Nanometallurgy of Colloidal Aluminides: Soft Chemical Synthesis of CuAl₂ and α/β-CuAl Colloids by Co-Hydrogenolysis of (AlCp*)₄ with [CpCu(PMe₃)]

Mirza Cokoja,[†] Harish Parala,[†] Marie-Katrin Schröter,[†] Alexander Birkner,[‡] Maurits W. E. van den Berg,[§] Wolfgang Grünert,[§] and Roland A. Fischer^{*,†}

Lehrstuhlfür Anorganische Chemie II - Organometallics & Materials, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany

Received December 2, 2005. Revised Manuscript Received January 23, 2006

In this work, we present a novel soft chemical synthesis to aluminum nanoparticles based on the hydrogenolysis of the metastable organoaluminum (I) compound $(AlCp^*)_4$ (1) in mesitylene at 150 °C and 3 bar H_2 . Aiming at the development of a general wet-chemical, nonaqueous route to M/E intermetallic nanophases (E = AI, Ga, In), we studied the co-hydrogenolysis of 1 with [CpCu(PMe₃)] (2) as the model case aiming at Cu/Al alloyed nanoparticles. One equivalent of 1 combined with 2 equiv of 2 yields the nanocrystalline intermetallic θ -CuAl₂ phase (Cu_{0.33}Al_{0.67}), as revealed by elemental analysis, powder X-ray diffraction, transmission electron microscopy (TEM), and energy-dispersive X-ray analysis. The obtained $Cu_{0.33}Al_{0.67}$ material was also characterized by the ²⁷Al Knight Shift resonance. Alloy particles $Cu_{1-x}Al_x$ $(0.10 \le x \le 0.50)$, typically 15 ± 5 nm (TEM) in size, are accessible as colloidal solutions by variation of the molar ratio of 1 and 2 and by the addition of poly(2.6-dimethyl-1.4-phenylene oxide) during hydrogenolysis. The ²⁷Al NMR Knight Shift resonance moves to high field starting form the value of 1639 ppm for pure nano-aluminum particles to 1486 ppm of $Cu_{0.33}Al_{0.67}$, reaching 1446 ppm for $Cu_{0.50}Al_{0.50}$, and was not detectable for Al contents below 50%. Upon oxidation (controlled exposure to the ambient), a selective oxidation of the Al component, presumably forming core-shell structured $Al_2O_3@Cu_{1-v}Al_v$ $(0.10 \le y \le 0.50)$ particles, was studied by UV-vis spectroscopy, ²⁷Al magic-angle spinning NMR, and X-ray photoelectron spectroscopy. The Al content can be freely adjusted and lowered down to about 15 atom % ($Cu_{0.85}Al_{0.15}$) without oxidizing the Cu(0) core.

25 26

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24