Characteristic numbers from 2-cocycles on formal groups

Gerd Laures

Abstract

We give explicit polynomial generators for the homology rings of $B S U$ and BSpin for complex oriented theories. Using these we are able to provide an alternative proof of the result of Hopkins, Ando and Strickland for symmetric 2-cocycles on formal group laws.

1. Introduction and statement of results

Hopkins, Ando and Strickland have recently shown (see [AHS98][Hop95] [HMM98]) that for any complex oriented theory E the ring $E_{*} B S U$ carries the universal symmetric 2 -cocycle on the formal group of E. In this paper we give an alternative proof of their result which is based on the following choice of polynomial generators for $E_{*} B S U$: Let L be the canonical line bundle over $\mathbb{C} P^{\infty}$ and let $\beta_{i} \in E_{2 i} \mathbb{C} P^{\infty}$ be dual to $c_{1}(L)^{i}$. Let

$$
f: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \longrightarrow B S U
$$

be the map which classifies the product $\left(1-L_{1}\right)\left(1-L_{2}\right)$. For each natural number k and $1 \leq i \leq k-1$ choose integers n_{k}^{i} such that

$$
\begin{equation*}
\sum_{i=1}^{k-1} n_{k}^{i}\binom{k}{i}=\text { g.c.d. }\left\{\binom{k}{1}, \ldots,\binom{k}{k-1}\right\} . \tag{1}
\end{equation*}
$$

Then our first result is
Theorem 1.1. Define elements

$$
\begin{equation*}
d_{k}=\sum_{i=1}^{k-1} n_{k}^{i} f_{*}\left(\beta_{i} \otimes \beta_{k-i}\right) \in E_{2 k} B S U . \tag{2}
\end{equation*}
$$

Then for any complex oriented E we have

$$
\begin{equation*}
E_{*} B S U \cong \pi_{*} E\left[d_{2}, d_{3}, d_{4}, \ldots\right] . \tag{3}
\end{equation*}
$$

It must be emphasized that the conceptual basis and the proof of the above theorem owes many ideas to the work of [AHS98]. However, the present approach is more elementary and does not use the language of schemes. We also show how the generators relate to the map from $E_{*} B S p$.

Next we investigate the homology ring of BSpin for mod $2 K$-theory. Our main result is

Theorem 1.2. Let ω be the canonical quaternian line bundle over $\mathbb{H} P^{\infty}$ and let $z_{k} \in K_{*}\left(\mathbb{H} P^{\infty} ; \mathbb{F}_{2}\right)$ be dual to $c_{2}(\omega)^{j}$. Setting $d_{2 k}^{\prime}=d_{2 k}+z_{k} \in K_{*}\left(\right.$ BSpin $\left.; \mathbb{F}_{2}\right)$ for all k we have

$$
K_{0}\left(B S p i n ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}\left[d_{2 k} \mid k \neq 2^{s}\right] \otimes \mathbb{F}_{2}\left[d_{4}^{\prime}, d_{8}^{\prime}, d_{16}^{\prime}, \ldots\right] .
$$

[^0]Moreover, each z_{k} is decomposable in $K_{0}\left(B S p i n ; \mathbb{F}_{2}\right)$.
As a consequence, we are able to give a new proof of the result of [HAS99] that the ring $K_{*}(B S p i n ; \mathbb{F} / 2)$ carries the universal real symmetric 2-cocycle for the multiplicative formal group.

2. The homology of $\mathbb{C} P^{\infty}$ and binomial coefficients of formal group laws

Recall from [Ada74] that for any complex oriented ring theory E we are given a class $x \in \tilde{E}^{2} \mathbb{C} P^{\infty}$ such that

$$
E^{*} \mathbb{C} P^{\infty} \cong \pi^{*} E \llbracket x \rrbracket .
$$

The H-space structure of $B S^{1} \cong \mathbb{C} P^{\infty}$ induces a comultiplication

$$
\mu^{*}: E^{*} \mathbb{C} P^{\infty} \longrightarrow E^{*} \mathbb{C} P^{\infty} \hat{\otimes} E^{*} \mathbb{C} P^{\infty} ; x \mapsto x+{ }_{F} y
$$

and a ring structure map

$$
E_{*} \mathbb{C} P^{\infty} \otimes E_{*} \mathbb{C} P^{\infty} \longrightarrow E_{*} \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \xrightarrow{\mu_{*}} E_{*} \mathbb{C} P^{\infty} .
$$

Let $\beta_{0}=1, \beta_{1}, \beta_{2}, \ldots$ be the additive basis of $E_{*} \mathbb{C} P^{\infty}$ dual to $x^{0}, x^{1}, x^{2}, \ldots$.
Definition 2.1. The binomial coefficients of the formal group law F

$$
\binom{k}{i, j}_{F} \in \pi_{2(i+j-k)} E
$$

are defined by the equation

$$
\left(x+{ }_{F} y\right)^{k}=\sum_{i, j}\binom{k}{i, j}_{F} x^{i} y^{j}
$$

With this notation we easily see
Lemma 2.2 .

$$
\beta_{i} \beta_{j}=\sum_{k=0}^{i+j}\binom{k}{i, j}_{F} \beta_{k}
$$

Example 2.3. Let E be integral singular homology. Then F is the additive formal group law \hat{G}_{a} and

$$
\binom{k}{i, j}_{\hat{G}_{a}}=\left\{\begin{array}{cc}
\binom{k}{i} & \text { if } i+j=k \\
0 & \text { else }
\end{array} .\right.
$$

Hence $H \mathbb{Z}_{*} \mathbb{C} P^{\infty}$ is the divided power algebra $\Gamma\left[\beta_{1}\right]$.
Next let E be K-theory with its standard orientation $F=\hat{G}_{m}$. Then

$$
\left(x+\hat{G}_{m} y\right)^{k}=\left(x+y-v^{-1} x y\right)^{k}=\sum_{s=0}^{k} \sum_{t=0}^{s}\binom{k}{s}\binom{s}{t}(-v)^{s-k} x^{k-s+t} y^{k-t}
$$

and hence

$$
\begin{aligned}
\binom{k}{i, j}_{\hat{G}_{m}} & =\binom{k}{2 k-i-j}\binom{2 k-i-j}{k-j}(-v)^{k-i-j} \\
& =\frac{k!}{(i+j-k)!(k-j)!(k-i)!}(-v)^{k-i-j}
\end{aligned}
$$

