the terminal object of D.

Lemma 3.1.2. Let X be an 〈n〉-spectrum. Then the spectrum ΣnholimX∗ is nat-
urally homotopy equivalent to hocolimX∗ in the category of spectra S.

Since hocolimX∗ is the homotopy cofiber of

hocolim a6=0′X(a) −→ X(0′)

it will be denoted by (X, ∂X) in the sequel. Before giving the proof of the lemma
we observe that the considered homotopy (co)limit is the outcome of successive
(co)fibers.

Sublemma 3.1.3. Let ∂n−1X be the composite of

2n−1 ∼= 2n−1 × 1 id×1−→ 2n−1 × 2 ∼= 2n

with X. Then we have a homotopy equivalence

holim Σ2̃nX
∗ ∼= hofiber (holim

Σ2̃n−1(∂n−1X)∗ −→ holim
Σ2̃n−1(∂n−1X)∗).

Dually, hocolimX∗ is homotopy equivalent to the homotopy cofiber of

hocolim (∂n−1X)∗ −→ hocolim (∂n−1X)∗.

Proof. The right side simply rearranges the homotopy (co)limit of the left side.

Proof of 3.1.2: The case n = 1 is the well known fact that the suspension of the
homotopy fiber gives the homotopy cofiber. Now assume the equivalence be true
for some n− 1 ≥ 0. Then the sublemma yields

holimX∗ ∼= hofiber (holim (∂n−1X)∗−→holim (∂̄n−1X)∗)
∼= Σ−1hocofiber (Σ−n+1hocolim (∂n−1X)∗−→Σ−n+1hocolim (∂̄n−1X)∗)
∼= Σ−nhocolimX∗
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Let (Rn+)+ denote the one-point compactification of Rn+ and letX be an 〈n〉-diagram
of pointed spaces. Then the subspace

〈n〉 -T op+((Rn+)+, X) ⊂
∏
a∈2n T op+(Rn+(a)+, X(a))(3.1.1)

consisting of all 〈n〉-maps is itself a pointed space.

Lemma 3.1.4. The pointed space holimX∗ is naturally homotopy equivalent to
〈n〉 -T op+((Rn+)+, X) .

Proof. We first give an another description of 〈n〉 -T op+((Rn+)+, X) in terms of
limits: let Pn be the full subcategory of (2n)op × 2n consisting of pairs (a, b) with
a ≤ b. Define a functor RX from Pn to T op+ by

RX(a, b)
def
= T op+(Rn+(a)+, X(b))

and RX((a, b)→ (c, d)) be the map

f 7→ (Rn+(c)+ R
n
+(c≤a)+

−→ R
n
+(a)+ f−→ X(b)

X(b≤d)−→ X(d))

Then it is easy to see that limPn RX coincides with 〈n〉 -T op+((Rn+)+, X).
Next assume that the lemma is true for all 〈n− 1〉-pointed spaces and n−1 ≥ 0.

Write ev0 for the evaluation-at-0 map. Since the previous sublemma also holds for
pointed spaces instead of spectra we get by induction

holimX∗ ∼= hofiber (limR∂n−1X −→ lim R∂̄n−1X)
∼= lim ( lim

Pn−1
T op+(R+

n (en−1), R ∂̄n−1X) ev0→ lim
Pn−1

R ∂̄n−1X ← lim
Pn−1

R∂n−1X)

∼= lim
(a,b)∈Pn−1

lim (T op+((Rn+)+(a+ en−1), X(b+ en−1))

ev0→ T op+((Rn+)+(a), X(b+ en−1))← T op+((Rn+)+(a), X(b))
∼= lim

Pn
RX ∼= 〈n〉 -T op+(Rn+, X).

The second equivalence uses the fact that ev0 is a fibration with contractible total
space. The third one is a consequence of the exponential law and a rearrangement
of the limit.

Before coming to the main result of this section some words about the category
of 〈n〉-spectra are necessary. The category of spectra S over a fixed universe is
enriched over T op+. That is, the morphism sets are pointed topological spaces (see
[Elm88]). Hence, the category 〈n〉 -S consisting of strictly commuting 〈n〉-diagrams
in S can also be enriched over T op+ as in (3.1.1).

Theorem 3.1.5. Let MA be the 〈n〉-diagram of Thom spectra of A. Then the
Pontryagin-Thom construction gives isomorphisms of groups

ΩA∗ ∼= π∗(MA, ∂MA) ∼= π∗(〈n〉 -S((Rn+)+,MA))

Proof. First note that the previous lemmas give isomorphisms of groups for all
k ≥ 0

πk(MA, ∂MA) ∼= πk−n(holimMA∗) ∼= colim rπk−n+r(holimMA∗r)
∼= colim rπk−n+r(〈n〉 -T op+((Rn+)+,MAr)) ∼= πk−n(〈n〉 -S((Rn+)+,MA))

Next suppose X is a k-dimensional 〈n〉-manifold with an A-structure which is nicely
embedded in Rn+ × Rm. Then its normal bundle ν lies in Rn+ × Rm × Rn+m. The
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set ν≤ε of normal vectors of length smaller than some ε > 0 are mapped under
the addition map (a, b) 7→ a + b to Rn+ × Rm. In fact, if ε is assumed to be
small enough, this gives an inclusion ν≤ε ↪→ R

n
+ × Rm. Hence the collapse map

(Rn+)+∧Sm ∼= (Rn+×Rm)+ −→ ν≤ε/ν=ε is well defined. When multiplying with 1/ε
we may compose this map with the structure map Mν →MAr for r = n+m− k.
Since each face Rn+(a)+ ∧ Sm is sent to MAr(a) we obtain an object θ(X) in
πk−n+r(〈n〉 -T op+((Rn+)+,MAr)). An InA-manifold

