Computer simulation
Virtual brain gives insights into memory deficits in depression

The consequences of long-lasting depressive episodes could be more far reaching than previously thought.

During a depressive episode the ability of the brain to form new brain cells is reduced. Scientists of the Ruhr-Universität Bochum examined how this affects the memory with a computational model. It was previously known that people in an acute depressive episode were less likely to remember current events. The computational model however suggests that older memories were affected as well. How long the memory deficits reach back depends on how long the depressive episode lasts. The team around the computational neuroscientist Prof. Dr Sen Cheng published their findings in the journal “PLOS ONE” on 7th June 2018.

Computational model simulates a depressive brain

In major depressive disorder (MDD) patients may suffer from such severe cognitive impairments that, in some cases, are called pseudodementia. Unlike in the classic form of dementia, in pseudodementia memory recovers when the depressive episode ends. To understand this process, the scientist from Bochum developed a computational model that captures the characteristic features of the brain of a patient with depressions. They tested the ability of the model to store and recall new memories. As is the case in patients, the simulation alternated between depressive episodes and episodes without any symptoms. During a depressive episode, the brain forms fewer new neurones in the model.

Whereas in previous models, memories were represented as static patterns of neural activity, the model developed by Sen Cheng and his colleagues views memories as a sequence of neural activity patterns. “This allows us not only to store events in memory but also their temporal order”, says Sen Cheng.

Impact on brain stronger than thought

The computational model was able to recall memories more accurately, if the responsible brain region was able to form many new neurones, just like the scientists expected. However, if the brain region formed fewer new brain cells, it was harder to distinguish similar memories and to recall them separately.
The computational model not only showed deficits in recalling current events, it also struggled with memories that were collected before the depressive episode. The longer the depressive episode lasted the further the memory problems reached back.

„So far it was assumed that memory deficits only occur during a depressive episode." says Sen Cheng. "If our model is right, major depressive disorder could have consequences that are more far reaching. Once remote memories have been damaged, they do not recover, even after the depression has subsided.”

Funding:
The study was funded by the Stiftung Mercator, the Deutsche Forschungsgemeinschaft within the framework of the Collaborative Research Centre 874 and the Bundesministerium für Bildung und Forschung (Grant 01GQ15069).

Reference:
Jing Fang, Selver Demic, Sen Cheng: The reduction of adult neurogenesis in depression impairs the retrieval of new as well as remote episodic memory, in: PLOS ONE, 2018, DOI: 10.1371/journal.pone.0198406

Link to the publication:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198406

Contact:
Prof. Dr. Sen Cheng
Computational Neuroscience
Institut für Neuroinformatik
Ruhr-Universität Bochum
Tel.: 0234 32 29486
E-Mail: sen.cheng@rub.de

Text: Judith Merkelt-Jedamzik
Translation: Judith Merkelt-Jedamzik