Finally, let E be complex bordism $M U$. The coefficients of the universal formal group law $F G L$ are the Milnor hypersurfaces $H_{i, j}$ of type $(1,1)$ in $\mathbb{C} P^{i} \times \mathbb{C} P^{j}$ and hence

$$
\binom{k}{i, j}_{F G L}=\sum_{\substack{i_{1} \cdots+i_{k}=i \\ j_{1}+\cdots j_{k}=j}} \prod_{l=1}^{k} H_{i_{l}, j_{l}} .
$$

We close this section with an observation which will help finding the binomial coefficients in the situation of positive characteristic. Let F be a formal group law with coefficients in an \mathbb{F}_{p}-algebra. Then we define

$$
x+_{p F} y=\sum_{i, j}\binom{1}{i, j}_{F}^{p} x^{i} y^{j} .
$$

Since $x^{p}+_{p F} y^{p}=\left(x+_{F} y\right)^{p}$ we obtain a new formal group law $p F$, i.e. it satisfies the associativity condition. The group law $p F$ carries the name Frobenius of F. Be aware that the grading has changed

$$
\left|\binom{k}{i, j}_{p F}\right|=2 p(i+j-k)
$$

Example 2.4. Let H_{n} be the Honda formal group law of height n. Then the [p]-series of $p H_{n}$ read

$$
[p]\left(x^{p}\right)=x^{p}+_{p H_{n}} \cdots+{ }_{p H_{n}} x^{p}=\left(x+_{H_{n}} \cdots+_{H_{n}} x\right)^{p}=\left(v_{n} x^{p^{n}}\right)^{p}=v_{n}^{p} x^{p^{n+1}}
$$

Hence $p H_{n}$ again is the Honda group law of height n over the ring $\mathbb{F}_{p}\left[v_{n}^{ \pm p}\right]$.
LEmma 2.5. Let $k=\sum_{i=0}^{n} k_{i} p^{i}$ be the p-adic expansion of k. Then $\bmod p$

$$
\binom{k}{i, j}_{F}=\sum_{\substack{i_{0} p^{0}+\cdots+i_{n} p^{n}=i \\ j_{0} p^{0}+\cdots j_{n} p^{n}=j}} \prod_{s=0}^{n}\binom{k_{s}}{i_{s}, j_{s}}_{p^{s} F}
$$

In particular

$$
\binom{p k}{p i, p j}_{F}=\binom{k}{i, j}_{p F}
$$

Proof.

$$
\begin{aligned}
\left(x+{ }_{F} y\right)^{k} & =\prod_{s=0}^{n}\left(x^{p^{s}}+p_{p^{s} F} y^{p^{s}}\right)^{k_{s}}=\prod_{s=0}^{n} \sum_{i_{s}, j_{s}}\binom{k_{s}}{i_{s}, j_{s}}_{p^{s} F} x^{i_{s} p^{s}} y^{j_{s} p^{s}} \\
& =\sum_{\substack{i_{0} p^{0}+\cdots+i_{n} p^{n}=i \\
j_{0} p^{0}+\cdots+j_{n} p^{n}=j}} \prod_{s=0}^{n}\binom{k_{s}}{i_{s}, j_{s}}_{p^{s} F} x^{i} y^{j}
\end{aligned}
$$

3. The homology ring of $B S U$ and symmetric 2-cocycles on formal groups

In the following let $f: \mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \longrightarrow B S U$ be the map which classifies $\left(1-L_{1}\right)\left(1-L_{2}\right)$. Even though f is not a map of H-spaces we may use it to produce interesting classes in $E_{*} B S U$. Let $a_{i j} \in E_{2(i+j)} B S U$ be the image of $\beta_{i} \otimes \beta_{j}$ under the induced map f_{*}.

Lemma 3.1. The following relations hold for all i, j, k

$$
\begin{align*}
a_{0,0}=1 & ; a_{0 i}=a_{i 0}=0 \text { for all } i \neq 0 \tag{4}\\
a_{i j} & =a_{j i} \tag{5}\\
\sum_{l, s, t}\binom{l}{s, t}_{F} a_{j-s, k-t} a_{i l} & =\sum_{l, s, t}\binom{l}{s, t}_{F} a_{l k} a_{i-s, j-t} \tag{6}
\end{align*}
$$

Proof. The first relation is obvious. Let τ be the self map of $\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}$ which switches the two factors. Then the second relation immedately follows from the fact that $f \tau$ is homotopic to f. To do the last consider the two maps g, h from $\left(\mathbb{C} P^{\infty}\right)^{\times 3}$ to $\left(\mathbb{C} P^{\infty}\right)^{\times 4}$ given by

$$
\begin{aligned}
& g(x, y, z)=(y, z, x, y z) \\
& h(x, y, z)=(x y, z, x, y)
\end{aligned}
$$

Their effect on our generators is

$$
\begin{align*}
g_{*}\left(\beta_{i} \otimes \beta_{j} \otimes \beta_{k}\right) & =\sum_{l, s, t}\binom{l}{s, t}_{F} \beta_{j-s} \otimes \beta_{k-t} \otimes \beta_{i} \otimes \beta_{l} \tag{7}\\
h_{*}\left(\beta_{i} \otimes \beta_{j} \otimes \beta_{k}\right) & =\sum_{l, s, t}\binom{l}{s, t}_{F} \beta_{l} \otimes \beta_{k} \otimes \beta_{i-s} \otimes \beta_{j-t} \tag{8}
\end{align*}
$$

This can be verified by pairing the left hand side with the cohomological monomials in the the x_{i} 's. The maps g and h become homotopic in $B S U$ when composed with $\mu(f \times f)$ since

$$
\begin{aligned}
& (\mu(f \times f) g)^{*} \xi_{\text {univ }}=\left(1-L_{2}\right)\left(1-L_{3}\right)+\left(1-L_{1}\right)\left(1-L_{2} L_{3}\right) \\
& \quad=\left(1-L_{1} L_{2}\right)\left(1-L_{3}\right)+\left(1-L_{1}\right)\left(1-L_{2}\right)=(\mu(f \times f) h)^{*} \xi_{u n i v}
\end{aligned}
$$

The desired relation now follows from the above by applying $\mu(f \times f)_{*}$ to the right hand side of (7) and (8).