W ↪→ R
n+1
+ × Rm ∼= R

n
+ × Rm × R1

+

defines a null homotopy (Rn+)+ ∧ Sm ∧R+
1 −→MA under this construction. Simi-

larly, taking an isotopy shows that the class of θ is independent of the embedding of
X. Hence, θ induces a cobordism invariant ΩAk −→ πk(MA, ∂MA) which is easily
verified to be a homomorphism. We next show that θ is epic. Let

g : (Rn+)+ ∧ Sm −→MAr

be an 〈n〉- map and let MOr,s be the Thom space of the canonical bundle over
the Grassmannian space Gr,s of r-dimensional subvector spaces in Rs. Then the
composite of g with the projection to MOr already maps to MOr,s for some s. Call
this map h. Since locally the inclusion Gr,s ⊂ (MOr,s −∞) looks like Rd ⊂ Rl the
restriction of h to U = h−1(Rl) ⊂ Rn+ × Rm can be extended to an open subset of
R
n+m. Hence, the usual local approximation theorem applies and we may assume

that h is differentiable on h−1(MOr,s −∞). The regular values of h in Rl/Rd are
dense even when h is restricted to U ∩ (Rn+(a) − ∂Rn+(a)) × Rm for each a ∈ 2n.
Let yj be a null sequence in Rl such that yj mod Rd are regular values of h for
all a ∈ 2n. Then the sequence hj = h − yj shows that h may be deformed to be
transverse to Gr,s for all a. Now the preimage X = h−1Gr,s is an 〈n〉-manifold.
The transversal embedding of X in Rn+ × Rm can again be deformed to satisfy
the orthogonality condition with the help of 2.1.7. The obvious A-structure of X
completes the construction of the preimage of g. The injectivity is shown in a
similar fashion.

For n = 0 the theorem reduces to the original Thom isomorphism [Tho54] based on
A-bordism. In the case n = 1 and A = (EU −→ BU) we obtain the (U, fr)-bordism
of Conner and Floyd [CF66]: the pair (MA, ∂MA) is the homotopy cofiber ΣMU
of the unit S0 −→ MU . Moreover, when we define As to be the s-fold product of
the 〈1〉-diagram (EU −→ BU) as in (2.1.1) and set ΩA

s

∗ = Ω(U,fr)s

∗ then we have

Corollary 3.1.6. Ω(U,fr)s

k
∼= πk−s(

∧s
MU).

Proof. The homotopy equivalence (MAs, ∂MAs) ∼=
∧s ΣMU is easily obtained by

induction with the help of 3.1.3.

The geometric interpretation of π∗(MA, ∂MA) generalizes to the homology and
cohomology groups of pairs of spaces (Y,X), X ⊂ Y closed, in the standard way:
an element of ΩAk (Y,X) is represented by a k-dimensional singular InA-manifold in
Y with ∂n-boundary in X. Note that an InA-manifold with empty ∂n-boundary
provides the same data as an A-manifold. For smooth manifolds Y ⊂ RN without
boundary the elements of ΩkA(Y,X) can be interpreted as proper A-oriented maps
f : Z −→ Y with image in Y −X. That is, Z is an 〈n〉-manifold nicely embedded
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in some Rn+ × Rm and the stable normal 〈n〉-bundle of

f × ι : Z −→ Y × Rn+ × Rm

is A-structured (see [Qui71][Dol78] for the codimension 0 case).

3.2. Adams-Novikov filtrations. In the last paragraph we saw that an 〈n〉-
diagram A of structure spaces over BO gives rise to a cobordism theory ΩA∗ which
can be identified with the homotopy of the spectrum (MA, ∂MA). To analyse the
latter we are going to set up a filtration.

Definition 3.2.1. A resolution of A is a sequence (A = An, An+1, An+2, . . . ) with
(1) As is an 〈s〉-diagram of structure spaces over BO
(2) ∂s−1A

s = As−1 for all s ≥ n.

Of course, any resolution of A = An gives rise to a resolution of An+k for all
k ≥ 0 and for ∂n−k · · · ∂n−1A=An−k in the obvious way. A resolution defines a
filtration by

F s,k+s def= im(∂n+s−1∂n+s−2 · · · ∂n : ΩA
n+s

k+s −→ ΩAk ).

Example 3.2.2. The 〈1〉-diagram A1 = (EU → BU) can be resolved by the se-
quence Ak = (A1)k for k = 1, 2 . . . . The associated filtration of the framed bordism
groups Ωfr∗ ∼= πst∗ coincides with the Adams-Novikov filtration: the map

Ω(U,fr)s+1

k+1
∼= πk−s((

∧s
MU) ∧MU) −→ πk−s(

∧s
MU ∧ S0) ∼= Ω(U,fr)s

k

is the boundary map ∂s.

