Coverage-Dependent Kinetics and Thermodynamics of Carbon Monoxide Adsorption on a Ternary Copper Catalyst Derived from Static Adsorption Microcalorimetry

Xinyu Xia, Raoul Naumann d'Alnoncourt, Jennifer Strunk, Sergey Litvinov, and Martin Muhler*

Laboratory of Industrial Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany

Received: February 14, 2006

A reliable method for adsorption systems in equilibrium is established to derive coverage-dependent kinetics and thermodynamics from the volumetric data obtained during the static microcalorimetric measurement of heats of adsorption. The Wigner-Polanyi equation is applied to analyze the pressure change as a function of time during stepwise dosing of the adsorptive until thermodynamic adsorption-desorption equilibrium is established. For carbon monoxide adsorption on a hydrogen-reduced Cu/ZnO/Al₂O₃ catalyst, the adsorption rate constant (k_a) is found to be in the range from 10⁻⁶ to 10⁻⁴ Pa⁻¹ s⁻¹, and the desorption rate constant (k_d) from 10⁻⁴ to 10⁻² s⁻¹, both increasing with fractional coverage θ . The kinetically derived equilibrium constant $K(\theta)$ is in good agreement with $K(\theta)$ obtained from the adsorption isotherm. $RT \ln(Kp^0)$ and the differential heat of adsorption (q^{diff}) were found to decrease in parallel, reflecting a normal Temkin-type heterogeneity.