There is another way to look at the classes $a_{i j}$ and the relations of 3.1. First note that $E \wedge B S U_{+}$is itself a complex oriented ring theory with

$$
x_{E \wedge B S U_{+}}=(1 \wedge \eta)_{*} x_{E}
$$

In abuse of the notation we will simply denote this orientation by x in the following. Hence, we may view

$$
\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)_{+} \xrightarrow{f_{+}} B S U_{+} \xrightarrow{\eta \wedge 1} E \wedge B S U_{+}
$$

as a power series

$$
f(x, y)=1+\sum_{i, j \geq 1} b_{i j} x^{i} y^{j} \in\left(E \wedge B S U_{+}\right)^{0}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)
$$

for some $b_{i j} \in E_{2(i+j)} B S U$. Of course, we have

$$
\begin{aligned}
b_{i j} & =\sum_{k, l} b_{i j}(1 \wedge \eta)_{*}\left\langle\beta_{i} \otimes \beta_{j}, x^{k} y^{l}\right\rangle \\
& =\left\langle(1 \wedge \eta)_{*} \beta_{i} \otimes(1 \wedge \eta)_{*} \beta_{j}, 1+\sum_{k, l} b_{k l} x^{k} y^{l}\right\rangle \\
& =\left\langle(1 \wedge \eta)_{*}\left(\beta_{i} \otimes \beta_{j}\right), f^{*}(\eta \wedge 1)\right\rangle=(\mu f(1 \wedge \eta))_{*}\left(\beta_{i} \otimes \beta_{j}\right)=a_{i j}
\end{aligned}
$$

The power series f is a symmetric 2-cocycle or 2-structure on the fomal group law F in the sense of [AHS98]3.1.[HAS99]1.2: This means that the relations

$$
\begin{align*}
f(x, 0) & =f(0, y)=1 \tag{9}\\
f(x, y) & =f(y, x) \tag{10}\\
f(y, z) f\left(x, y+_{F} z\right) & =f\left(x+_{F} y, z\right) f(x, y) . \tag{11}
\end{align*}
$$

hold. In fact, one easily checks that these are equivalent to 3.1.

Remark 3.2. There is another way to look at symmetric 2-cocycles: any such f defines a commutative central extension

$$
G_{m} \longrightarrow E \longrightarrow F
$$

of F by the multiplicative formal group. Here, E is the product $F \times G_{m}$ and the group structure is given by the formula

$$
(a, \lambda) \cdot(b, \mu)=(a+b, f(a, b) \lambda \mu)
$$

The equation 11 is then equivalent to the associativity of the multiplication. These objects have been extensively studied; for example Lazard's symmetric 2-cocycle lemma classifies central extensions of the additive formal group by itself

$$
G_{a} \longrightarrow E \longrightarrow G_{a}
$$

Definition 3.3. For any complex oriented E let $C_{2}(E)$ be the graded ring freely generated by symbols $a_{i j}$'s subject to the relations of 3.1. We write α for the canonical map from $C_{2}(E)$ to $E_{*} B S U$.

Here, we denoted the generators of $C_{2}(E)$ and $E_{*} B S U$ by the same letters to simplify the notation. We will see below that the map α is an isomorphism. Equivalently, given any 2 -cocycle f^{\prime} on the formal group F over an $\pi_{*} E$-algebra S then there is a unique algebra homomorphism

$$
\varphi: E_{*} B S U \longrightarrow S
$$

with $\varphi f=f^{\prime}$. Hence, $E_{*} B S U$ carries the universal symmetric 2-cocycle on F which is the result of [AHS98].

Consider the canonical map of H-spaces $\iota: B S U \longrightarrow B U$. Writing g for the map from $\mathbb{C} P^{\infty}$ to $B U$ which classifies $1-L$ we see from the homotopy equivalence

$$
\iota+g: B S U \times \mathbb{C} P^{\infty} \longrightarrow B U
$$

that ι is an inclusion in homology. It is well known [Ada74] that $E_{*} B U$ is a polynomial algebra with generators $b_{i}=g_{*} \beta_{i}$. Alternatively, let g^{\prime} be the map which classifies $L-1$. Then the classes $g^{\prime} \beta_{i}=b_{i}^{\prime}$ again give polynomial generators of $E_{*} B U$. Since the map $\mu_{B U}\left(g \times g^{\prime}\right) \Delta$ is null the generators b_{i} and b_{i}^{\prime} are related by the equation

$$
\sum_{i=0}^{\infty} b_{i}^{\prime} x^{i}=\left(\sum_{i=0}^{\infty} b_{i} x^{i}\right)^{-1}
$$

Proposition 3.4. We have the formula

$$
\iota_{*} a_{i j}=\sum_{\substack{s=0, \ldots, i ; t=0, \ldots, j \\ k=0, \ldots, s+t}}\binom{k}{s, t}_{F} b_{k}^{\prime} b_{i-s} b_{j-t}
$$

In particular, modulo decomposables in $\tilde{E}_{*} B U$

$$
\iota_{*} a_{i j}=\sum_{k=0}^{i+j}\binom{k}{i, j}_{F} b_{k}^{\prime}
$$

Proof. Decompose f by writing

$$
\begin{aligned}
f^{*} \xi_{\text {univ }} & =1-L_{1}-L_{2}+L_{1} L_{2}=\left(L_{1} L_{2}-1\right)+\left(1-L_{1}\right)+\left(1-L_{2}\right) \\
& =\left(g^{\prime} \mu_{\mathbb{C} P^{\infty}}+g p_{1}+g p_{2}\right)^{*} \xi_{\text {univ }}
\end{aligned}
$$

and calculate

$$
\begin{aligned}
\iota_{*} a_{i j} & =\iota_{*} f_{*}\left(\beta_{i} \otimes \beta_{j}\right) \\
& =\mu_{*}^{B U}\left(g^{\prime} \mu_{*}^{\mathbb{C} P^{\infty}} \otimes g p_{1 *} \otimes g p_{2 *}\right) \sum_{\substack{i_{1}+i_{2}+i_{3}=i \\
j_{1}+j_{2}+j_{3}=j}} \beta_{i_{1}} \otimes \beta_{j_{1}} \otimes \beta_{i_{2}} \otimes \beta_{j_{2}} \otimes \beta_{i_{3}} \otimes \beta_{j_{3}} \\
& =\sum_{\substack{i_{1}+i_{2}=i \\
j_{1}+j_{3}=j}} \sum_{k=0}^{i_{1}+j_{1}}\binom{k}{i_{1}, j_{2}}_{F} b_{k}^{\prime} b_{i_{2}} b_{j_{3}}
\end{aligned}
$$

Now choose n_{k}^{i} and d_{k} as in 1.1 and set

$$
\epsilon(k) \stackrel{\text { def }}{=} \sum_{i=1}^{k-1} n_{k}^{i}\binom{k}{i}=\text { g.c.d. }\left\{\binom{k}{1}, \ldots,\binom{k}{k-1}\right\}= \begin{cases}p & \text { for } k=p^{s} \\ 1 & \text { else }\end{cases}
$$