We stay for a while with the classical Adams-Novikov filtration based on MU
and draw some more corollaries of our theorem. Let G be a compact, connected Lie
group. Its tangent bundle can be trivialized by choosing a basis of its Lie algebra
g and using left multiplication to translate the basis to the other tangent spaces.
This trivialization only depends on the choice of an orientation of g and is usually
called the left invariant framing L of G. Hence, any oriented and compact G gives
rise to an element of the framed bordism group. The following result is due to
Atiyah and Smith for r ≤ 2 and to Knapp for the general case.

Corollary 3.2.3. [AS74][Kna78] Any compact, connected and oriented Lie group
of rank r has filtration r.

Proof. Choose a maximal torus T and an isomorphism of T with a product of circles
(S1)r. Then its Lie algebra t ∼= R

r is contained in g and we may assume that the
left invariant framing of G comes from an extension of the standard basis of Rr

to a basis of g. Hence, if G is considered as a right principal bundle p over the
homogeneous space G/T of left cosets then the framing of the tangents along the
fibre G×T T (S1)r ∼= G×Rr coincides with the left translation of the basis of t and
there is a splitting of trivialized bundles

TG ∼= p∗(T (G/T))⊕G×T T (S1)r.(3.2.1)

Next extend the action of T on (S1)r to the product (D2)r ⊂ Cr in the standard
way. Since (D2)r is T-equivariantly contractible the bundle along the fibres of
G×T (D2)r is isomorphic to the sum of complex line bundles

p∗(G×T Cr) = l0 ⊕ l1 ⊕ · · · ⊕ lr−1.
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Thus the splitting

T (G×T (D2)r) ∼= p∗(T (G/T))⊕G×T T (D2)r(3.2.2)
∼= p∗(T (G/T)⊕ l0 · · · ⊕ lr−1(3.2.3)

defines a Ur-structure which is compatible with the framings on the faces. Summa-
rizing, we gave a (U, fr)r-structure to the 〈r〉-manifold G×T (D2)r in a way that its
corner is the framed manifold G. Thus the result follows from 3.1.6 and 3.2.2.

The left invariant framing of G can be twisted by elements α of K̃O
−1
G as follows:

since G is compact the element α gives rise to an automorphism α̃ of the trivial
bundle G×RN for some N . Choosing N large enough we may embed G into Rk+N

with trivialized normal bundle and compose the framing of ν with α̃. The resulting
reframed G will be denoted by [G,Lα].

Corollary 3.2.4. [Kna78] [G,Lα] has filtration i if α lies in the image of the map

p∗ : K̃O
−1

(G/Ti) −→ K̃O
−1
G for some subtorus Ti ⊂ T of G.

Proof. First note that (3.2.1) really is an Ti-equivariant splitting of the left in-
variantly trivialized tangent bundle into trivialized bundles. Hence, for a faithful
representation G ⊂ O(n) ⊂ Rn2

the normal bundle will be Ti-equivariantly trivial-
ized if n is large enough. Moreover, the automorphism α̃ acts on the trivial bundle
G×RN for N = n2− k in a Ti-equivariant fashion by assumption. Thus there is a
T
i-equivariant trivialization of the reframed TG⊕G×RN . When dividing out the

action and framing G ×Ti (TS1)i as usual we end up with a new framing of G/Ti

which makes

TG⊕G× RN ∼= p∗(TG/Ti)⊕G×Ti T (S1)i ⊕G× RN(3.2.4)

into an isomorphism of framed bundles. Now we may proceed as in 3.2.3.

The classical Adams-Novikov spectral sequence generalizes to arbitrary resolutions
(As)s=0,1,... as follows: For any 〈s+ 1〉-diagram As+1 let ZAs+1 be the 〈s+ 1〉-
diagram ∂sA

s+1 × [1] where ∂s was defined in 3.1.3 and [1] is the 〈1〉-diagram
(∅ −→ ∗) as in 2.1.2. Then an 〈s〉-manifold X with As-structure gives rise to the
ZAs+1-manifold j(X) = X × [1] since the normal bundle of X × [1] comes with a
structure map to

As × [1] = ∂sA
s+1 × [1] −→ ∂sA

s+1 × [1] = ZAs+1.

Furthermore, any ZAs-manifold Y may be viewed as As-manifold k(Y ) in the
obvious way.

Proposition 3.2.5. The triangle

ΩA
s

∗
j

##FFFFFFFF ΩA
s+1

∗
∂soo

ΩZA
s+1

∗

k
::vvvvvvvv

defines an exact couple. The associated first quadrant spectral sequence with Es,t1 -
term ΩZA

s+n

t for s, t ≥ 0 admits a monomorphism

0 −→ F s,t/F s+1,t+1 −→ Es,t∞ .
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Proof. It is not hard to show the exactness of the triangle in pure geometrical terms.
However, since we have 3.1.5 and 3.1.3 available we only need to observe

hocofiber (hocolim (MAs)∗
j−→ hocolim (MZAs+1)∗)

∼= hocofiber (hocolim (∂sMAs+1)∗ −→ hocolim (∂sMAs+1)∗)
∼= hocolim (MAs+1)∗.

The second statement is clear.

Example 3.2.6. Let B be a 〈1〉-diagram of structure spaces with contractible
B(0). Then A×B(0) can be resolved by the sequence As = A×Bs and

ΩZA
s

∗
∼= MB(1)∗((MA, ∂MA) ∧

∧s ΣMB(1))

is an π∗MB(1)-module. In this case the proposition is a geometric description of
the Adams-Novikov spectral sequence [Ada74] for (MA, ∂MA) based on MB(1).

