Adsorption of atomic hydrogen on $ZnO(10\overline{1}0)$: STM study

Thomas Löber,^a Ulrich Köhler,^a Xiu-Li Yin,^b Alexander Birkner,^b Kathrin Hänel^b 5 and Christof Wöll^b

Received 31st October 2005, Accepted 23rd January 2006 First published as an Advance Article on the web DOI: 10.1039/b515464b

10

The adsorption of atomic hydrogen on a single crystal ZnO($10\overline{10}$) surface has been studied by scanning tunneling microscopy (STM) under ultrahigh vacuum conditions at room temperature and at elevated temperatures. High resolution STM images indicate that a well-ordered (1 × 1) H adlayer is formed on the ZnO($10\overline{10}$) surface. The STM data strongly indicate that the hydrogen adsorbs on top of the oxygen atoms forming hydroxyl species. Scanning tunneling spectroscopy (STS) studies reveal a H atom induced metallization at room temperature. In contrast to the clean surface for the hydrogen-covered surface distinct defects structures consisting of missing O and Zn atoms could be identified. 5