For a graded ring R we write R_{+}for the elements in positive degrees and

$$
Q(R)=R / R_{+}^{2} .
$$

Corollary 3.5. In $Q\left(E_{*} B U\right)$ we have $\iota_{*} d_{k}=\epsilon(k) b_{k}^{\prime}$.
Proof. Using the identity

$$
\binom{s+t}{s, t}_{F}=\binom{s+t}{s}
$$

we compute with the proposition

$$
\iota_{*} d_{k}=\sum_{i+j=k} n_{k}^{i} \iota_{*} a_{i j}=\sum_{i=1}^{k-1} n_{k}^{i}\binom{k}{i} b_{k}^{\prime}=\epsilon(k) b_{k}^{\prime}
$$

Before proving 1.1 we need two more lemmas.
Lemma 3.6. For all s, t we have

$$
a_{s t}=\frac{\binom{s+t}{s}}{\epsilon(s+t)} d_{s+t} \in Q_{2(s+t)}\left(C_{2}(E)\right)
$$

Proof. The third relation of 3.1 reads modulo $C_{2}(E)_{+}^{2}$

$$
\binom{n}{n-t} a_{m n}=\binom{s}{m} a_{s t}
$$

for all $m+n=s+t, m \leq s$. We conclude

$$
\begin{aligned}
\frac{\binom{s+t}{s}}{\epsilon(s+t)} d_{s+t} & =\sum_{m+n=s+t} n_{s+t}^{m} \frac{\binom{s+t}{s}}{\epsilon(s+t)} a_{m n} \\
& =a_{s t} \sum_{m+n=s+t} n_{s+t}^{m} \frac{\binom{s+t}{m}}{\epsilon(s+t)}=a_{s t}
\end{aligned}
$$

Lemma 3.7. (i) For all $s \geq 0$ and prime numbers p the map

$$
Q_{2 p^{s} \iota_{*}}: Q_{2 p^{s}}\left(H_{*}\left(B S U ; \mathbb{F}_{p}\right)\right) \longrightarrow Q_{2 p^{s}}\left(H_{*}\left(B U ; \mathbb{F}_{p}\right)\right)
$$

is null.
(ii) Let ρ_{t} denote the Poincaré series of a graded vector space. Then we have

$$
\rho_{t}\left(Q\left(H_{*}\left(B S U ; \mathbb{F}_{p}\right)\right)=\left(1-t^{2}\right)^{-1}-t^{2} .\right.
$$

Proof. (i) For a Hopf algebra A let us write $P(A)$ for the group of primitives. It is enough to show the dual statement that the map

$$
P_{2 p^{s} \iota^{*}}: P_{2 p^{s}}\left(H^{*}\left(B U ; \mathbb{F}_{p}\right)\right) \longrightarrow P_{2 p^{s}}\left(H^{*}\left(B S U ; \mathbb{F}_{p}\right)\right)
$$

vanishes. The p^{s}-power of the first Chern class generates the source since

$$
c_{1}^{p^{s}}(\xi \oplus \eta)=c_{1}^{p^{s}}(\xi)+c_{1}^{p^{s}}(\eta)
$$

and the dual is one dimensional. This class obviously vanishes in $H^{*}\left(B S U ; \mathbb{F}_{p}\right)$.
(ii) As in [Sin67] 1.4 and 1.5 one sees

$$
\begin{aligned}
\rho_{t}\left(Q\left(H_{*}\left(B S U ; \mathbb{F}_{p}\right)\right)\right) & =\rho_{t}\left(P\left(H_{*}\left(B S U ; \mathbb{F}_{p}\right)\right)\right)=\rho_{t}\left(Q\left(H^{*}\left(B S U ; \mathbb{F}_{p}\right)\right)\right) \\
& =\rho_{t}\left(Q\left(\mathbb{F}_{p}\left[c_{2}, c_{3}, \ldots\right]\right)\right)=\left(1-t^{2}\right)^{-1}-t^{2}
\end{aligned}
$$

Proof of 1.1. The proof will fall into several steps: First consider the case when E is rational ordinary homology. Then by 3.5 the composite

$$
\mathbb{Q}\left[d_{2}, d_{3}, \ldots\right] \longrightarrow H_{*}(B S U, \mathbb{Q}) \xrightarrow{\iota_{*}} H_{*}(B U, \mathbb{Q}) \longrightarrow \mathbb{Q}\left[b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right] / b_{1}^{\prime}
$$

is a surjection and consequently is an isomorphism. Thus there cannot be any relation between the monomials in the d_{i} 's and the statement follows from the homotopy equivalence

$$
\iota+g: B S U \times \mathbb{C} P^{\infty} \cong B U
$$

by counting dimensions in each degree.
Next observe that the class d_{k} must generate $Q_{2 k}\left(H_{*}\left(B S U ; \mathbb{F}_{p}\right)\right)$ for all $k \geq 2$: by 3.7 (ii) this vector space is one dimensional for any prime p. Pick a generator e of the latter. Then a multiple n of e coincides with d_{k}. If k is not a prime power the integer n is invertible since the element d_{k} is sent to the generator b_{k} under the map to $B U$. For prime power degrees the integer n again can not be a multiple of p since else a multiple of e is mapped to b_{k} by 3.5 which contradicts 3.7 (i). In particular, we have shown that the canonical map

$$
\mathbb{F}_{p}\left[d_{2}, d_{3}, \ldots\right] \longrightarrow H_{*}\left(B S U ; \mathbb{F}_{p}\right)
$$

is a surjection which in turn means that it is an isomorphism. The theorem now holds for integral singular homology.

Next let E be complex bordism $M U$. Since the Atiyah Hirzebruch spectral sequence collapses we may choose an isomorphism of $\pi_{*} M U$-modules

$$
M U_{*} B S U \cong E_{\infty}=E_{2}=H_{*}\left(B S U ; \pi_{*} M U\right)
$$

It is enough to show that a monomial in the d_{k} 's reduces to the corresponding monomial on the 0 -line of the E_{2}-term $H_{*}(B S U ; \mathbb{Z})$ since then the canonical map

$$
\pi_{*} M U\left[d_{2}, d_{3}, \ldots\right] \stackrel{\cong}{\cong} M U_{*} B S U
$$

is an isomorphism. This follows from the fact that the map induced from the complex orientation from $M U_{*} B S U$ to $H_{*}(B S U ; \mathbb{Z})$ respects the d_{k} 's and is the projection onto the 0 line of the spectral sequence.