4. Invariants of 〈n〉-manifolds

4.1. Genera of 〈n〉-manifolds and E2-invariants. The homotopy category of
〈n〉-spectra is symmetric monoidal: the product of 〈n〉-spectra E and F is defined
by the composite

2n ∆−→ 2n × 2n E×F−→ S × S ∧−→ S.

In detail, let L denote the isometry operad as defined in [LMS80] and set

(X ∧ Y )(a ≤ b) def= L(2)o (X(a ≤ b) ∧ Y (a ≤ b)).

Then X ∧ Y gives a new strictly commutative 〈n〉-diagram in S. Hence, it makes
sense to talk about 〈n〉-ring spectra and ring maps between them.

Definition 4.1.1. An A-orientation of an 〈n〉-ring spectrum E is a ring map
g : MA −→ E. Any such gives rise to a genus of A-manifolds by which we mean
the associated map in homotopy

g∗ : ΩA∗ ∼= π∗(MA, ∂MA) −→ π∗(E, ∂E).

If E is A-oriented then any compact k-dimensional A-manifold X admits a fun-
damental class

[X]E
def
= g∗(X

id−→ X) ∈ (E, ∂E)k(X) = πk(X+ ∧ (E, ∂E))

and its dual class

1EX
def
= g∗(X

ĩd−→ (X − ∂X)) ∈ (E, ∂E)0(X, ∂X) = Ho-S((X, ∂X), (E, ∂E)).

Here, the map ĩd is the identity outside a collar of X and compresses the collar
slightly so that X fits into X − ∂X. In particular, we have for π : X −→ pt the
equality

π!(1MA
X ) = X.

Remark 4.1.2. At a glance it seems to be unusual that a manifold X with bound-
ary admits an absolute fundamental class rather than just a relative one. However,
observe that the stable normal bundle of its boundary maps to ∂E. Hence, the
theory (E, ∂E) simply treats X as a manifold without boundary.
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Example 4.1.3. Let E be a complex oriented theory and let E〈n〉 be the 〈n〉-
spectrum given by the outer n + 1-fold product of (S0 −→ E) as in (2.1.1). Then
the orientation g : MU 〈n〉 −→ E〈n〉 defines a complex genus

g∗ : Ω(U,fr)n

∗ ∼= π∗(MU 〈n〉, ∂MU 〈n〉) −→ π∗(E〈n〉, ∂E〈n〉).

We would like to compute rationalized complex genera in terms of ordinary
singular cohomology. For that recall from [Qui71] that any complex oriented theory
E comes with a formal group law F̂E which describes the behaviour of the Euler
class for a tensor product of complex line bundles l1 and l2

eE(l1 ⊗ l2) = F̂E(eE(l1), eE(l2)).

Rationally, a formal group law admits a unique strict isomorphism expE(x) to the
additive formal group law F̂a(x, y) = x+ y. The latter is induced by the standard
orientation of rational singular homology HQ

ga : MU −→ HQ −→ HQ ∧ E ∼= SQ ∧ E.

For j = 0, 1, . . . , n− 1 let (x(j)
i ) be the system of formal Chern roots in the stable

decomposition

TX ∼= TX(0) ⊕ TX(1) ⊕ · · · ⊕ TX(n−1)

of the (U, fr)n-manifold X. Then the power series QE(x) = x/expE(x) generates
a sequence of Chern classes

KE(TX)
def
=

n−1⊗
j=0

(QE(x(j)
1 )QE(x(j)

2 ) · · ·QE(x(j)
k ))

which lies in
⊗n−1

j=0 H
∗(X;π∗E ⊗ Q) ∼= H∗(X;π∗

∧n−1
j=0 E ⊗ Q). Moreover, when

setting

K̃E(TX)
def
=

n−1⊗
j=0

((QE(x(j)
1 )− 1)(QE(x(j)

2 )− 1) · · · (QE(x(j)
k )− 1))

we even obtain a relative cohomology class which coincides with the absolute one
when viewed as an element of H∗(X;π∗(E〈n〉, ∂E〈n〉)⊗Q).

Proposition 4.1.4. In π∗(E〈n〉, ∂E〈n〉)⊗Q we have the formula

g∗(X) =
〈
KE(TX), [X ]

g
〈n〉
a

〉
=
〈
K̃E(TX), [X, ∂X ]

〉
.

Proof. It is enough to consider the universal case E = MU . Since the map

α : ΩU
n

∗ −→ Ω(U,fr)n

∗

is a rational surjection we can find a closed compact Un-manifold X̂ with the
property α(X̂) = NX for some natural number N . It is well known how to compute
the genus of closed manifolds: the Riemann-Roch formula (see [Dye69]) shows

α(X̂) = α(
〈
KMU (TX̂), [ X̂ ]

〉
) =

〈
K̃MU (TX̂), [ X̂ ]

〉
.

