DOI: 10.1002/ejic.200600550

Eur.J.Inorg.Chem.2006,4774-4781

Cu/Zn/Al Xerogels and Aerogels Prepared by a Sol–Gel Reaction as Catalysts for Methanol Synthesis

Yanzhi Guo,^[a] Wolfgang Meyer-Zaika,^[a] Martin Muhler,^[b] Sascha Vukojević,^[c] and Matthias Epple^{*[a]}

Keywords: Heterogeneous catalysis / Copper / Zinc / Aluminum / Sol-gel processes / Mesoporous materials

ZnO/Al₂O₃, CuO/Al₂O₃, and CuO/ZnO/Al₂O₃ xerogels and aerogels have been prepared by a sol–gel route using propylene oxide as gelation initiator. For aerogel preparation, the solvent was extracted with supercritical CO₂. Calcination of these xerogels and aerogels was followed by thermogravimetry (TG), and the microstructure of these calcined xerogels and aerogels was investigated by TEM, powder XRD, EX-AFS, and nitrogen physisorption (BET, BJH). The oxide mixtures CuO/Al₂O₃ and CuO/ZnO/Al₂O₃ were also studied by temperature-programmed reduction (TPR), and their catalytic activity in the formation of methanol from $\rm CO/CO_2/H_2$ synthesis gas was measured. The aerogels have a higher specific surface area and a higher Cu surface area than the corresponding xerogels, which results in a higher catalytic activity for methanol synthesis. The presence of ZnO significantly increases the catalytic activities of both the xerogel and the aerogel.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006)