Finally, for arbitrary complex oriented E we may simply tensor the isomorphism

$$
\pi_{*} M U\left[d_{2}, d_{3}, \ldots\right] \stackrel{\cong}{\cong} M U_{*} B S U
$$

with $\pi_{*} E$ and the result follows from the universal coefficients spectral sequence [Ada69].

Corollary 3.8. The map $\alpha: C_{2}(E) \longrightarrow E_{*} B S U$ is an isomorphism.

Proof. Consider the obvious map $\varphi: \pi_{*} E\left[d_{2}, d_{3}, \ldots\right] \longrightarrow C_{2}(E)$. Since its composite with α is an isomorphism φ must be injective. Moreover, 3.6 tells us that the $a_{i j}$ can be written as polynomials in the d_{i} 's. Consequently φ is an isomorphism and so is α.

It is hard to give an explicit formula for the n_{k}^{i}. However, in the situation of positive characteristic we are better off.

```
Lemma 3.9. (i) It is possible to choose \(n_{p^{s}}^{i}=0 \bmod p\) for all \(i\) not equal to \(p^{s-1}\).
```

(ii) If n is not a prime power it is possible to choose $n_{n}^{i}=0 \bmod p$ for all i not equal to $p^{\nu_{p}(n)}$. Here, $\nu_{p}(n)$ is the exponent of p in the prime decomposition of n.
Proof. $p^{s}!/\left(p^{s}-p^{s-1}\right)$! is once more divisible than p^{s-1} !. Hence $\binom{p^{s}}{p^{s-1}} / p$ is not divisible by p and we find $a, b \in \mathbb{Z}$ such that

$$
a\binom{p^{s}}{1}+b \frac{\binom{p^{s}}{p^{s-1}}}{p}=1
$$

Hence we take $n_{p^{s}}^{1}=p a$ and $n_{p^{s}}^{p^{s-1}}=b$.
A similar argument works for the second statement: Since $\left(\underset{p^{p_{p}(n)}}{n}\right)$ is not divisible by p we find natural numbers $a_{0}, a_{1}, \ldots, a_{n-1}$ such that

$$
a_{0}\binom{n}{p^{\nu_{p}(n)}}+\sum_{i=1, \ldots, n-1 ; i \neq p^{\nu_{p}(n)}} a_{i} p\binom{n}{i}=1
$$

which gives the result.

4. The homology ring of $B S p$

In this section we are going to determine the canonical map from $B S p$ to $B S U$ in E-homology for complex oriented theories. The calculations will prove useful in things to come.

The (trivial) fibration $\operatorname{det}: U(n) \longrightarrow S^{1}$ with fibre $S U(n)$ allows an identification of $E^{*} B S U(n)$ with $E^{*} B U(n)=\pi^{*} E \llbracket c_{1}, \cdots, c_{n} \rrbracket$ divided by the ideal generated by the first E-Chern class c_{1} of the determinant bundle. The determinant restricted to the standard maximal torus of $U(n)$ is just the multiplication map. Hence in formal Chern roots we compute

$$
c_{1}(\text { det })=x_{1}+_{F} \ldots+{ }_{F} x_{n} .
$$

In particular, for the E-cohomology of $\mathbb{H} P^{\infty} \cong B S U(2)$ we have

$$
c_{1}(\text { det })=x_{1}+{ }_{F} x_{2}=c_{1}(\omega)+\text { terms of higher order }
$$

Here, ω is the canonical quaternian line bundle over $\mathbb{H} P^{\infty}$. This gives the
Proposition 4.1. $E^{*} \mathbb{H} P^{\infty} \cong \pi^{*} E \llbracket c_{2}(\omega) \rrbracket$.
Observe that in general $c_{1}(\omega)$ does not vanish: for K-theory we get

$$
x_{1}+\hat{G}_{m} x_{2}=x_{1}+x_{2}-x_{1} x_{2}=c_{1}(\omega)-c_{2}(\omega)
$$

and the first two Chern classes hence coincide.
Let $z_{i} \in E_{4 i} \mathbb{H} P^{\infty}$ be dual to $c_{2}(\omega)^{i}$. Abusing the notation denote the image of z_{i} under the canonical map

$$
E_{*} \mathbb{H} P^{\infty}=E_{*} B S p(1) \longrightarrow E_{*} B S p .
$$

by the same letter. Then one easily verifies
Proposition 4.2. $E_{*} B S p \cong \pi_{*} E\left[z_{1}, z_{2}, \ldots\right]$.

We next consider the standard fibration $p: \mathbb{C} P^{2 k+1} \longrightarrow \mathbb{H} P^{k}$ with fibre $\mathbb{C} P^{1}$. The quaternian line bundle ω splits on the total space

$$
p^{*} \omega \cong L \oplus j L
$$

Here, L is the canonical complex line bundle. Moreover, since i anti commutes with j we see that

$$
j L \cong \bar{L}
$$

When passing to infinity the fibration fits into the commutative diagram

because

$$
(1 \wedge \overline{1})^{*} \Delta^{*}\left(1-L_{1}\right)\left(1-L_{2}\right)=1-L-\bar{L}+L \bar{L}=(1-L)+(1-\bar{L}) .
$$

Hence, in homology the map

$$
E_{*} \mathbb{C} P^{\infty} \longrightarrow E_{*} \mathbb{H} P^{\infty} \longrightarrow E_{*} B S U
$$

sends β_{k} to the k th coefficient of the power series

$$
f\left(x,-{ }_{F} x\right)=\sum_{i, j} a_{i j} x^{i}\left(-{ }_{F} x\right)^{j} .
$$

Here, $f(x, y)$ is the universal symmetric 2-cocycle on the formal group law F. It is not hard to see that p is a surjection in homology. Thus we should be able to lift each z_{k} to $E_{*} \mathbb{C} P^{\infty}$ and compute its image from there. In fact, we have the following nice formula:

Theorem 4.3. The map $p: \mathbb{C} P_{+}^{\infty} \longrightarrow \mathbb{H} P_{+}^{\infty} \wedge E$ is given by the power series

$$
p(x)=\sum_{j=0}^{\infty} z_{j} x^{j}\left(-{ }_{F} x\right)^{j} .
$$

As a consequence, the map h is determined by the equality of power series

$$
\sum_{i, j} a_{i j} x^{i}\left(-{ }_{F} x\right)^{j}=f\left(x,-{ }_{F} x\right)=h p(x)=\sum_{j} z_{j} x^{j}\left(-{ }_{F} x\right)^{j} .
$$