Hence, it suffices to show the equality〈
K̃MU (TX̂), [ X̂ ]

〉
= N

〈
K̃MU (TX), [X, ∂X ]

〉
.
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Let W be a (U, fr)n-bordism between
X̂ and NX as pictured for n=N=1 in
figure 2. Then the boundary of W con-
sists of the manifold X̂ and a com-
ponent Y . The stable tangent bun-
dle of Y is the union of N copies of
−TX and a part which is classified by
∂(EU −→ BU)n. Hence, we compute
with Stokes’s theorem〈

K̃MU (TX̂), [ X̂ ]
〉
−N

〈
K̂MU (TX), [X, ∂X ]

〉
=

〈
K̃MU (TX̂), [ X̂ ]

〉
+
〈
K̂MU (TY ), [Y ]

〉
=

〈
K̃MU (TW )|∂W , [ ∂W ]

〉
=
〈
dK̃MU (TW ), [W ]

〉
= 0

We will see that sometimes it is convenient not to distinguish between a (U, fr)n-
manifold X and X + Y if Y has a (U, fr)n−1 × U -structure. For this purpose we
define for any oriented 〈n〉-spectrum E the map gQ/Z∗ to be the genus g∗ with values
in the quotient

π
Q/Z
∗ E

def
= π∗(E, ∂E)⊗Q/k(π∗(ZE, ∂ZE)).

The functor Z and the map k were defined in the paragraph before 3.2.5.

Example 4.1.5. Let g∗ : Ω(U,fr)
∗ −→ K〈1〉 be the genus which comes from the

complex orientation of K-theory as in 4.1.3. Then for positive even n the map

g
Q/Z
∗ : Ω(U,fr)

n −→ πQ/Zn (K〈1〉) ∼= Q/Z

sends a (U, fr)-manifold to its Todd genus by 4.1.4. Taking values in Q/Z has the
advantage that the composite

e : Ωfrn−1 Ω(U,fr)
n

∂1oooo gQ/Z // Q/Z

is well defined: by 3.2.5 any two lifts of a framed manifold only differ by a closed U -
manifold with integral Todd genus. It is well known [CF66] that this map coincides
with the Adams e-invariant.

We are going to show that for complex genera the image of gQ/Z∗ already takes
values in the Adams-Novikov E2-term for the sphere based on the theory complex
oriented theory E

E2[E] ∼= ExtE∗E(π∗E, π∗E) ∼= H∗(π∗E,E∗E).

For that 1 ∈ π0E is not a torsion element. Then E admits a map r : E −→ HQ
with r∗(1) = 1 and we have

Proposition 4.1.6. There is a factorization

g
Q/Z
∗ : Ω(U,fr)n

k

j−→ En,k2 [MU ]
E2[g]−→ En,k2 [E] r∧1−→ π

Q/Z
k (E〈n〉).

If E is flat and has a torsion free coefficient ring then the last map r∧1 is injective.
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Proof. Recall from [Lau99] 3.1 that the group of cycles C ⊂ ΩZ(U,fr)n

∗ of E1[MU ]
makes the diagram

Ω(U,fr)n

∗
j //

��

C

r∧1

wwnnnnnnnnnnnnnn

��
Ω(U,fr)n

∗ ⊗Q
j // ΩZ(U,fr)n

∗ ⊗Q

(4.1.1)

commutative. Thus the desired factorization follows from the naturality of the
Adams-Novikov spectral sequence. Moreover, the additional conditions on the the-
ory E ensure that the right vertical and hence the diagonal arrow stay injective
when MU is replaced by E.

For later purpose we mention the

Lemma 4.1.7. Let t be the endofunctor of 2×2 which twists the two factors. Then
for any even dimensional (U, fr)2-manifold X we have

g
Q/Z
∗ (X) = −gQ/Z∗ (t∗X).

Proof. The manifolds X and −t∗X have the same framed corner. Hence, by 3.2.5
the boundaries ∂1X and −∂1t

∗X can only differ by an odd dimensional closed U -
manifold which bounds. Thus, again by 3.2.5 the manifolds X and −t∗X coincide
up to a Z(U, fr)2-manifold which vanishes in the group π

Q/Z
∗ E〈2〉.

4.2. Chromatic names of framed Lie groups and the Chern numbers
which determine β. In the last paragraph we have laid the foundation for inves-
tigating the chromatic status of framed manifolds. Now we are able to identify a
left invariantly framed Lie group G with the corresponding element in the E2-term
of the Adams-Novikov spectral sequence based on the complex oriented theory E.

In 2.1.2 and 3.2.3 we regarded G as principal torus bundle over G/T. The
cohomology of G/T is well known [BH58]

H∗(G/T,Q) = H∗(BT,Q)/H̃∗(BT,Q)W (G)

and the equation

〈α1 · . . . · αm, [G/T ]〉 = |W (G) |.

holds. Here, α1, . . . , αm are the positive roots and W (G) is the Weyl group of
G. For j = 0, . . . , r − 1 let xj be the first Chern class of the complex line bundle
lj = G ×T C where T ∼= (S1)r acts on C with its jth factor as in 3.2.3. Then the
polynomial

K̃E(G×T Cr))/e
def
=

r−1⊗
j=0

(QE(xj)− 1)/xj

defines an element in the cohomology ring of G/T with coefficients in the range of

π ∗ E ⊗ · · · ⊗ π∗E ⊗Q ∼= π∗(
∧r

E)⊗Q −→ π∗(E〈n〉, ∂E〈r〉)⊗Q.

