www.rsc.org/dalton

alton

Facile synthesis and structural variation of novel heterobimetallic alkali metal-zinc-alkoxide and -siloxide clusters †

Klaus Merz, Stefan Block, Robert Schoenen and Matthias Driess

Lehrstuhl für Anorganische Chemie 1: Cluster- und Koordinationschemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44801 Bochum, German. E-mail: matthias.driess@ruhr-uni-bochum.de

Received 6th March 2003, Accepted 2nd July 2003 First published as an Advance Article on the web 28th July 2003

The novel alkali metal zinc-alkoxide and the first -siloxide aggregates $[(thf)M(MeZn)(O'Bu)_2]_2$ **1a** (M = Li), **1b** (M = Na), $[(thf)_2K(MeZn)(OSiMe_3)_2]_2$ **2** and $[(tmeda)KZn(OSiMe_3)_3]_2$ **3** are easily accessible from the reaction of Me₂Zn with MOR (molar ratio 1 : 1; M = Li, Na, K; R = 'Bu, SiMe_3) in boiling thf and tmeda, respectively. While **1a**, **1b** and **2** possess distorted M₂Zn₂O₄ heterocubane frameworks, compound **3** consists of a K₂Zn₂O₆ core of a strongly distorted, face-fused double-heterocubane with two missing corners. In contrast, heating a mixture of Me₂Zn and KO'Bu in the molar ratio of 1 : 1 in toluene affords the donor solvent-free K–Zn–O cluster [K(MeZn)₃(O'Bu)₄] **4** which crystallizes as a polymer of strongly distorted [KZn₃O₄] heterocubanes *via* intermolecular agostic K ··· MeZn interactions. The formation of the clusters may be rationalized in terms of alkali metal ion- and donor solvent-dependent ligand exchange reactions of methyl(alkoxide)- and methyl(siloxide)-zincates as initial products. Some of the initial products have been detected by means of electro spray ionisation (ESI) mass spectrometry.