An Abelization of connexive principles

Luis Estrada-González
Universidad Nacional Autonoma de Mexico, Mexico

This paper is an investigation of connexive principles through the ideas of Abelian logic. On one hand, connexive logics (cf. [3]) have a very interesting take on conditionals and negation, as they validate principles that involve them, such as

Aristotle’s Thesis (AT) \(\neg(A \supset \neg A) \)

Boethius’ Thesis (BT) \((A \supset B) \supset \neg(A \supset \neg B) \)

Abelard’s Principle (AP) \(\neg((A \supset B) \land (A \supset \neg B)) \)

Accordingly, a connexive principle is **Aristotelian** if in all its conditional proper subformulas the antecedent is equivalent to some proper subformula of the consequent. Otherwise, the principle is **Boethian**. (AT) is Aristotelian, whereas (BT) and (AP) are Boethian.

On the other hand, one of the main ideas stressed in Abelian logic is that any conditional *If A then B* induces a negation of A, namely the negation of A relative to B (see [1]). Thus, connexive logic seems to be a good arena to further explore the Abelian idea connecting conditionals and negations. We do this using the notion of **Abelization**, which we define as a function \(A \) on a suitable formal language \(L \) that, roughly, transforms conditionals into negations, and vice versa. The results will take us to some laws abhorred by paraconsistent logicians.

References