Corollary 4.2.1. With the above notation we have

g∗(G×T (D2)r) =
〈
K̃E(G×T Cr)/e, [G/T ]

〉
.
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Proof. Write X for the 〈r〉-manifold G ×T (D2)r. Let s : G/T −→ X be the zero
section and let x(j) be the Chern roots of TX. By (3.2.2) we know that the tangent
bundle of X splits into p∗(G ×T Cr) and a part which is trivializable. Hence we
have x(j) = p∗xj and

K̃E(TX) = p∗(K̃E(G×T Cr)).
Moreover, the pair (X, ∂X) defines the Thom space of l0 ⊕ · · · ⊕ lr−1. Let τ be its
Thom class. The element ρ = K̃E(G ×T Cr)/e tries to be the inverse of K̃E(TX)
under the Thom isomorphism:

s∗(p∗(ρ) ∪ τ) = ρ ∪ e = s∗K̃E(TX).

In fact, when taking coefficients in π∗(E〈r〉, ∂E〈r〉) ⊗ Q we know from 4.1.4 that
the fundamental class [X, ∂X ] comes the absolute class [X ]

g
〈r〉
a

and hence the last
equality yields 〈

K̃E(TX), [X, ∂X]
〉

= 〈p∗(ρ) ∪ τ, [X, ∂X ]〉 .

Now compute

g(G×T (D2)r) =
〈
K̃E(TX), [X, ∂X ]

〉
= 〈p∗(ρ) ∪ τ, [X, ∂X ]〉

= 〈p∗(ρ), [X, ∂X ] ∩ τ〉 = 〈p∗(ρ), s∗[G/T ]〉 = 〈ρ, [G/T ]〉

=
〈
K̃E(G×T Cr)/e, [G/T ]

〉

We are now well equipped to track down G in the Adams-Novikov spectral
sequence. It is convenient to work locally at a prime and set E = BP since BP
captures all necessary information and there are better formulae for its exponential.

Example 4.2.2. We check that Sp(2) is β at the prime 3 [Kna78]. The Weyl
group of Sp(2) is the wreath product of Z/2 with the symmetric group S(2) and
operates on the xi by permutations and change of signs. Hence, only the products
x1x

3
2, x2x

3
1 do not vanish and differ by a sign in H8(Sp(2)/T,Q). Since the positive

roots are x1 + x2, x1 − x2, 2x1, 2x2 we see that x3
1x2 is dual to [Sp(2)/T ]. The

BP -exponential takes the form (see [Rav86] appendix 2)

exp(x) = x−m1x
3 + 3m2

1x
5 mod (x6)

Using the first BP -law 3m1 = v1 we obtain

(Q(x)− 1)/x = v1x/3− 2v2
1x

3/9 mod (x4)

and thus

g∗(Sp(2)×T (D2 ×D2)) = −2/27(v1 ⊗ v2
1 − v2

1 ⊗ v1).

It suffices to show that this element does not vanish in

π
Q/Z
12 BP 〈2〉 ∼=

Q

〈
v1 ⊗ v2

1 , v
2
1 ⊗ v1, v

3
1 ⊗ 1, 1⊗ v3

1

〉
BP12BP +Q 〈v3

1 ⊗ 1, 1⊗ v3
1〉

.

Recall from [Rav86] that BP∗BP is a polynomial algebra in generators t1, t2, . . .
and that there is the second BP -law 1 ⊗ v1 = ηR(v1) = v1 + 3 t1. In particular,
when adding 2(1⊗ v1)3/81 = 2(v3

1/81 + v2
1t1/9 + v1t

2
1/3 + t31/3) to

−2/27(v1 ⊗ v2
1 − v2

1 ⊗ v1) = −2(t21v1/3 + t1v
2
1/9)
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we have

g
Q/Z
∗ (Sp(2)×T (D2 ×D2)) = 2t31/3 ∈ π

Q/Z
12 BP 〈2〉.

Next we observe with 4.1.7 that any element in the image of gQ/Z∗ is a multiple of
v1 ⊗ v2

1 − v2
1 ⊗ v1 and hence of t31. Moreover, it is easy to see that the map

κ : im(gQ/Z∗ ) −→ Q/Z(3)
∼= Z3∞ ; a t31 7→ a(4.2.1)

is well defined. Thus we may conclude with 4.1.6 that Sp(2) has the order 3 and
coincides with β up to a sign.

Remark 4.2.3. There is an alternative way to argue here: we can use the commu-
tative square (4.1.1) and compute the corresponding element in the reduced cobar
complex

j(−2(t21v1/3 + t1v
2
1/9)) = −2(1|t21v1/3 + 1|t1v2

1/9) = −2(t1|t21 + t21|t1) = 2b10

Then the formula 5.1.20 of [Rav86] says that Sp(2) and β have the same image in
Ext2(BP∗/I2) which in turn means that they must coincide. It is interesting to
note that it is always possible to rewrite the invariant gQ/Z so that it returns an
(integral) representative of the framed manifold in the reduced cobar complex.

