[Abstract:] I want to show that the semantic and set theoretic paradoxes have a common structure – reification –, and that this allows us to solve them in a uniform way. In order to make a coherent statement of this approach possible, I will start by describing a way of talking about reification in a non-self-refuting way, by introducing an encoding operator to our language. In a second step I will show how all the paradoxes (from Russell’s paradox to the Liar), result from static reification – i.e., roughly, from the instantaneous association of a non-object with an object that encodes it. In a third step I will outline a uniform solution which consists in requiring that all reification needs to be dynamic, which can be spelled out in an amended and generalized variant of Kit Fine’s Procedural Postulationism: For every non-object we can postulate an object that encodes it – but due to procedurality this will always take a bit, so that the paradoxical objects do not ever come to exist (from the Russell set to the Liar sentence). In concluding I will compare my approach to the main alternative view about the common structure of the paradoxes, which is Graham Priest’s analysis in terms of his Inclosure Schema.