Nano-brass colloids: synthesis by co-hydrogenolysis of $[CpCu(PMe_3)]$ with $[ZnCp_2^*]$ and investigation of the oxidation behaviour of α/β -CuZn nanoparticles[†]

Mirza Cokoja,^{*a*} Harish Parala,^{*a*} Marie Katrin Schröter,^{*a*} Alexander Birkner,^{*b*} Maurits W. E. van den Berg,^{*c*} Konstantin V. Klementiev,^{*c*} Wolfgang Grünert^{*c*} and Roland A. Fischer^{**a*}

Received 24th February 2006, Accepted 4th May 2006 First published as an Advance Article on the web 25th May 2006 DOI: 10.1039/b602871c

A novel, non-aqueous organometallic access to colloidal copper and copper/zinc (brass) nanoparticles is described. Hydrogenolysis of the precursor $[CpCu(PMe_3)]$ (1) in mesitylene at 150 °C and 3 bar H₂ quantitatively gives elemental Cu. Analogously, a solution of $[ZnCp*_2]$ (2) reacts with H₂ to give elemental Zn in 100% yield. Co-hydrogenolysis of 1 and 2 in exactly equimolar quantities selectively yields the intermetallic phase β -CuZn characterised by powder X-ray diffraction (PXRD). Deep red colloidal solutions of nano-Cu as well as red to violet colloids of nano-brass alloys (α/β -CuZn) are obtained by co-hydrogenolysis of 1 and 2 in the presence of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as surfactant. All samples of the general formula $Cu_{1-x}Zn_x$ (0.09 $\leq x \leq 0.50$) were characterised by means of elemental analysis, PXRD, transmission electron microscopy (TEM, EDX and SAED) and UV-Vis absorption spectroscopy. The presence and alloying of metallic Cu and Zn in the β -CuZn sample as a representative example of the series was confirmed by extended X-ray absorption fine structure spectroscopy (EXAFS). The oxidation behaviour of the nanoparticles was investigated by EXAFS, PXRD and UV-Vis spectroscopy indicating, that CuO_y@Cu core-shell type particles were formed for pure copper particles, while in the case of brass particles preferential oxidation of the Zn component takes place, which results in core-shell particles of the type $(ZnO)_{\delta} @Cu_{1-x} Zn_{x-\delta}.$