Synthesis and Structure of Siloxy-Substituted ZnO Aggregates Having $(ZnO)_n$ (n = 2, 4) and Zn_3O_4 Cores

Matthias Driess,*^[a] Klaus Merz,^[a] and Stefan Rell^[a]

Keywords: Clusters / Metal oxides / Siloxides / Zinc

Convenient syntheses and X-ray crystallographic characterizations of the first bis(trimethylsilyl)amido-, methyl-, and iodozinc triorganosiloxide aggregates **1–5** are described. They are accessible by the simple reaction of ZnR'_2 [R = Me, N(SiMe₃)₂] with the respective silanols R₃SiOH (R = Me, Et, *i*Pr), which affords the dimeric [(Me₃Si)₂NZnOSiR₃]₂ (**1a**: R = *i*Pr; **1b**: R = Et), trinuclear [(MeZn)₂Zn(OSi*i*Pr₃)₄] (**2a**), {[(Me₃Si)₂NZn]₂Zn(OSiR₃)₄] (**2b**: R = Et; **2c**: R = Me), and tetranuclear heterocubanes [MeZnOSiR₃]₄ (**3a**: R = Me; **3b**: R = Et), respectively. The latter were oxidized with four equivalents of elemental iodine to form the tetraiodo derivatives [IZnOSiR₃]₄ (**4a**: R = Me; **4b**: R = Et) in 82 and 88% yield, respectively. Due to the higher polarity of the Zn–I vs. Zn–C σ -bond, the Zn–O distances of the almost regular Zn₄O₄ core in **4a** are 2–6 pm shorter than those observed in the less Lewis-acidic cluster **3b**. However, the Zn–O distances in **3b** and **4a** are ca. 10–15 pm longer than those in **1a**, **2a**, and **2c**, due to different coordination numbers at Zn and the effects of ring strain. Remarkably, the iodo derivatives **4a**,**b** undergo dissociation in THF to give the respective dimeric THF solvates [IZn(THF)OSiR₃]₂ (**5a**: R = Me; **5b**: R = Et), whereas the Zn₄O₄ cores in **3a** and **3b** are retained even in aprotic polar solvents.