

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Partial oxidation of methane on Pt-supported lanthanide doped ceria–zirconia oxides: Effect of the surface/lattice oxygen mobility on catalytic performance

Vladislav A. Sadykov^{a,b,*}, Nathalia N. Sazonova^a, Aleksei S. Bobin^{a,d}, Vitalii S. Muzykantov^a, Elena L. Gubanova^{a,c}, Galina M. Alikina^a, Anton I. Lukashevich^a, Vladimir A. Rogov^a, Eugenia N. Ermakova^b, Ekaterina M. Sadovskaya^a, Nathalia V. Mezentseva^a, Ekaterina G. Zevak^b, Sergei A. Veniaminov^a, Martin Muhler^c, Claude Mirodatos^d, Yves Schuurman^d, Andre C. van Veen^{c,d}

^a Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, Novosibirsk 630090, Russia

^b Novosibirsk State University, Pirogova, 2, Novosibirsk 630090, Russia

^c Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany

^d Institut de Recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256 (CNRS/Université Claude Bernard Lyon1),

Université de Lyon – Université Claude Bernard Lyon1, 2 Avenue Albert Einstein, Villeurbanne Cedex 69626, France

ARTICLE INFO

Article history: Received 19 July 2010 Received in revised form 25 October 2010 Accepted 27 October 2010 Available online 21 December 2010

Keywords: Selective oxidation of CH₄ Syngas Pt Fluorite-like oxides Oxygen mobility and reactivity Oxygen isotope exchange Transient studies Mechanism

ABSTRACT

Partial oxidation of methane into syngas at short contact times (5–15 ms) was studied in both steady-state and transient modes at temperatures up to 850 °C in realistic feeds (CH₄ content up to 20%, CH₄/O₂ = 2) with a minimum impact of mass and heat transfer for structured catalysts carrying Pt/Ln_{0.3}Ce_{0.35}Zr_{0.35}O_{2-y} (Ln = La, Pr, Gd) as thin layers on walls of corundum channel substrates. Oxygen mobility and reactivity of the active phase were characterized by oxygen isotope heteroexchange, temperature-programmed O₂ desorption and CH₄ reduction, isothermal pulse reduction by methane with wide variation of CH₄ concentrations and TAP pulse studies. Experimental data point towards a selective oxidation of methane into syngas via a direct route with oxygen-assisted methane activation. This mechanistic feature is related to the strong Pt-support interaction stabilizing highly dispersed oxidic Pt species less active in CH₄ and syngas combustion than metallic Pt clusters. Support activates O₂ molecules and supplies active oxygen species to Pt sites. A high rate of oxygen diffusion on the surface and in the bulk of the support and Ptsupport oxygen spillover stabilizes Pt in a well dispersed partially oxidized state while preventing coking at high concentrations of CH₄ in the feed.

© 2010 Elsevier B.V. All rights reserved.