Proof. It remains to compute the image of β_{i} under p_{*} :

$$
\left\langle p_{*} \beta_{i}, c_{2}^{j}\right\rangle=\left\langle\beta_{i}, p^{*} c_{2}^{j}\right\rangle=\left\langle\beta_{i}, c_{2}(L+\bar{L})^{j}\right\rangle=\left\langle\beta_{i},\left(x\left(-{ }_{F} x\right)\right)^{j}\right\rangle .
$$

Hence, β_{i} is sent to $\sum_{j}\left\langle\beta_{i}, x^{j}\left(-{ }_{F} x\right)^{j}\right\rangle z_{j}$ and the claim follows.
Let us see how this formula works for K-theory. Setting $y=-{ }_{F} x$ the left hand side becomes the symmetric polynomial

$$
\begin{equation*}
\sum_{i, j} a_{i j} x^{i} y^{j}=\sum_{i} a_{i i}(x y)^{i}+\sum_{i<j} a_{i j}\left(x^{i} y^{j}+x^{j} y^{i}\right) \tag{12}
\end{equation*}
$$

Let Q_{k} be the Newton polynomial expressing the power sum in terms of the elementary symmetric functions e_{1}, e_{2}. That is,

$$
t_{1}^{k}+t_{2}^{k}=Q_{k}\left(e_{1}, e_{2}\right)
$$

and set $q_{k}(a)=Q_{k}(a, a)$. Then since

$$
x+\left({ }_{{ }_{F}} x\right)=c_{1}(\omega)=c_{2}(\omega)=x\left({ }_{F} x\right)
$$

we have

$$
x^{k}+y^{k}=q_{k}\left(c_{2}(\omega)\right) .
$$

The polynomials q_{k} satisfy the Newton identities

$$
q_{k}=a\left(q_{k-1}-q_{k-2}\right) \text { for all } k>2, q_{1}=a, q_{2}=a^{2}-2 a
$$

and a simple induction shows

$$
q_{k}=\sum_{s}(-1)^{k+s}\left(\binom{s-1}{k-s-1}+\binom{s}{k-s}\right) a^{s} .
$$

Hence equation (12) reads

$$
\begin{aligned}
\sum_{i, j} a_{i j} x^{i} y^{j} & =\sum_{k} a_{k k} c_{2}^{k}+\sum_{i<j} a_{i j} c_{2}^{i} q_{j-i}\left(c_{2}\right) \\
& =\sum_{r}\left(a_{r r}+\sum_{i<j}(-1)^{j-i}\left(\binom{r-i-1}{j-r-1}+\binom{r-i}{j-r}\right) a_{i j}\right) c_{2}^{r}
\end{aligned}
$$

We have shown
Corollary 4.4. The map $h_{*}: K_{*} B S p \longrightarrow K_{*} B S U$ is given by the formula

$$
z_{r} \mapsto a_{r r}+\sum_{i<j}(-1)^{j-i}\left(\binom{r-i-1}{j-r-1}+\binom{r-i}{j-r}\right) a_{i j}
$$

5. The K-homology ring of BSpin and real symmetric 2-cocycles

In this section we are going to prove 1.2. First we need

$$
\begin{aligned}
& \text { THEOREM } 5.1([\text { Sna75 }] 8.4 \text { 8.11 }) . \\
& K_{*}\left(B S p i n ; \mathbb{F}_{2}\right) \text { (i) The canonical map } \\
& K_{*}\left(B S O ; \mathbb{F}_{2}\right)
\end{aligned}
$$

is an algebra isomorphism.
(ii) The composite of

$$
K_{*}\left(p t ; \mathbb{F}_{2}\right)\left[b_{2}, b_{4}, b_{6}, \ldots\right] \longrightarrow K_{*}\left(B U ; \mathbb{F}_{2}\right) \xrightarrow{\rho_{*}} K_{*}\left(B S O ; \mathbb{F}_{2}\right)
$$

is an algebra isomorphism. Moreover, each $\rho_{*} b_{2 k+1}$ lies in the image of $K_{*}\left(p t ; \mathbb{F}_{2}\right)\left[b_{2}, b_{4}, \ldots, b_{2 k}\right]$.

Lemma 5.2. The composite

$$
K_{*}\left(\mathbb{H} P^{\infty} ; \mathbb{F}_{2}\right) \xrightarrow{h} K_{*}\left(B S U ; \mathbb{F}_{2}\right) \xrightarrow{\iota_{*}} K_{*}\left(B S O ; \mathbb{F}_{2}\right)
$$

sends z_{j} to b_{j}^{2} modulo the ideal generated by $b_{1}^{2}, b_{2}^{2}, \ldots, b_{j-1}^{2}$. Hence z_{j} is decomposable in $K_{*}\left(B S p i n ; \mathbb{F}_{2}\right)$.

Proof. Since the diagram

commutes we get

$$
g(x)=g\left(-\hat{G}_{m} x\right) \in K_{*}\left(B S O, \mathbb{F}_{2}\right) \llbracket x \rrbracket .
$$

Hence using 3.4 we compute

$$
f\left(x,-\hat{G}_{m} x\right)=g^{\prime}\left(x+\left(-\hat{G}_{m} x\right)\right) g(x) g\left(-\hat{G}_{m} x\right)=g(x)^{2}=\sum_{i} b_{i}^{2} x^{2 i}
$$

and with 5.2

$$
f\left(x,-\hat{G}_{m} x\right)=\sum_{i} z_{i} x^{i}\left(-\hat{G}_{m} x\right)^{i} .
$$

Hence the assertion follows by induction since $x^{j}\left({ }_{\hat{G}_{m}} x\right)^{j}=x^{2 j}+o\left(x^{2 j+1}\right)$. The last claim is a consequence of 5.1 (ii).

Definition 5.3. For any natural number i let 1_{i} be the set of indices of the 1 -digits of i in its binary decomposition. Declare a new product $n \star m$ of natural numbers n, m by

$$
1_{n \star m}=1_{n} \cup 1_{m} .
$$

Example 5.4. Let $i=\sum_{j} i_{j} 2^{j}$ be the 2 -adic expansion of i. Then by its definition $\nu_{2}(i)$ is the minimum of the set 1_{i} and hence

$$
i=\left(i-2^{\nu_{2}(i)}\right) \star 2^{\nu_{2}(i)} .
$$

The importance of the \star-product comes from the
Lemma 5.5. For the multipicative formal group law we have modulo 2

$$
\binom{k}{i, j}=1 \text { iff } k=i \star j
$$

Proof. Since

$$
\binom{1}{1,1}=\binom{1}{0,1}=\binom{1}{1,0}=\binom{0}{0,0}=1
$$

and

$$
\binom{0}{1,0}=\binom{0}{0,1}=\binom{0}{1,1}=\binom{1}{0,0}=0
$$

the lemma holds for $k=0,1$. Hence for arbitrary k we see with 2.5 that the binomial coefficient is non zero iff $k_{s}=i_{s} \star j_{s}$ for all s and the assertion follows.

