Consequential implication shares with connexive implication the basic tenets provided by Aristotle’s Thesis $\neg(A \rightarrow \neg A)$, and by Boethius’ Thesis holds in the first degree variant $(A \rightarrow B) \supset \neg(A \rightarrow \neg B)$. The property which marks the main difference from connexive implication lies in the fact that in consequential systems the so-called law of Factor $A \rightarrow B \supset (A \land C \rightarrow B \land C)$ holds only in weakened form, on pain of trivialization. System of consequential implication turn out to be translatable into normal systems of modal logic and are therefore decidable via the decision procedures established for them. The paper aims to pointing out that there is an operator \Rightarrow weaker than \rightarrow (i.e. such that $A \rightarrow B \supset A \Rightarrow B$ but not vice versa) which shares with \rightarrow its basic properties, differing essentially in the treatment of contraposition. It is argued that the main advantage of \Rightarrow-systems stands out in considering their extension with postulates axiomatizing Åqvist–style circumstantial operators, which may be introduced to define context-dependent conditionals in the line of the Chisholm-Goodman “consequentialist” view of conditionals.