Example 4.2.4. We next look at the Lie group SU(3). Its Weyl group S(3) con-
sists of 6 elements and positive roots are x1−x2, x1−x3, x2−x3. Hence, we see as
above that x2

1x2 is dual to the fundamental class of SU(3)/T. At the prime p = 2
the BP -exponential takes the form

exp(x) = x−m1x
2 + 2m2

1x
3 + (−m2 − 5m3

1)x4 mod (x5)

and thus

g(SU(3)×T (D2 ×D2)) = m2
1 ⊗ (m2 + 2m3

1)− (m2 + 2m3
1)⊗m2

1

= 1/8(v2
1 ⊗ (v2 + v3

1)− (v2 + v3
1)⊗ v2

1)
= 1/8(−v4

1t1 + 3v3
1t

2
1 + 2v2

1t2 − 4v1v2t1 − 4v2t
2
1 + 4v2

1t
3
1)

To see the order of this element one may add any term of the form

a(1⊗m5
1) + b(1⊗m2

1m2)

Choosing a = 2, b = −1 we see that our invariant takes the value

g
Q/Z
∗ (SU(3)×T (D2 ×D2)) = −1/2 (11v1t

4
1 + 5v3

1t
2
1) ∈ πQ/Z10 BP 〈2〉

and thus is easily seen to have the order 2. As there is only one element of second
filtration in dimension 8 we may conclude that SU(3) represents β2 at the prime
2. This result was first obtained in [Ste76] and [Woo76].

Of course, the formula 4.2.1 applies to any Lie group of arbitrary rank but the
calculations are getting very long and should be done with a computer. A list
of semisimple groups of low rank has been given in [Oss82] together with some
question marks for Lie groups of rank 4 and higher.

Instead of looking at more examples of Lie groups we answer the question which
was proposed in the introduction:

what are the Chern numbers which determine β at the prime 3?
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A (U, fr)2-manifold X comes with a splitting TX(1) + TX(2) of its stable tangent
bundle. For i = 1, 2 let c(i) = (c(i)1, c(i)2, . . . ) be the Chern classes of TX(i) and
let f(c(1), c(2)) be the polynomial

1/3(− c(1)1
4
c(2)1

2 − 10 c(2)2 c(1)4 + 5 c(2)1
2
c(1)4 − 8 c(1)2 c(2)2 c(1)1

2

+4 c(1)2 c(1)1
2
c(2)1

2 − 5 c(1)3 c(1)1 c(2)1
2 + 10 c(1)3 c(2)2 c(1)1 + 2 c(2)2 c(1)1

4)

Then we have the answer to the question:

Corollary 4.2.5. The corner of a 12 dimensional (U, fr)2-manifold X is ±β iff
the Chern number

〈f(c(1), c(2))− f(c(2), c(1)), [X, ∂X ]〉 ∈ Q/Z(3)
∼= Z3∞

has the order 3.

Proof. One readily verifies per hand or with a computer that the terms of dimension
12 in K̃BP 〈2〉(TX) have the form

2/9(f ′(c(1), c(2))(v2
1 ⊗ v1) + f ′(c(2), c(1))(v1 ⊗ v2

1)) mod(1⊗ v3
1 , v

3
1 ⊗ 1).

Here, the polynomial f ′ coincides with f up to integral multiples of Chern classes.
With 4.1.7,4.1.4 and the calculations made in 4.2.2 we conclude

g
Q/Z
∗ (X) = 〈f(c(1), c(2))− f(c(2), c(1)), [X, ∂X ]〉 t31 ∈ π12BP

〈2〉.

Hence the result follows from the fact that κ in (4.2.1) was well defined.

4.3. Elliptic cohomology and 〈2〉-manifolds. In 4.1.5 we saw that the Todd
genus of a (U, fr)-manifold is integral iff the e-invariant of its boundary is integral
or, equivalently, iff its boundary is the corner ∂0∂1X of a (U, fr)2-manifold X.
Since the Todd genus comes from the complex orientation of K-theory it is not
sensitive enough to detect the rich algebraic structure of the Adams-Novikov 2-line
[MRW77]. Of course, complex bordism itself or BP -theory can do the job but they
are hard to track geometrically and algebraically.

Within the last years a new family of complex oriented cohomology theories
have entered algebraic topology: these are represented by elliptic spectra and owe
their names to the fact that their formal groups come from elliptic curves (see the
survey articles [Seg87] and [RS95]). For instance, there is a cohomology theory
EllΓ attached to the universal curve over the ring of integral modular forms for the
congruence subgroup Γ = Γ1(N) of Sl2(Z) ([Bry90] [Fra92][Lau99]).

For N ≥ 2 let ζN be a primitive N ’th root of unity. The elliptic genus takes a
manifold X to the modular form with q-expansion

a(q)χ−ζN (X,
∞⊗
n=1

Sqn(T ∗X ⊗ C)⊗ Λ−qn/ζNTX ⊗ Λ−qnζNT
∗X) ∈ Z[ζN , 1/N ][[q]].

Here, a(q) is the normalization factor

a(q) =
∞∏
n=1

(1− qn)2

(1− ζN )(1− qn/ζN )(1− qnζN )
.

and χy(X,W ) is the χy-genus of X with values in W . It was explained in [Wit86]
and [HBJ92]) how to interpret this expression as the S1-equivariant index of an
operator which acts on the loop space of X. However, a good geometric insight
into elliptic cohomology is still missing and so is its relation to index theorems on



ON COBORDISM OF MANIFOLDS WITH CORNERS 19

manifolds with corners. As a first step in this direction we will show here how the
elliptic genus can provide interesting invariants for 〈2〉-manifolds.