It is interesting to note
Corollary 5.6. Modulo decomposables we have

$$
a_{i j}= \begin{cases}d_{2^{s+1}} & \text { for } i=j=2^{s} \\ d_{i \star j} & \text { else }\end{cases}
$$

Proof. Modulo decomposables (6) gives

$$
a_{i, j \star k}=\sum_{l}\binom{l}{j, k} a_{i l}=\sum_{l}\binom{l}{i, j} a_{l k}=a_{i \star j, k} .
$$

In particular if $i * j \neq 2^{s}$

$$
a_{i j}=a_{2^{\nu_{2}(i \star j)}, i \star j}=a_{2^{\nu_{2}(i \star j)}, i \star j-2^{\nu_{2}(i \star j)}}=d_{i \star j} .
$$

Here we used 3.9.
Proof of 1.2. We may assume that we have chosen the n_{i}^{k} as in 3.9. By 5.1 it remains to show that the map
$\mathbb{F}_{2}\left[d_{k} \mid k \neq 2^{s}\right] \otimes \mathbb{F}_{2}\left[d_{4}^{\prime}, d_{8}^{\prime}, \ldots\right] \longrightarrow \mathbb{F}_{2}\left[b_{2}, b_{4}, \ldots\right] ; d_{k} \mapsto \iota_{*}\left(d_{k}\right), d_{2 k}^{\prime} \mapsto \iota_{*}\left(d_{2 k}+h_{*} z_{k}\right)$ is an isomorphism. By 3.4 and 5.5 we have

$$
\iota_{*} d_{2^{r+1}}=\iota_{*} a_{2^{r}, 2^{r}}=\sum_{s, t=0}^{2^{r}} b_{s \star t}^{\prime} b_{2^{r}-s} b_{2^{r}-t}=\sum_{s=0}^{2^{r}} b_{s}^{\prime} b_{2^{r}-s}^{2}
$$

and hence with 5.2

$$
\iota_{*} d_{2^{r+1}}^{\prime}=b_{2^{r}}^{\prime} \bmod \left(b_{2}, b_{4}, \ldots, b_{2^{r}-2}\right)
$$

The claim follows since a similar relation holds for the other d_{k} 's by 3.5 :

$$
\iota_{*} d_{k}=\iota_{*} a_{2^{\nu_{2}(k)}, k-2^{\nu_{2}(k)}}=b_{k}^{\prime} \bmod \left(b_{1} b_{2}, \ldots, b_{k-1}\right) \text { for } k \neq 2^{s}
$$

Since the composite

$$
\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty} \xrightarrow{f} B S U \xrightarrow{V-\bar{V}} \text { BSpin }
$$

is null we have for any complex oriented E the relation

$$
\begin{equation*}
f(x, y)=f\left(-{ }_{F} x,-{ }_{F} y\right) \in E_{*} B \operatorname{Spin} \llbracket x, y \rrbracket \tag{13}
\end{equation*}
$$

Example 5.7. Explicitly, the relations (13) read for $F=\hat{G}_{m}$

$$
\sum_{s, t}\binom{i}{s-1}\binom{j}{t-1} a_{s t}=a_{i j} \text { for all } i, j
$$

as one checks easily.
Recall from [HAS99] the
Definition 5.8. For any complex oriented E let $C_{2}^{r}(E)$ be the ring which carries the universal real symmetric 2-cocycles on F. That is, $C_{2}^{r}(E)$ is the quotient of the graded ring $C_{2}(E)$ by the relations implied by the equation 13. We write β for the canonical map from $C_{2}^{r}(E)$ to $E_{*} B S p i n$.

We are going to show that β is an isomorphism for $\bmod 2 K$-theory. Note that this statement is wrong for mod 2 singular homology. However, for general E we have

Lemma 5.9. The map

$$
(\iota+g)_{*}: E_{*} B S U \otimes_{\pi_{*} E} E_{*} \mathbb{C} P^{\infty} \longrightarrow E_{*} B S U \times \mathbb{C} P^{\infty} \longrightarrow E_{*} B U
$$

is an isomorphism of $E_{*} B S U$-modules.
Proof. The diagram

commutes.
A complex 1-structure on F simply is a power series $g(x)$ with leading term 1. The universal ring $C_{1}(E)$ of these objects can be identified with $E_{*} B U$ in the obvious way. A real 1 -structure is such a power series g which satisfies the real relation

$$
g(x)=g\left(-{ }_{F} x\right) .
$$

Let us write $C_{1}^{r}(E)$ for the universal ring of real 1-structures. That is $C_{1}^{r}(E)$ is $C_{1}(E)$ subject to the real relation. It is clear that the map $\iota: C_{2} \longrightarrow C_{1}$ for which

$$
\iota(f(x, y))=g\left(x+_{F} y\right) g(x)^{-1} g(y)^{-1}
$$

induces a map on the real universal rings which we denote with the same letter. For mod $2 K$-theory we have

Proposition 5.10. The obvious map from C_{1}^{r} to $K_{*}\left(B S O, \mathbb{F}_{2}\right)$ is an isomorphism.

Proof. This is an immediate consequence from 5.1 as the composite

$$
\mathbb{F}_{2}\left[b_{2}, b_{4}, \ldots\right] \longrightarrow C_{1}\left(K \mathbb{F}_{2}\right) \longrightarrow C_{1}^{r}\left(K \mathbb{F}_{2}\right)
$$

is easily checked to be surjective with the real relations.
There is a ring inbetween C_{1}^{r} and C_{2}^{r} which will be useful in the sequel: let $T(x)$ be the power series $g(x) g\left({ }_{\hat{G}_{m}} x\right)^{-1}$ and let $C_{1}^{r^{\prime}}$ be the quotient ring of C_{1} subject to the relation generated by the set I^{\prime} consisting of the coefficients of

$$
\begin{equation*}
T\left(x+_{\hat{G}_{m}} y\right)=T(x) T(y) \tag{14}
\end{equation*}
$$

Then we have
Lemma 5.11. (i) The canonical map $\iota^{\prime}: C_{2}^{r} \longrightarrow C_{1}^{r^{\prime}}$ is an injection.
(ii) T is an even power series.

Proof. For (i) observe that we have

$$
\iota^{\prime} \frac{f(x+y)}{f(-x,-y)}=\frac{g(x+y) g(x) g(y)}{g(-x-y) g(-x) g(-y)}=\frac{T(x+y)}{T(x) T(y)}
$$

when ommiting the formal addition from the notation. Hence it suffices to check that the ideal $I C_{2}$ generated by $f(x, y) f(-x,-y)^{-1}$ is the intersection of the ideal $I^{\prime} C_{1}$ with C_{2}. By 5.9 there exists a retraction homomorphism

$$
\rho: C_{1} \cong K_{*}\left(B U ; \mathbb{F}_{2}\right) \longrightarrow K_{*}\left(B S U ; \mathbb{F}_{2}\right) \cong C_{2}
$$

of C_{2}-modules. Hence any

$$
a=\sum_{k} i_{k} s_{k} \in C_{2}
$$

with $s_{k} \in C_{1}^{r^{\prime}}$ and $i_{k} \in I^{\prime}$ satisfies

$$
a=\rho(a)=\sum_{k} i_{k} \rho\left(s_{k}\right) \in I C_{2}
$$

and the first part of the lemma follows.
For the second we have with $T(x)=\sum t_{i} x^{i}$ and 5.5

$$
T(x+y)=\sum_{i, j, k} t_{i}\binom{i}{j, k} x^{j} y^{k}=\sum_{j, k} t_{j \star k} x^{j} y^{k}
$$

and hence with $T(x+y)=T(x) T(y)$ for each odd n

$$
t_{n}=t_{1 \star n}=t_{1} t_{n}=0
$$

since $t_{1}=0$.
Lemma 5.12. The power series $S(x)=f(x,-x) f(x, x)^{-1}$ with coefficients in C_{2}^{r} satisfies the relation

$$
f\left(x^{2}, y^{2}\right)=\frac{S(x) S(y)}{S(x+y)}
$$

Proof. The cocylce relation (11) gives

$$
\begin{aligned}
\frac{S(x) S(y)}{S(x+y)} & =\frac{f(x+y, x+y) f(x,-x) f(y,-y) f(-x,-y)}{f(-x, x+y) f(y,-y) f(x, x) f(y, y)} \\
& =\frac{f(x+y, x+y) f(x, y) f(-x,-y)}{f(x, x) f(y, y)}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(x^{2}, y^{2}\right) & =\frac{f\left(x^{2}+y, y\right) f\left(x^{2}, y\right)}{f(y, y)}=\frac{f(x, y) f(x+y, x+y) f(x, y) f(x, x+y)}{f(y, y) f(x+y, x) f(x, x)} \\
& =\frac{f(x, y) f(x+y, x+y) f(x, y)}{f(y, y) f(x, x)}
\end{aligned}
$$

Hence the claim follows from the real relation $f(x, y)=f(-x,-y)$.
Corollary 5.13. $\beta: C_{2}^{r}\left(K \mathbb{F}_{2}\right) \longrightarrow K_{*}\left(B \operatorname{Spin} ; \mathbb{F}_{2}\right)$ is an isomorphism.
Proof. The composite of

$$
\pi_{*} K \mathbb{F}_{2}\left[d_{k} \mid k \neq 2^{s}\right] \otimes_{\pi_{*} K \mathbb{F}_{2}} \pi_{*} K \mathbb{F}_{2}\left[d_{4}^{\prime}, d_{8}^{\prime}, d_{16}^{\prime}, \ldots\right] \longrightarrow C_{2}^{r}\left(K \mathbb{F}_{2}\right)
$$

with β is an isomorphism. Hence, β must be surjective. It remains to check that the map ι from C_{2}^{r} to C_{1}^{r} is an injection. First we claim that the power series $S(x)$ of 5.12 is even. Since $f(x, x)$ is even we only need to investigate $f(x,-x)$. Using the injection ι^{\prime} of 5.11 we get

$$
\iota^{\prime} f(x,-x)=g(x) g(-x)^{-1}=T(x) g(-x)^{-2} .
$$

Since $T(x)$ was even by 5.11 (ii) the assertion follows. Next define the ring homomorphism κ from C_{1}^{r} to C_{2}^{r} by demanding

$$
\kappa g\left(x^{2}\right)=S(x)^{-1}
$$

Then we see with 5.12

$$
\kappa \iota f\left(x^{2}, y^{2}\right)=\frac{\kappa g\left(x^{2}+y^{2}\right)}{\kappa\left(g\left(x^{2}\right)\right) \kappa\left(g\left(y^{2}\right)\right)}=\frac{S(x) S(y)}{S(x+y)}=f\left(x^{2}, y^{2}\right)
$$

Thus the universal property of C_{2}^{r} shows that we have constructed a left inverse to the map ι.

References

[Ada69] J.F. Adams, Lectures on generalized cohomology theories, Category theory, homology theory and their applications III, Lecture Notes in Mathematics, no. 99, Springer, 1969, pp. 1-138.
[Ada74] J.F. Adams, Stable homotopy and generalized homology, The University of Chicago Press, 1974.
[AHS98] M. Ando, M.J. Hopkins, and N.P. Strickland, Elliptic spectra, the Witten genus and the theorem of the cube, preprint to appear in Inventiones, 1998.
[HAS99] M.J. Hopkins, M. Ando, and N.P. Strickland, Elliptic homology of bo $\langle 8\rangle$ in positive charachteristic, preprint, 1999.
[HMM98] M.J. Hopkins, M. Mahowald, and H.R. Miller, Elliptic curves and stable homotopy 1, in preparation, 1998.
[Hop95] M.J. Hopkins, Topologiocal modular forms, the witten genus and the theorem of the cube, Proceedings of the International Congress of Mathematicians ((Zürich 1994)) (Birkhäuser, ed.), vol. 1,2, 1995, pp. 554-565.
[Sin67] W.M. Singer, Connective coverings over bu and u, Topology 7 (1967), 271-303.
[Sna75] V.P. Snaith, Dyer-lashof operations in k-theory, Topics in K-theory, Lecture Notes in Math., no. 496, Springer, 1975, pp. 53-294.

Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 288, D69120 Heidelberg, Germany

E-mail address: gerd@laures.de

[^0]: 1991 Mathematics Subject Classification. 55N22, 57T25, 19L64, 55N15, 55N34.