Consider the MU 〈2〉 oriented 〈2〉-ring spectrum

DΓ def
=


S0 //

��

K

��
EllΓ // K ∧ EllΓ


Its Q/Z-homotopy is concentrated in even degrees and has been identified in [Lau99]
2.3 with the group of divided congruences

π
Q/Z
2n (DΓ) ∼= {

∑
fi| f0 +

∑
fi + fn expands integrally for some f0, fn} ⊗Q/Z

Here, for each i the element fi is a rational modular form of weight i.
Observe that any framed manifold of positive even dimension n lies in the second

filtration and hence is the corner of a (U, fr)2-manifold.

Lemma 4.3.1. The composite

f : Ωfrn = F 2,n+2 Ω(U,fr)2

n+2
oooo gQ/Z // πQ/Zn+2(DΓ)

is well defined.

Proof. By 4.1.6 it is enough to show that

Ωfrn = F 2,n+2 Ω(U,fr)2

n+2
oooo j // E2,n+2

2 [MU ]

is well defined. The argument is the same as in 4.1.7: suppose there are 〈2〉-
manifolds X,X ′ with a common framed corner. Then the boundaries ∂1X, ∂1X

′

only differ by a closed U -manifold which bounds. Hence the 〈2〉-manifolds X and
X ′ coincide up to a Z(U, fr)2-manifold which vanishes in the E2-term.

The following theorem tells us that the invariant f of 4.3.1 really deserves its name.

Theorem 4.3.2. A framed manifold is the corner of an (U, fr)3-manifold iff the
f-invariant gives an integral inhomegeneous modular form for two levels ≥ 2 which
are relatively prime to each other.

Before giving the proof we need a change of rings result which is parallel to the
one of [Bak97] for level 1 elliptic cohomology. Let F be a formal group law over the
graded Z(p)-algebra R∗. For k = 0, 1, . . . let vk be the images of the Hazewinkel
generators under the map from BP∗ to R∗ which classifies the typicalization of F .
Write H∗R for the cohomology

H∗(R∗,ΓR) ∼= ExtΓR(R∗, R∗); ΓR
def
= R∗ ⊗MU∗ MU∗MU ⊗MU∗ R∗.

Then we have

Lemma 4.3.3. Assume that the ideal In = (p, v1, . . . , vn−1) forms a regular se-
quence which does not span all of R and vn be invertible modulo In. Then there is
a natural isomorphism between H∗(v−1

n BP∗) and H∗(R).



20 GERD LAURES

Proof. We may assume that F is p-typical. By [HS96] 3.4 we find a faithfully flat
extension S(k)∗ of v−1

k R∗/Ik for each 0 ≤ k ≤ n with the property that over S(k)∗
there is an isomorphism of the formal group law F to the Honda formal group of
height k. Thus Hopkins’s change of rings theorem [HS96] 3.3 implies that

H∗(v−1
k R/Ik) ∼= H∗(S(k)).

Since the BP∗-module structure of S(k)∗ factorizes over K(k)∗ = Fp[vk, v−1
k ] and

S(k)∗ is faithfully flat over K(k)∗ we may conclude with the same argument

ExtΓR(R∗, v−1
k R∗/Ik) ∼= H∗(v−1

k R/Ik) ∼= H∗(K(k)∗)

and thus

ExtΓR(R∗, v−1
k R∗/Ik) ∼= ExtΓ

v
−1
n BP∗

(v−1
n BP∗, (vkvn)−1BP∗/Ik).

Next consider the nil BP∗BP -comodule v−1
s BP∗/(p∞, . . . , v∞s−1) for some integer s.

One verifies (or simply uses [MR77] 3.11, 3.12) that it is a direct limit of comodules
each of which admits a finite filtration (F r) with

F r/F r+1 ∼= v−1
k BP∗/Ik

for some k = k(r). Hence, when we apply the canonical transformations of exact
functors

v−1
n BP∗ ⊗BP∗ −→ v−1

n R⊗BP∗ ←− R⊗BP∗

and use the obvious five lemma argument in cohomology we obtain isomorphisms
on the corresponding chromatic E2-terms [Rav86]

E∗,∗,∗2 [v−1
n BP∗] ∼= E∗,∗,∗2 [v−1

n R] ∼= E∗,∗,∗2 [R]

Thus the claim follows from the convergence of the chromatic spectral sequences.

Proof of 4.3.2. By 3.2.5 it suffices to show that

E2,n+2
2 [MU ] −→ E2,n+2

2 [EllΓ] −→ π
Q/Z
n+2(EllΓ

〈2〉
) −→ π

Q/Z
n+2(DΓ)

is injective after localization at each prime which does not divide the level. Only
the first arrow needs to be checked since the second and the last arrow are injective
by 4.1.6 and [Lau99] 3.13, respectively. When applying the above lemma to the
ring R∗ = EllΓ∗ we may replace elliptic cohomology by v−1

2 BP∗. The chromatic E2

term of v−1
2 BP∗ simply is the truncated one of BP∗

Es,∗,∗2 [v−1
2 BP∗] ∼=

{
Es,∗,∗2 [BP∗] for 0 ≤ s ≤ 2
0 else

Since the 0-column is concentrated in bidegree (0, 0) all differentials d2 and higher
which arrive in the s-column for s ≤ 2 vanish. Hence, we obtain the desired
injectivity for r + s = 2 as the composite of

Er,s,∗∞ [BP∗] ↪→ Er,s,∗2 [BP∗] = Er,s,∗2 [v−1
2 BP∗] = Er,s,∗∞ [v−1

2 BP∗].
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